JPH02200760A - Strip temperature control method for heating furnace - Google Patents

Strip temperature control method for heating furnace

Info

Publication number
JPH02200760A
JPH02200760A JP1744789A JP1744789A JPH02200760A JP H02200760 A JPH02200760 A JP H02200760A JP 1744789 A JP1744789 A JP 1744789A JP 1744789 A JP1744789 A JP 1744789A JP H02200760 A JPH02200760 A JP H02200760A
Authority
JP
Japan
Prior art keywords
fuel flow
strip
flow rate
burner group
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1744789A
Other languages
Japanese (ja)
Inventor
Kuniaki Tauchi
田内 邦明
Harumi Shigemoto
重本 晴美
Yoshihiro Iida
祐弘 飯田
Ryoichi Ide
井出 良一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Kawasaki Steel Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1744789A priority Critical patent/JPH02200760A/en
Publication of JPH02200760A publication Critical patent/JPH02200760A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the responsiveness when parameter changes and to make uniform the strip temp. distribution in a thickness direction by computing the required fuel flow rate corresponding to the quantity of heat of which a strip is deprived, determining the fuel flow rate distribution pattern to respective burner groups and further determining the fuel flow rates to the respective burner groups. CONSTITUTION:The change in the respective parameters; the thickness, a width of the strip, a line speed, and target strip temp., is detected and the required total fuel flow rate Ft corresponding to the quantity of heat of which the strip is deprive is calculated, then the fuel flow rate distribution pattern to the respective burner groups is determined. Further, the fuel flow rates to the respective burner groups are determined by equation I. The fuel is passed at the above-mentioned flow rates to the respective burner groups for the prescribed period of time when the parameter changing part of the strip passes the burner groups in accordance with the determined fuel flow rates. In equation I, Fis is the optimum fuel flow rate (set value) of the i-th zone in the transverse direction of the strip; Ri is the constant to determine the fuel flow rate distribution pattern to the i-th zone (under the conditions expressed by equation II); N denotes the number of zones of the respective burner groups in the transverse direction of the strip.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は連続し7た板のJに幅方向に複数個のバーナ群
を配設した加熱炉の板ぷ制御力法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a plate control force method for a heating furnace in which a plurality of burner groups are arranged in the width direction on seven consecutive plates.

〔従来の技術〕[Conventional technology]

加熱炉の1例として合金化メツキ設備加熱帯について第
3図ないし第7図により説明する。
As an example of a heating furnace, a heating zone for alloying plating equipment will be explained with reference to FIGS. 3 to 7.

第3図は亜鉛の合金化メツキ設備の構成図、第4図はの
ヒートサイクルの説明図、第5図は加熱シ1)の部分縦
断面図、第6図は第5図のvi−vq断面図、第7図は
加熱帯の加熱炉の板温制御系のブロック図である。
Fig. 3 is a block diagram of the zinc alloy plating equipment, Fig. 4 is an explanatory diagram of the heat cycle, Fig. 5 is a partial vertical cross-sectional view of the heating plate 1), and Fig. 6 is the vi-vq of Fig. 5. The sectional view and FIG. 7 are block diagrams of the plate temperature control system of the heating furnace of the heating zone.

まず第3図において、ストリップlはvt鈍炉2を出た
後1、亜鉛ボット3を通り、−8溶融メンキされる。さ
らにノズル4からの吹出ガスによって付着量制御を行な
った後、合金化メツキ設備に入る0合金化メツキ設備は
加熱帯51.保持帯6、冷却帯7が順次配列され°ζい
る。ここで第4図のようなし一トサイクルを施すことに
よ、って亜鉛と素地鋼板の合金層を形成させるものであ
る。第5図と第6図はこのうち加熱帯で、ストリップ対
向面の炉壁28に板進行方向、板幅方向に千鳥状に直火
式バーナ8を配設した直火加熱方式の加熱帯の例である
。加熱帯では従来第7図のような板幅方向の板温制御系
を構成している。なお第7図は板幅方向のストリップセ
ンタ部を含めてゾーン■、■■、■、■の計5ゾーンの
直火式バーナ群を設けた場合の例で、センタから右側部
分のみの制御ループを図示している(左側部分も同様で
ある)。
First, in FIG. 3, after the strip 1 leaves the VT blunt furnace 2, it passes through a zinc bot 3 and is molten by -8. Furthermore, after controlling the adhesion amount using the gas blown out from the nozzle 4, the zero-alloy plating equipment enters the alloying plating equipment in the heating zone 51. A holding zone 6 and a cooling zone 7 are arranged in sequence. By carrying out one cycle as shown in FIG. 4, an alloy layer of zinc and the base steel sheet is formed. Figures 5 and 6 show the heating zone, which is a direct-fire heating type heating zone in which direct-fired burners 8 are arranged in a staggered manner in the plate advancing direction and plate width direction on the furnace wall 28 on the surface facing the strip. This is an example. In the heating zone, a conventional sheet temperature control system in the sheet width direction as shown in FIG. 7 has been constructed. Figure 7 shows an example where a direct-fired burner group is installed in five zones (zones ■, ■■, ■, ■, including the strip center section in the strip width direction), and the control loop is only for the right side from the center. (The same is true for the left side).

板進行方向の各直火式バーチには一括して燃料を供給し
、流量制御し2ている。走査型板温計9は加熱帯出口に
設置し、板幅方向に定周期で走査して板温を検出する。
Fuel is supplied all at once to each direct-fired birch in the direction of board movement, and the flow rate is controlled2. A scanning plate thermometer 9 is installed at the outlet of the heating zone, and scans in the width direction of the plate at regular intervals to detect the plate temperature.

すなわち、板幅方向各ゾーンのバーナ位置に対応する板
温を第7図のように検出し、それぞれ板温調節計10.
1).12に送信4゛る。
That is, the plate temperature corresponding to the burner position in each zone in the plate width direction is detected as shown in FIG. 7, and the plate temperature controller 10.
1). Send 4 on 12.

板温調節計10.1).12は板温検出値a、  1)
.  cを受けて所定の目標温度になるように燃料流量
検出器を演算し、それぞれ燃料流量調節計13゜14.
15に送る。
Plate temperature controller 10.1). 12 is plate temperature detection value a, 1)
.. c, the fuel flow rate detector is operated so that the temperature reaches a predetermined target temperature, and the fuel flow rate controllers 13, 14, respectively.
Send to 15th.

なお板温1)節1l1.12は板幅方向の板温差−〇即
ちa−b=o (a−c−0)になるように燃料流量検
出器を演算する場合もある。
Note that the fuel flow rate detector may be calculated so that the plate temperature 1) node 1l1.12 is the plate temperature difference in the plate width direction -0, that is, a-b=o (ac-0).

燃料流13M1節計13.14.15は燃料流量検出器
1617.18で検出された燃料流量が所定値に等しく
なるようにぞれぞれ制御n弁19,20.21を操作す
る。つまり板幅方向の各ゾーンについて、板温検出値に
応じて燃料流量をカスケード制御する板温フィードバッ
ク制御系を構成し、板幅方向の板温分布を制御している
The fuel flow 13M1 moderators 13, 14, 15 operate the control n valves 19, 20, 21, respectively, so that the fuel flow detected by the fuel flow detector 1617, 18 becomes equal to a predetermined value. In other words, a plate temperature feedback control system is configured to cascade control the fuel flow rate in accordance with the plate temperature detection value for each zone in the plate width direction, thereby controlling the plate temperature distribution in the plate width direction.

〔発明が解決しようとする課題] 上記従来の方法は次のような問題点があった。[Problem to be solved by the invention] The above conventional method has the following problems.

(1)直火加熱方式においてはストリップは直火式バー
ナによって加熱された炉壁からのふく射熱支配で加熱さ
れる。炉壁は熱容量が大きいので炉の応答性が悪く、た
とえば塩1!4流量に対する板温のステップ応答の時定
数は数分程度かかる。
(1) In the direct-fire heating method, the strip is heated by radiation heat from the furnace wall heated by a direct-fire burner. Since the furnace wall has a large heat capacity, the response of the furnace is poor; for example, the time constant of the step response of the plate temperature to a salt flow rate of 1!4 takes about several minutes.

ところが加熱帯の通板時間は数秒程度であるため、たと
えばコイル間のつぎ目で後行材の板幅が変化した場合、
板幅方向の加熱量分布が後行材に対して不適切であるた
め一時的に板温分布が許容値(±10℃程度)を越える
という問題があった。
However, since the heating belt threading time is about a few seconds, for example, if the width of the trailing material changes at the seam between coils,
Since the heating amount distribution in the width direction of the sheet was inappropriate for the following material, there was a problem in that the sheet temperature distribution temporarily exceeded the allowable value (approximately ±10° C.).

(2)板幅が一定であっても、次式で示すストリップの
必要な奪熱量Q、が変化りまた場合、Q、に応じた最適
な加熱分布が変わるため同様な問題があった。
(2) Even if the plate width is constant, the required amount of heat absorption Q from the strip, expressed by the following equation, changes, and the optimal heating distribution depending on Q changes, causing a similar problem.

Q、=V −D −W(TI−’TI)C,−r*−(
2)ここで■ニストリップのライニアスピード1′):
板厚 W : 牟反幅 ′r、:加熱帯出cn反温目標イ直 TI :加熱書入[J板温 C1:ストリンフ“比熱 T、;ストリップ比重量 Ql :入トリップの必要な奪熱量 〔課題を解決するための手段〕 本発明は上記課題を解決するため次の手段を講する。
Q,=V −D −W(TI−′TI)C,−r*−(
2) Here ■ Nistrip's linear speed 1'):
Plate thickness W: Strap width 'r,: Heating strip output cn Reheating target I Direct TI: Heating entry [J Plate temperature C1: Strimp specific heat T,; Strip specific weight Ql: Required amount of heat removal for entry trip [Task] Means for Solving the Problems] The present invention takes the following measures to solve the above problems.

(+)  ストリップの板幅方向に複数個のバーナ群を
配設し、同板幅方向の板温分布が均一となるJ2うに各
バーナ群の燃料流量検出値する加熱炉の板温制御方法に
おいて、上記ストリップの板厚、板幅1.ラインスピー
ド、目標板;見の各パラメータの変化に際し、 同各バうメータの変化を検知し2、同各パラメータより
得られるストリップの奪熱量に応じた必要総燃料流量(
Ft)杏f′A算し、あらかじめ、上記ストリップの奪
熱量および板幅と関係づけられた同各バーナ群への燃料
流量配分パターンを求め、さらに前記特許請求の範囲(
1)に記載した(1)式により各バーナ群へのjp!ネ
:1流量を求め、上記ストリップのパラメータ変化部が
上記各バーナ群中を通るとき、所定時間同各バーナ群へ
上記燃料流量を流すようにし、た。
(+) In a method for controlling the plate temperature of a heating furnace in which a plurality of burner groups are arranged in the width direction of the strip, and the plate temperature distribution in the strip width direction is uniform, the fuel flow rate of each burner group is detected. Thickness and width of the above strip 1. When the line speed, target board, and other parameters change, the changes in each bar meter are detected, and the required total fuel flow rate (
Ft) 杏f′A is calculated, and the fuel flow rate distribution pattern to each burner group is determined in advance in relation to the heat removal amount and plate width of the strip, and further, the claim (
jp! to each burner group using equation (1) described in 1). N: 1 flow rate was determined, and when the parameter changing portion of the strip passes through each burner group, the fuel flow rate was made to flow to each burner group for a predetermined period of time.

(2)  ストリップの板幅方向に複数個のバー・ノ・
群4配設L2、同板幅方向の板温分布が均一となるよ・
)に各バー1〜群の燃料流、量を1葉作する加熱炉の板
温制御方法において、」−記ストリップの板厚、板幅、
ラインスピード、目標板温の各パうメタの変化に際し、
(2) Multiple bar holes in the width direction of the strip.
Group 4 arrangement L2, the plate temperature distribution in the width direction of the plate will be uniform.
) In a method for controlling the plate temperature of a heating furnace in which the fuel flow and quantity of each bar 1 to 1 group are produced in one sheet, the plate thickness, plate width of the strip,
When changing parameters such as line speed and target plate temperature,
.

同各バラメークの変化を検知し、同各パラメータより得
られるストリップのt熱蓋に応した必要総燃料流ii 
(FL)を演算し、あらかじめ上記ストリップの奪熱量
および板幅と間係づけられた同各バーナ群への燃料流量
配分パターンを求めるとともに、上記各パラメータの変
化前の所定の時点において、所定時間紅過後、上記板幅
方向の板温検出値により上記各バーナ群の燃料流量を操
作する同板幅方向の板温フィードバック制御n系が安定
した際の同各バーナ群の燃料流量検出値から前記特許請
求の範囲(1)に記載した(1.1式の関係より燃料流
量配分パターンを決める定数R1を逆算し、逐次、F記
燃料流量配分パターンを修正し、この修正された燃料流
量配分パターンから、■二記(1)式により各バーナ群
^・の燃料流量を求め、上記ストリップのパラメータ変
化部が上記各バーナ群中を通るとき、所定時間同各バー
上群へ上記燃料witを流すよノにした。
The required total fuel flow according to the heat cover of the strip obtained from the same parameters by detecting the changes in each parameter.
(FL) to determine the fuel flow distribution pattern to each burner group associated with the heat removal amount and plate width of the strip in advance, and at a predetermined time point before the change of each parameter above, for a predetermined period of time. After red-filtration, the fuel flow rate detection value of each burner group is calculated from the detected value of the fuel flow rate of each burner group when the board temperature feedback control system in the board width direction, which operates the fuel flow rate of each burner group based on the board temperature detection value in the board width direction, is stabilized. The constant R1 that determines the fuel flow distribution pattern is calculated backward from the relationship of equation 1.1 described in claim (1), and the fuel flow distribution pattern F is sequentially corrected. From (1), calculate the fuel flow rate of each burner group by equation (1), and when the parameter changing part of the strip passes through each burner group, flow the fuel wit to each upper group of bars for a predetermined period of time. I declined.

〔作用〕[Effect]

1−記手段により、1−記(1)および(2)の発明に
おいζ、それぞれ次の(1)および(2)項のように作
用する。
By the means described in 1-, ζ in the inventions of 1-, (1) and (2) operate as in the following (1) and (2), respectively.

(1) ストIIツフ゛の)反覆、1反厚M、 ライン
スピード、[1標板温の各パラメータの変化が検知され
、同各パラメータより得られるストリップの必要な奪熱
量に応じた必要M!、燃料流量(Ft)が演算される。
(1) Changes in the following parameters (repetition, thickness M, line speed, and board temperature of Strip II strip) are detected, and the required M value is calculated based on the required heat removal amount of the strip obtained from each parameter. , the fuel flow rate (Ft) is calculated.

次に予め上記ストリップの必要な奪熱量および板幅と関
係づけられた同各バーナ群^最適な燃料流量配分パター
ンが求められる。、\らに前記(1)式により各バーナ
群への最適な燃料流量が求められ、」−記ストリングの
パラメータ変化部が1−記載バーナ群中を通るとき、所
定時間、同各バーチ群へL記Q適な燃料流量が漬れる。
Next, an optimal fuel flow distribution pattern for each burner group is determined in advance in relation to the necessary heat removal amount and plate width of the strip. Then, the optimal fuel flow rate to each burner group is determined by equation (1) above, and when the parameter changing part of the string passes through the burner group described in 1-, the flow rate is determined for each burner group for a predetermined period of time. L Q Appropriate fuel flow rate is reduced.

このようにして、ストリップのバラ、メータが変化する
ときにも、各バーナ群は最適な燃料流量で燃焼し、板幅
方向の板温分布が均〜となる。
In this way, even when strip variations and meters change, each burner group burns at the optimum fuel flow rate, and the plate temperature distribution in the plate width direction becomes uniform.

(2)  ストリップの板厚、板幅、1ラインスピー 
ド、目標板温の各パラメータの変化が検知され、同各パ
ラメータより得られるストリップの必要な奪熱量に応じ
た必要総燃料流量(Ft)が演算される。次に予め上記
ストリップの必要なQiQ量および板幅と関係づけられ
た同各バーナ群・・・・最適な燃料流量配分パターンが
求められる。−・方、上記各パラメータの変化前の所定
の時点において、所定時間経過後、板幅方向の&点検出
値により板幅方向のL記名バーナ群の燃料流量を操作す
る板幅方向の板温フィードバック制御系が安定した際の
上記各バーナ群の燃料流量検出値から前記(1)式によ
り燃料流量配分パターンを決める定数R4が逆1γされ
、逐次1−記最適な燃料流量配分パターンが修正される
。この修正された燃料流量配分パターンから前記(0式
により各バーナ群への最適燃料流量が求められ、1記ス
トリツプのパラメータ変化部が上記各バー上群中を通る
とき所定時間同各パーツ・群へト記最適な燃料流量が流
される。
(2) Strip thickness, width, and 1 line speed
Changes in parameters such as strip temperature and target plate temperature are detected, and a required total fuel flow rate (Ft) corresponding to the required heat removal amount of the strip obtained from each parameter is calculated. Next, the optimal fuel flow distribution pattern for each burner group is determined in advance, which is related to the required QiQ amount and strip width of the strip. -, at a predetermined time point before the change in each of the above parameters, after a predetermined period of time, the plate temperature in the plate width direction is controlled by the detected value of the & point in the plate width direction. When the feedback control system is stabilized, the constant R4 that determines the fuel flow distribution pattern is inverted by 1γ from the fuel flow rate detection values of each burner group using the above equation (1), and the optimal fuel flow distribution pattern is successively corrected. Ru. From this modified fuel flow rate distribution pattern, the optimal fuel flow rate to each burner group is determined using the equation (0), and when the parameter changing part of the strip passes through the upper group of each bar, each part/group is Note: The optimal fuel flow rate is applied.

このようにして、ストリップのパラメータが変化すると
きにも、各バーナ群は最適な燃ネ・1流璽で燃焼し、板
幅方向の板温分布が均一となる。
In this way, even when the parameters of the strip change, each burner group burns at the optimum fuel consumption and one flow rate, and the strip temperature distribution in the strip width direction becomes uniform.

〔実施例〕〔Example〕

本発明の請求項(1)および(2)に係る一実施例をぞ
れぞれ第1図と第2図によりF記(1)および(2)項
で説明する。
An embodiment according to claims (1) and (2) of the present invention will be explained in Sections (1) and (2) of Section F with reference to FIGS. 1 and 2, respectively.

なお、従来例で説明した部分は、冗長さをさけるため説
明を省略し、この発明に関する部分を主体に説明する。
Note that the description of the portions described in the conventional example will be omitted to avoid redundancy, and the description will mainly focus on the portions related to the present invention.

(1)第1図は一実施例の構成図、第2図は同実施例の
燃料流計配分パターンの説明図である。ただし第1図で
は従来例の第7図と同様、も側半分について説明すると
ともに、板進行方向の各バーナの燃料流量は一括して制
御することを前提として図示していない、第1図にて、
各切換器25.26.27は走査型板温計9よりそれぞ
れ一方の入力信号を受け、かつ演算処理装置22よりそ
れぞれ他力の入力信号として、最適な燃料流量の信号2
3.24125を受ける。さらに切換指令も受ける。ま
たその出力はそれぞれ燃14流量調節計13、14.1
5に送られる。
(1) FIG. 1 is a configuration diagram of one embodiment, and FIG. 2 is an explanatory diagram of a fuel flowmeter distribution pattern of the same embodiment. However, in Fig. 1, as in Fig. 7 of the conventional example, the side half is explained, and the fuel flow rate of each burner in the plate advancing direction is not shown on the premise that it is controlled all at once. hand,
Each switch 25, 26, 27 receives one input signal from the scanning plate thermometer 9, and receives a signal 2 representing the optimum fuel flow rate from the arithmetic processing unit 22 as an input signal.
3. Receive 24125. Furthermore, a switching command is also received. In addition, their outputs are the fuel 14 flow rate controllers 13 and 14.1, respectively.
Sent to 5.

以上の構成において、演算処理装置22の入力データお
よび出力データは以下の通りである。
In the above configuration, the input data and output data of the arithmetic processing unit 22 are as follows.

(al  入力データ ■ 板幅  ■ 板厚  の 板温目標値■ ラインス
ピード検出値 ■ 板幅方向各ゾーン燃料流量検出値 ■ 板幅方向板温検出値 (b)  出力Y−タ ■ 板幅方向の各ゾーンの最適な燃$4流星設定偵 ■ カスケード制御計の0N10FFの切換指令スi・
リップの板厚、板幅、ラインスピード、目標板温の各バ
ラン・−夕の変化が検知され、演算処理装置22におい
て同各パラメータより得られるストリップの必要な奪#
ftQ、(前記(2)式)に応じた必要総燃料21■(
Ft)が次の(3)武により演算される。
(al Input data ■ Plate width ■ Plate temperature target value for plate thickness ■ Line speed detection value ■ Fuel flow rate detection value for each zone in the plate width direction ■ Plate temperature detection value in the plate width direction (b) Output Y-ta ■ In the plate width direction Optimal fuel $4 meteor setting for each zone ■ Cascade controller's 0N10FF switching command switch
Changes in the lip thickness, width, line speed, and target plate temperature are detected, and the processing unit 22 calculates the required strip stripping number obtained from each parameter.
ftQ, the total required fuel according to (formula (2) above) 21■ (
Ft) is calculated by the following (3) Take.

FL =Q、/η  −・−・ (3)ここでη:定数 次に予め第2図に示すような上記ストリップの必要な!
E熱量および板幅と関係づけられた同各バーナ群へ最適
な燃料流量配分パターン、すなわちRLが求められる。
FL = Q, /η −・−・ (3) where η: constant Next, the required value of the above strip as shown in FIG. 2 in advance!
An optimal fuel flow distribution pattern, ie, RL, for each burner group is determined in relation to the E heat amount and the plate width.

第2図はストリップの必要なt熱蓋や板幅と各ゾーンの
燃料流量配分パターンの1例である。当初はセンタに対
し対象としてすえている。またQ s r + Q s
 z 、 Q 5j・W、、、W、、W3は分割節点を
示す、これらはあらかじめ伝熱理論解析や実験データの
整理によって得ておく。さらに前記(1,1式により各
バーナ群への最適な燃料iN、量が求められ、上記スト
リ。
FIG. 2 shows an example of the necessary heating cover and plate width of the strip and the fuel flow distribution pattern for each zone. Initially, it was set up as a target for the center. Also, Q s r + Q s
z, Q5j·W, , W, , W3 indicate dividing nodes, which are obtained in advance by heat transfer theory analysis or organizing experimental data. Furthermore, the optimal fuel iN and amount to be supplied to each burner group are determined by the formula (1.

ブのパラメータ変化部が上記各バーナ群中を通るとき、
切換器25.26.27が切り換えられ、フィトバック
制御系がOFFになるとともにそれぞれ最適な燃料流量
の信号23゜24 、25が出力される。
When the parameter changing part of the burner passes through each burner group,
The switches 25, 26, and 27 are switched to turn off the phytback control system and output signals 23, 24, and 25 indicating the optimum fuel flow rates, respectively.

その後一定時間保持された後、切換器25.26.27
が元の位置に切り換えられ、フィードバック制御系がO
Nにもどる。そのタイミングはたとえば板温分布検出値
が所定時間以上連続して許容値以内にあった場合とする
After that, after being held for a certain period of time, the switch 25.26.27
is switched to its original position, and the feedback control system is switched to O.
Return to N. The timing is, for example, when the plate temperature distribution detection value has been continuously within the allowable value for a predetermined period of time or more.

このようにして、ストリップのパラメータが変化すると
きにも、2板幅方向の板温分布が均一・となる。
In this way, even when the strip parameters change, the strip temperature distribution in the width direction of the two strips remains uniform.

なお、上記では、(2)、 (3)式により必要総燃料
:lXm1 F t を求めたが、次のようにより詳細
な熱収支式から求めてもよい。
In addition, although the required total fuel: lXm1 F t was calculated|required by formula (2) and (3) above, it may be calculated|required from a more detailed heat balance formula as follows.

下記の伝熱式(4)をx=0〜N(炉長)まで積分し7
、x =1におけるr@が目標板温となるためのT、、
杏求める。T、を熱収支式(5)に代入しFLを得る。
Integrate the heat transfer equation (4) below from x = 0 to N (furnace length) and calculate 7
, T for r@ at x = 1 to become the target plate temperature, ,
I'm looking for apricot. Substitute T into the heat balance equation (5) to obtain FL.

(T 、 + 273) ’)   −(4)FtCz
−Qs+Qi+C3FtTm   −””(5)ここで
′r1:炉内温度 1゛、ニストリップ温度 Q、:炉体放散熱 C1〜C1:定数 (2)上記(1)項で説明したとほぼ同様の構成におい
て、ストリップの板厚、板幅、3・インスピード、目標
板温の各パラメータの変化が検知され、演算処理装置2
2において、同各パラメータより得られるストリップの
必要な奪熱IQ、(前記(2)式)に応じた必要総燃料
流* CFt > が演算される。次に予めF記ストリ
・ノブの必要な奪熱量および板幅と関係−ノけられた同
各バーナ群へ最適な燃料流量配分パターンが求められる
。−Jj、上記各パラメータの変化前の所定の時点にお
いて、所定時間経過後、板幅方向の板温検出値により板
幅方向の上記各バーナ群の燃料流量を操作する板幅方向
の板温フィードバック制御系が安定した際の上記各バー
ナ群の燃料流量検出値から下記の(6)、 (7)式4
こより燃料流量配分バタンを決める定数R,が逆算され
1.逐次上記最適な燃料流量パターンが修正される。
(T, +273)') −(4)FtCz
-Qs+Qi+C3FtTm -"" (5) where 'r1: Furnace temperature 1', Nislip temperature Q,: Furnace body dissipated heat C1~C1: Constant (2) Almost the same configuration as explained in section (1) above , changes in the parameters of strip thickness, strip width, 3.in speed, and target strip temperature are detected, and the arithmetic processing unit 2
In step 2, the required total fuel flow *CFt> according to the required heat removal IQ of the strip (formula (2) above) obtained from each of the same parameters is calculated. Next, an optimal fuel flow rate distribution pattern to each burner group is determined in advance in relation to the necessary heat removal amount and plate width of the F-street knob. −Jj, sheet temperature feedback in the sheet width direction that operates the fuel flow rate of each burner group in the sheet width direction based on the sheet temperature detection value in the sheet width direction after a predetermined time has elapsed at a predetermined time before the change of each of the above parameters; From the fuel flow rate detection values of each burner group mentioned above when the control system is stable, the following equations (6) and (7) can be calculated.
From this, the constant R, which determines the fuel flow rate distribution button, is calculated backwards.1. The optimal fuel flow pattern is successively modified.

L−”1 R1−L−L〜とべ−1 ΣV’1 、ここでFi(t):j時点の第1ゾーン燃料流頃検出
値 y′、;第1ゾーン燃料流量f均値 ΔL:サンプル周期 (k−L )Δt:サンプル時点 (0のとき現6時刻とする) LΔt:Fi(t)の゛PPJ埴算出時間(たとえばF
t(t)の変動周期 の3倍程度とする。) 修正は燃才1流量配分パターンのテーブル内の1)丁1
回値を、(7)式の今回値に置きかえられるが、または
前回値と今回値の加重平均値に置きかえられるなどして
−テーブル使が修止される。
L-"1 R1-L-L~Tobe-1 ΣV'1, where Fi(t): 1st zone fuel flow detection value y' at time j; 1st zone fuel flow rate f average value ΔL: sample Period (k-L) Δt: Sample time (when 0, the current time is 6) LΔt: PPJ calculation time of Fi(t) (for example, F
It is assumed to be approximately three times the fluctuation period of t(t). ) The correction is 1) D1 in the fuel 1 flow distribution pattern table.
The table usage is corrected by replacing the previous value with the current value in equation (7), or by replacing it with the weighted average of the previous value and the current value.

この修正された燃料流量配分パターンから前記(1)式
により各バーナ群への最適な燃料流量が求められ、上記
ストリップのパラメータ変化部が上記各バーナ群中を通
るとき、切換器25.26゜27が切り換えられ、フィ
ードバック制御系がOFFになるとともにそれぞれ最適
な燃料流量の信号23,24.25が出力され、その後
一定時間保持された後、切換器25.26.27が元の
位置に切り換えられ、フィルドパック制御系がONにも
どる。
From this modified fuel flow rate distribution pattern, the optimum fuel flow rate to each burner group is determined by the above equation (1), and when the parameter changing section of the strip passes through each burner group, the switching device 25.26° 27 is switched, the feedback control system is turned OFF, and signals 23, 24.25 of the optimum fuel flow rate are outputted, and then after being held for a certain period of time, the switching devices 25, 26, and 27 are switched back to their original positions. The filled pack control system returns to ON.

そのタイミングはたとえば板温分布検出値が所定時間以
上連続し、°て許容値以内にあった壜台とする。
The timing is, for example, when the plate temperature distribution detection value continues for a predetermined period of time or more and is within a permissible value.

このようにして、ストリップのパラメータが変化すると
きにも、板幅方向の板幅分布が均一となる。
In this way, even when the parameters of the strip change, the strip width distribution in the strip width direction remains uniform.

〔発明の効果〕〔Effect of the invention〕

以りに説明したよ・うに本発明によれば、加熱炉の板幅
方向の板温分布制御方法において板厚、板幅などのパラ
メータの変化時にも、応答性が向1−するとともに板幅
方向の板温分4ノかっ・になる。
As explained above, according to the present invention, even when parameters such as sheet thickness and sheet width change in the sheet temperature distribution control method in the sheet width direction of a heating furnace, the responsiveness is improved and the sheet width is The plate temperature in the direction will be 4 degrees.

したがって、品′a、歩留向J−をはかることができる
Therefore, the product 'a' and the yield direction J- can be measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用した一実施例としての加熱炉
の板温制御系のブロック図、第21>0は同実施例の燃
料’mF1配分パターン説明図、第:3図は従来例の合
金化メツキ設備の全体構成図、第4図は同従来例の合金
化メツキ設備のし一トサイクルの説明図、第5図は同従
来例の加熱炉の1例とi。 ての合金化メツキ設備加熱帯のバーナ配列例の部分樅断
面図、第6図は第5図の■−Vl断面図、第7図は同従
宋の加熱炉の板4制御糸り)ゾロツク図である。 I ストリップ、  10.1).12−板温1!節計
、1.3.14.15−一燃料流量劇節ルl、23 、
24. 、25−最適な燃$4疏1)(設定値)、28
  炉壁、     22−演算処理装置、8・−直火
式バーナ、 9−走査型板温計(板温検出器)、 5−加熱帯。 代理人 弁理士 坂 間   暁 外2名 第2図 第4図 第6図
Fig. 1 is a block diagram of a plate temperature control system of a heating furnace as an embodiment to which the method of the present invention is applied, Fig. 21>0 is an explanatory diagram of the fuel 'mF1 distribution pattern of the same embodiment, and Fig. 3 is a conventional example. Fig. 4 is an explanatory diagram of the complete cycle of the conventional alloying plating equipment, and Fig. 5 shows an example of the conventional heating furnace. Figure 6 is a partial cross-sectional view of the burner arrangement example of the heating zone of the alloy plating equipment in Japan, Figure 6 is a cross-sectional view of ■-Vl in Figure 5, and Figure 7 is the plate 4 control string of the heating furnace of the Confucian Song Dynasty. It is a diagram. I Strip, 10.1). 12- Board temperature 1! Fuel meter, 1.3.14.15-1 fuel flow rate, 23,
24. , 25-optimum fuel $4 kan 1) (setting value), 28
Furnace wall, 22-computation processing unit, 8--direct fire burner, 9-scanning plate thermometer (plate temperature detector), 5-heating zone. Agent: Patent Attorney Akigai Sakama (2 people) Figure 2 Figure 4 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)ストリップの板幅方向に複数個のバーナ群を配設
し、同板幅方向の板温分布が均一となるように各バーナ
群の燃料流量を操作する加熱炉の板温制御方法において
、 上記ストリップの板厚、板幅、ラインスピード、目標板
温の各パラメータの変化に際し、同各パラメータの変化
を検知し、同各パラメータより得られるストリップの奪
熱量に応じた必要総燃料流量(F_t)を演算し、あら
かじめ上記ストリップの奪熱量および板幅と関係づけら
れた上記各バーナ群への燃料流量配分パターンを求め、
さらに下記(1)式により各バーナ群への燃料流量を求
め、上記ストリップのパラメータ変化部が上記各バーナ
群中を通るとき、所定時間同各バーナ群へ上記燃料流量
を流すことを特徴とする加熱炉の板温制御方法。 F_i_s=(1+R_i)F_t/N(i=1〜N)
・・・・・(1) ここでF_i_s:板幅方向の第1ゾーンの最適な燃料
流量(設定値) F_t:総燃料流量(運転条件からえられる。) R_i:第1ゾーンへの燃料流量配分パターンを決める
定数(ストリップ奪熱量や板幅との関係を表わすテーブ
ルから得られる。) ただし▲数式、化学式、表等があります▼ N:板幅方向の各バーナ群のゾーン数
(1) In a heating furnace strip temperature control method in which a plurality of burner groups are arranged in the strip width direction and the fuel flow rate of each burner group is controlled so that the strip temperature distribution in the strip width direction is uniform. , When the above-mentioned strip thickness, width, line speed, and target strip temperature change, the required total fuel flow rate ( F_t) to obtain a fuel flow distribution pattern to each of the burner groups that is related in advance to the heat removal amount and plate width of the strip;
Further, the fuel flow rate to each burner group is determined by the following equation (1), and when the parameter changing part of the strip passes through each burner group, the fuel flow rate is caused to flow to the same burner group for a predetermined period of time. Method for controlling plate temperature in a heating furnace. F_i_s=(1+R_i)F_t/N(i=1~N)
...(1) Here, F_i_s: Optimal fuel flow rate for the first zone in the plate width direction (set value) F_t: Total fuel flow rate (obtained from operating conditions) R_i: Fuel flow rate to the first zone A constant that determines the distribution pattern (obtained from a table that shows the relationship between strip heat removal and plate width.) However, ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ N: Number of zones in each burner group in the plate width direction
(2)ストリップの板幅方向に複数個のバーナ群を配設
し、同板幅方向の板温分布が均一となるように各バーナ
群の燃料流量を操作する加熱炉の板温制御方法において
、 上記ストリップの板厚、板幅、ラインスピード、目標板
温の各パラメータの変化に際し、同各パラメータの変化
を検知し、同各パラメータより得られるストリップの奪
熱量に応じた必要総燃料流量(F_t)を演算し、あら
かじめ上記ストリップの奪熱量および板幅と関係づけら
れた同各バーナ群への燃料流量配分パターンを求めると
ともに、上記各パラメータの変化前の所定の時点におい
て、所定時間経過後、上記板幅方向の板温検出値により
上記各バーナ群の燃料流量を操作する同板幅方向の板温
フィードバック制御系が安定した際の同各バーナ群の燃
料流量検出値から特許請求の範囲(1)に記載した(1
)式の関係より燃料流量配分パターンを決める定数R_
iを逆算し、逐次上記燃料流量配分パターンを修正し、
この修正された燃料流量配分パターンから前記特許請求
の範囲(1)に記載した(1)式により各バーナ群への
燃料流量を求め、上記ストリップのパラメータ変化部が
上記各バーナ群中を通るとき、所定時間同各バーナ群へ
上記燃料流量を流すことを特徴とする加熱炉の板温制御
方法。
(2) In a heating furnace strip temperature control method in which a plurality of burner groups are arranged in the strip width direction and the fuel flow rate of each burner group is controlled so that the strip temperature distribution in the strip width direction is uniform. , When the above-mentioned strip thickness, width, line speed, and target strip temperature change, the required total fuel flow rate ( F_t) to determine the fuel flow distribution pattern to each burner group that is related in advance to the heat removal amount and plate width of the strip, and at a predetermined time before the change of each parameter above, after a predetermined time has elapsed. , Claims from the detected value of the fuel flow rate of each burner group when the board temperature feedback control system in the board width direction that operates the fuel flow rate of each burner group based on the board temperature detection value in the board width direction is stabilized. (1) described in (1)
) is the constant R_ that determines the fuel flow distribution pattern from the relationship of the formula.
Reverse calculation of i and sequentially correct the above fuel flow distribution pattern,
From this modified fuel flow distribution pattern, the fuel flow rate to each burner group is determined by the formula (1) described in claim (1), and when the parameter changing part of the strip passes through each burner group, , a method for controlling plate temperature of a heating furnace, characterized in that the above-mentioned fuel flow rate is caused to flow to each burner group for a predetermined period of time.
JP1744789A 1989-01-30 1989-01-30 Strip temperature control method for heating furnace Pending JPH02200760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1744789A JPH02200760A (en) 1989-01-30 1989-01-30 Strip temperature control method for heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1744789A JPH02200760A (en) 1989-01-30 1989-01-30 Strip temperature control method for heating furnace

Publications (1)

Publication Number Publication Date
JPH02200760A true JPH02200760A (en) 1990-08-09

Family

ID=11944279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1744789A Pending JPH02200760A (en) 1989-01-30 1989-01-30 Strip temperature control method for heating furnace

Country Status (1)

Country Link
JP (1) JPH02200760A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304324A (en) * 1991-03-29 1992-10-27 Kawasaki Steel Corp Method for controlling furnace temperature
JPH0565615A (en) * 1991-09-10 1993-03-19 Nippon Steel Corp Method for controlling heat input into alloying furnace for hot dip alloying galvanized steel sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304324A (en) * 1991-03-29 1992-10-27 Kawasaki Steel Corp Method for controlling furnace temperature
JPH0565615A (en) * 1991-09-10 1993-03-19 Nippon Steel Corp Method for controlling heat input into alloying furnace for hot dip alloying galvanized steel sheet

Similar Documents

Publication Publication Date Title
JPH02200760A (en) Strip temperature control method for heating furnace
CN104152648B (en) The air distributing method of the low dew point atmosphere of continuous annealing furnace
JPH08312908A (en) Dryness controller for steam
JPH03207821A (en) Controlling method for cooling strip in cooling zone of continuous annealing
SU863681A1 (en) Method of web annealing control in multizone furnace
JPH05156419A (en) Alloying control method for galvannealed steel sheet
JPH0216372B2 (en)
JPH0649546A (en) Strip temperature control method for continuous heat treatment furnace
JPS6462206A (en) Temperature control method for hot rolling steel material
JPS6257708A (en) Controlling method for cooling of steel products
Nishizawa et al. Temperature Profile Control of a Rotary Dryer with Multivariable Model Predictive Control
JPS56139630A (en) Sheet temperature control method in continuous heating furnace
JPS57149430A (en) Cooling method for strip in continuous annealing
JPS60238022A (en) Automatic control device for sheet width
JPS6315972B2 (en)
JPH0379727A (en) Method for controlling steel temperature in continuous annealing
JPS6345454B2 (en)
JPH10158747A (en) Method for setting furnace temperature in heating furnace of continuous annealing furnace
JPH01288332A (en) Method for controlling temperature in vessel or reactor
SU754374A1 (en) Method of regulating temperature in zone of feeding raw material into fractional column
JPH02153060A (en) Method for controlling sheet temperature for heating furnace
JPH04333529A (en) Cooling device for strip continuous heat treatment equipment
SU441298A1 (en) The method of controlling the heating of blanks in a multi-zone pass-through furnace
JPS6196322A (en) Combustion control for small-sized furnace
JPS56136213A (en) Controlling method and apparatus for water cooling for steel material in rolling process