JPH0565615A - Method for controlling heat input into alloying furnace for hot dip alloying galvanized steel sheet - Google Patents

Method for controlling heat input into alloying furnace for hot dip alloying galvanized steel sheet

Info

Publication number
JPH0565615A
JPH0565615A JP3230219A JP23021991A JPH0565615A JP H0565615 A JPH0565615 A JP H0565615A JP 3230219 A JP3230219 A JP 3230219A JP 23021991 A JP23021991 A JP 23021991A JP H0565615 A JPH0565615 A JP H0565615A
Authority
JP
Japan
Prior art keywords
alloying
heat input
steel strip
amount
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3230219A
Other languages
Japanese (ja)
Other versions
JP2545653B2 (en
Inventor
Youichi Sashihara
洋 一 佐志原
Masahiro Masuda
田 正 宏 増
Tetsuya Miyazaki
崎 徹 也 宮
Isao Nakamura
村 功 中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3230219A priority Critical patent/JP2545653B2/en
Priority to EP92115409A priority patent/EP0531963B1/en
Priority to US07/942,569 priority patent/US5423926A/en
Priority to DE69215613T priority patent/DE69215613T2/en
Publication of JPH0565615A publication Critical patent/JPH0565615A/en
Priority to US08/167,607 priority patent/US5442570A/en
Application granted granted Critical
Publication of JP2545653B2 publication Critical patent/JP2545653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Coating With Molten Metal (AREA)

Abstract

PURPOSE:To eliminate excess/shortage in alloying degree and to improve the alloying yield by compensating heat input quantity into an alloying furnace with the setting value in the position-temp. distribution pattern of a galvanized steel sheet, at the time of applying the alloying treatment to a galvanized layer on the hot dipping galvanized steel sheet with Fe contained in the steel sheet. CONSTITUTION:The cold rolled steel sheet 2 passes through a hot dipping galvanizing bath 1, and after adjusting the Zn sticking rate, the sheet 2 passes through the alloying furnace 4 composed of a heating zone 4a, heat holding zone 4b and cooling zone 4c to apply the Zn-Fe alloying treatment with 6-13% Fe (on the surface of the sheet 2) to the galvanized layer. Joining part in the galvanized steel sheets 2 is detected 22 and inputted to a process computer 14 inputting informations, such as steel kind, sheet passing speed, sheet thickness, sheet width, galvanized stuck thickness. Further, the actual measured values with a thermometer 8 in the heating zone 4a, a thermometer 10 at the outlet side of the heat holding zone 4b and an emissivity meter 9, are inputted to a heat input quantity computing element 13, sheet temp. compensator 16 and emissivity compensator 15, respectively, and these outputs are inputted to feedback into a heat quantity adjustor 11, and by controlling fuel flow rate of a burner in the heating zone 4a, even in the case the kinds, etc., of the steel sheet 2 are changed at the joining part, the alloying treatment in galvanized layer is suitably applied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶融合金化亜鉛めっき
鋼帯の製造工程における合金化炉の加熱帯の入熱量制御
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat input control of a heating zone of an alloying furnace in a process for producing a galvannealed steel strip.

【0002】[0002]

【従来の技術】溶融合金化亜鉛めっき鋼帯の製造工程に
おいては、一般に鋼帯を溶融亜鉛めっき浴に通して鋼帯
表面に亜鉛めっき層を付着させ、次に鋼帯表面へのガス
の吹付けによってめっき付着量を調整し、続いて鋼帯を
合金化処理炉に通し、該合金化処理炉内で熱処理による
拡散によって、めっき層を鉄と亜鉛との合金とする。
2. Description of the Related Art In the process of manufacturing hot-dip galvanized steel strip, the steel strip is generally passed through a hot-dip galvanizing bath to deposit a galvanized layer on the surface of the strip, and then a gas is blown onto the surface of the strip. The coating amount is adjusted by attachment, the steel strip is then passed through an alloying treatment furnace, and the plated layer is made of an alloy of iron and zinc by diffusion by heat treatment in the alloying treatment furnace.

【0003】このようにして製造される溶融合金化亜鉛
めっき鋼帯は、耐フレ−キング性及びパウダリング性に
優れていることが品質上重要である。好ましい品質の溶
融合金化亜鉛めっき鋼帯を得るためには、その製造工程
の合金化炉の温度や通板速度を制御して、合金化程度
(例えばめっき層中の鉄分の含有率で表わされる)を所
定の状態に制御し、合金化不足や合金化過剰の発生を防
止する必要がある。
It is important in terms of quality that the hot-dip galvanized steel strip produced in this manner has excellent flaking resistance and powdering resistance. In order to obtain a hot-dip galvanized steel strip having a preferable quality, the temperature of the alloying furnace and the strip-passing speed in the manufacturing process are controlled, and the degree of alloying (for example, the content of iron in the plating layer is represented. ) Should be controlled to a predetermined state to prevent insufficient alloying or excessive alloying.

【0004】例えば特開平1−279738号公報に開
示された製造方法においては、合金化処理における初期
の熱処理条件を特定することにより、耐フレ−キング性
を向上させ得ることが示されている。また特開平1−2
52761号公報には、鋼板の通板速度,亜鉛付着量,
及びめっき浴中のAl濃度に基づいて設定した目標板温
度と測定した板温度との偏差に応じてバ−ナの燃焼量、
即ち入熱量を調整するフィ−ドバック制御が開示されて
いる。
For example, in the manufacturing method disclosed in Japanese Patent Application Laid-Open No. 1-279738, it is shown that the flaking resistance can be improved by specifying the initial heat treatment conditions in the alloying treatment. In addition, JP-A 1-2
Japanese Patent No. 52761 discloses that the steel sheet passing speed, the zinc adhesion amount,
And the burner combustion amount according to the deviation between the target plate temperature set based on the Al concentration in the plating bath and the measured plate temperature,
That is, feedback control for adjusting the amount of heat input is disclosed.

【0005】[0005]

【発明が解決しようとする課題】例えば、鋼帯の温度を
板温計によって検出し、検出値と板温目標値との偏差に
応じて入熱量を補償するフィ−ドバック制御を行なう場
合、板温計はバ−ナから離れた位置に配置せざるを得な
いので、鋼帯の温度が変化した場合にその変化が実際に
板温計で検出されるまでに時間遅れが生じる。温度変化
が大きい場合には、その時間遅れによる入熱量制御誤差
によって、合金化不足(生焼け)又は過合金の領域が鋼
帯上に発生し、これによって歩留まりが低下する。実際
の製造工程では、コイル状に巻回された多数の鋼材を互
いに連結し、連続的に亜鉛めっき鋼帯を合金化処理する
が、鋼帯のコイル間の継目部分では、鋼種,板厚,板
幅,通板速度,めっき付着量等々の操業条件が変更にな
る場合が多いので、その領域を処理する度に、フィ−ド
バック制御の時間遅れにより、合金化不足又は過合金の
領域が鋼帯上に生じる。
For example, in the case of performing feedback control in which the temperature of a steel strip is detected by a plate thermometer and the amount of heat input is compensated in accordance with the deviation between the detected value and the plate temperature target value, Since the thermometer must be placed at a position away from the burner, when the temperature of the steel strip changes, there is a time delay until the change is actually detected by the plate thermometer. When the temperature change is large, a heat input amount control error due to the time delay causes a region of insufficient alloying (baking) or overalloying on the steel strip, which lowers the yield. In the actual manufacturing process, a large number of steel materials wound in a coil shape are connected to each other and the galvanized steel strip is alloyed continuously, but at the joint between the coils of the steel strip, the steel type, plate thickness, Since the operating conditions such as strip width, stripping speed, and coating adhesion amount are often changed, the insufficient alloying or overalloying region is caused by the time delay of feedback control every time the region is processed. It occurs on the obi.

【0006】ところで、めっき処理工程で処理される前
の熱間圧延及び冷却工程において、鋼材はその先端部分
と後端部分がそれ以外の部分に比べて冷え易いので、冷
却プロセスに位置による差が生じ、圧延後の鋼材の組成
は、一般にコイル先端及び後端部とそれ以外の位置とが
同一ではなくなる。そこで、鋼材の組成を均一化するた
めに、Uパタ−ン冷却と呼ばれる冷却方法が採用される
場合がある。即ち、コイルの先端及び後端部の冷却量を
少なくし、それ以外の位置では通常の冷却量で冷却す
る。しかしながら、このUパタ−ン冷却された鋼材(U
パタ−ン材と呼ぶ)の場合、合金化炉で亜鉛めっきを熱
処理する際に、先端及び後端部分は他の部分に比べて焼
けにくく、生焼けが生じ易い。通常の冷却方法で製造さ
れた鋼材の場合には、この種の位置による焼け方の違い
は顕著ではない。従って、Uパタ−ン材を合金化処理す
る場合にも、従来のフィ−ドバック制御では、鋼材の先
端部や後端部で入熱量補償の遅れによって、生焼けや過
合金の領域が生じ、歩留まりの低下は避けられない。
By the way, in the hot rolling and cooling process before the plating process, the steel material is liable to cool at its leading end portion and trailing end portion compared to other portions, so that there is a difference in the cooling process depending on the position. As a result, the composition of the steel material after rolling is generally not the same at the coil front and rear ends and at other positions. Therefore, in order to make the composition of the steel material uniform, a cooling method called U-pattern cooling may be adopted. That is, the amount of cooling at the front and rear ends of the coil is reduced, and at other positions, cooling is performed at a normal amount. However, this U-pattern cooled steel material (U
(Referred to as a pattern material), when the zinc plating is heat-treated in the alloying furnace, the front and rear end portions are less likely to be burned than other portions, and the raw burn is likely to occur. In the case of a steel material manufactured by an ordinary cooling method, the difference in burning depending on the position of this kind is not remarkable. Therefore, even in the case of alloying the U pattern material, in the conventional feedback control, due to the delay of the heat input compensation at the leading end portion and the trailing end portion of the steel material, the regions of raw burning and overalloying occur and the yield is increased. The decline of is inevitable.

【0007】従って本発明は、鋼種,通板速度,めっき
付着量等が大きく変化する実際の操業においても、また
Uパタ−ン材のような特殊な冷却処理を受けた鋼帯を処
理する場合でも、入熱量を常時適正に制御して生焼けや
過合金の発生を防止し、溶融合金化亜鉛めっき鋼帯の歩
留まりを高めることを課題とする。
Therefore, according to the present invention, even in the actual operation in which the steel type, the strip running speed, the coating weight, etc. are greatly changed, the steel strip which has undergone a special cooling treatment such as the U pattern material is treated. However, it is an object to constantly control the heat input amount appropriately to prevent the occurrence of underburning and overalloying, and to increase the yield of the hot-dip galvanized steel strip.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本願の第1番の発明においては、熱間圧延及び冷却
工程を通り、更に溶融亜鉛が付着された鋼帯を合金化炉
に通し、該合金化炉で加熱によって鋼帯に鉄と亜鉛の合
金化層を形成する工程で、前記合金化炉の入熱量を制御
するに際して、入熱量の設定値を、めっき鋼帯の鋼種,
めっき付着量,及び通板速度に基づいて求めるととも
に、合金化処理前の冷却工程における各鋼帯の位置−温
度分布パタ−ンを予め識別し、合金化処理される鋼帯の
位置を検知して、前記位置−温度分布パタ−ンに基づ
き、前記入熱量の設定値を、検知した各鋼帯上の位置に
応じて補償する。
In order to solve the above-mentioned problems, in the first invention of the present application, a steel strip to which hot-dip zinc has been adhered and which has passed through a hot rolling and cooling process is used in an alloying furnace. Through, in the step of forming an alloyed layer of iron and zinc on the steel strip by heating in the alloying furnace, when controlling the heat input of the alloying furnace, the set value of the heat input is the steel type of the plated steel strip,
In addition to determining based on the amount of plated coating and the strip running speed, the position-temperature distribution pattern of each steel strip in the cooling process before alloying treatment is identified in advance to detect the position of the steel strip to be alloyed. Based on the position-temperature distribution pattern, the set value of the heat input amount is compensated according to the detected position on each steel strip.

【0009】また本願の第2番の発明においては、更
に、合金化炉の保熱帯出側において、めっき鋼帯の温
度,放射率,及び光反射率の少なくとも1つを測定して
合金化程度を検出し、検出された合金化程度がその目標
値に近づくように、前記入熱量の設定値を補正する。
Further, in the second invention of the present application, at least one of the temperature, the emissivity, and the light reflectance of the plated steel strip is measured on the heat-retaining side of the alloying furnace to determine the degree of alloying. Is detected, and the set value of the heat input amount is corrected so that the detected degree of alloying approaches the target value.

【0010】[0010]

【作用】鋼帯の品質上最適な合金化程度が得られる入熱
量は、めっき鋼帯の鋼種,めっき付着量,通板速度等々
の操業条件によって変化するが、これらの操業条件に関
しては、実際の操業では、操業を管理するプロセスコン
ピュ−タが、鋼帯が合金化処理炉に入る前に予め知るこ
とができる。また、熱間圧延後の冷却工程でUパタ−ン
冷却を施された鋼帯か通常の冷却を施された鋼帯かの区
別も、当該鋼帯が合金化処理炉に入る前に、プロセスコ
ンピュ−タは知ることができる。従って、実際の操業条
件をセンサ等で検出しなくとも、予め割り当てられた各
々の鋼帯の操業条件と過去の製造実績とに基づいて、所
定の計算等を行なえば、各々の鋼帯に対して適当な入熱
量を求めることができる。また、Uパタ−ン材を処理す
る場合には、それの冷却パタ−ンと過去の製造実績とに
基づいて、例えば先端部及び後端部が合金化処理炉を通
過する時のみ、所定の補償量を通常の入熱量に加算して
入熱量を調整すれば、鋼帯の全長に渡って、生焼け及び
過合金の領域が生じるのを避けることができる。これら
の制御は、いわゆるフィ−ドフォワ−ド制御であり、フ
ィ−ドバック制御する時の検出遅れに基づく制御遅れの
ような現象をなくすることができるので、鋼帯の継目位
置において操業条件が変更されても、またUパタ−ン材
を合金化処理する場合であっても、生焼け及び過合金の
領域を最小限に減らして歩留まりを確実に高めることが
できる。
[Operation] The heat input to obtain the optimum degree of alloying in terms of the quality of the steel strip varies depending on the operating conditions such as the steel type of the plated steel strip, the coating adhesion amount, the strip running speed, etc. In this operation, the process computer controlling the operation can be known in advance before the steel strip enters the alloying furnace. In addition, in the cooling step after hot rolling, whether the steel strip subjected to U-pattern cooling or the steel strip subjected to normal cooling is distinguished from the process before the steel strip enters the alloying furnace. The computer can know. Therefore, even if the actual operating conditions are not detected by a sensor or the like, if predetermined calculations are performed based on the operating conditions of each steel strip and the past manufacturing results that are assigned in advance, each steel strip will be processed. Therefore, an appropriate heat input amount can be obtained. Further, in the case of processing a U pattern material, based on the cooling pattern of the U pattern material and past manufacturing results, for example, only when the front end portion and the rear end portion pass through the alloying treatment furnace, a predetermined If the amount of heat input is adjusted by adding the amount of compensation to the amount of heat input, it is possible to avoid the occurrence of regions of underburning and overalloying over the entire length of the steel strip. These controls are so-called feed-forward control, and it is possible to eliminate a phenomenon such as a control delay based on the detection delay during feedback control, so that the operating condition changes at the joint position of the steel strip. However, even if the U-pattern material is alloyed, the yield of burnt and overalloyed regions can be reduced to a minimum and the yield can be reliably increased.

【0011】しかしこのようなフィ−ドフォワ−ド制御
だけを行なう場合には、実際の操業条件(めっき鋼帯の
鋼種,めっき付着量,及び通板速度)の計算上の値(設
定値等)とのずれ、ならびに、めっき浴中のAl(アル
ミニウム)濃度の変動によって、実際に必要とされる好
ましい入熱量と計算結果との間に差が生じうる。しかし
第2番の発明によれば、めっき鋼帯の温度,放射率及び
光反射率の少なくとも1つを保熱帯出側で検出すること
によって、その位置における合金化程度を検出し、この
検出値を目標値に近づけるようにフィ−ドバック制御す
ることによって、より適切に入熱量を補償し、歩留まり
を更に高めることができる。
However, when only such feed-forward control is performed, calculated values (set values, etc.) of actual operating conditions (steel type of plated steel strip, coating adhesion amount, and strip running speed). And the fluctuation of the Al (aluminum) concentration in the plating bath may cause a difference between the actually required heat input amount and the calculation result. However, according to the second invention, by detecting at least one of the temperature, the emissivity and the light reflectance of the plated steel strip on the exit side of the heat insulating zone, the degree of alloying at that position is detected, and the detected value is detected. The feedback control is performed so that the value of C approaches the target value, the heat input amount can be compensated more appropriately, and the yield can be further increased.

【0012】[0012]

【実施例】図1に、溶融合金化亜鉛めっき鋼帯の製造工
程の主要部の構成を示す。図1を参照して説明する。鋼
帯2は、図示しない熱間圧延工程及び冷却工程を通った
後、この合金めっき工程に導かれ、図中矢印の方向に搬
送され、溶融亜鉛浴1を通ってその表面に溶融亜鉛が付
着された後、ノズル3を通る際にガスの吹付けによって
溶融亜鉛の付着量が調整され、その後合金化処理炉4に
入る。合金化処理炉4の内部は、加熱帯4a,保熱帯4
b及び冷却帯4cに区分されており、合金化処理炉4に
入った鋼帯2は、まず加熱帯4aで急速に470℃以上
の板温に加熱され、続いて保熱帯4b中で一定の温度に
保持されて合金化処理を施され、次に冷却帯4cで冷却
され、鉄分含有率が6〜13%程度の亜鉛−鉄合金めっ
き層をその表面近傍に形成する。合金化処理炉4を出た
鋼帯2は、ロ−ル20を通って次の工程に搬送される。
EXAMPLE FIG. 1 shows the structure of the main part of the manufacturing process of hot-dip galvanized steel strip. This will be described with reference to FIG. After passing through a hot rolling step and a cooling step (not shown), the steel strip 2 is guided to this alloy plating step, conveyed in the direction of the arrow in the figure, and passes through the molten zinc bath 1 to deposit molten zinc on its surface. After passing through the nozzle 3, the amount of molten zinc deposited is adjusted by spraying gas, and then the alloying treatment furnace 4 is entered. Inside the alloying treatment furnace 4, there are a heating zone 4a and a heat retaining zone 4
The steel strip 2 which has been divided into the cooling zone 4c and the cooling zone 4c and which has entered the alloying treatment furnace 4 is first rapidly heated to a plate temperature of 470 ° C. or higher in the heating zone 4a, and then to a constant temperature in the heat retaining zone 4b. The alloy is subjected to an alloying treatment while being kept at a temperature, and then cooled in the cooling zone 4c to form a zinc-iron alloy plating layer having an iron content of about 6 to 13% near its surface. The steel strip 2 exiting the alloying treatment furnace 4 is conveyed to the next step through the roll 20.

【0013】圧延により製造され、各々コイル状に巻回
された鋼材は、連続的にめっき処理できるように、コイ
ルの端部が互いに結合され、1本の鋼帯2としてこの工
程に導かれる。鋼帯2の継目部分(コイルとコイルとの
接合部:Pn)には、その位置を検出するために図示し
ない穴が形成してある。継目検出器22がその穴を光学
的に検出することによって、鋼帯2の各継目の位置を、
めっき工程に入る前に検出することができる。継目検出
器22で検出された位置情報は、プロセスコンピュ−タ
(プロコン)14に入力される。また、鋼帯2を構成す
る各コイルの鋼種(普通材/Uパタ−ン材の区分を含
む),通板速度,板厚,板幅,めっき付着量等の各種製
造条件の情報も、各コイルがこのめっき工程に入る前に
決定(又は測定)され、プロセスコンピュ−タ14に入
力される。
The steel materials produced by rolling and wound in the form of coils are joined to each other at their ends so that the ends of the coils are joined together so that they can be continuously plated. A hole (not shown) is formed in the joint portion of the steel strip 2 (coil-to-coil joint portion: Pn) to detect its position. The seam detector 22 optically detects the hole to determine the position of each seam of the steel strip 2.
It can be detected before entering the plating process. The position information detected by the seam detector 22 is input to the process computer (pro computer) 14. In addition, information on various manufacturing conditions such as the steel type (including normal material / U-pattern material) of each coil forming the steel strip 2, the strip running speed, the strip thickness, the strip width, and the plating deposition amount is also provided. The coil is determined (or measured) before entering this plating step and input to the process computer 14.

【0014】この実施例においては、合金化処理炉の加
熱帯4aにガスの燃焼によって熱を供給しており、供給
される燃料ガスの流量を制御することによって加熱帯4
aの入熱量を制御している。この制御は、熱量調節器1
1が図示しない流量調節弁の開度を調節することによっ
て実施される。この熱量調節器11には、入熱量演算器
13の出力する熱量設定値(目標値:入熱量)と、後述
するフィ−ドバック補償制御系からの補償量が印加され
る。
In this embodiment, heat is supplied to the heating zone 4a of the alloying furnace by gas combustion, and the heating zone 4a is controlled by controlling the flow rate of the supplied fuel gas.
The heat input amount of a is controlled. This control is performed by the calorie controller 1
1 is performed by adjusting the opening degree of a flow rate control valve (not shown). A heat quantity set value (target value: heat quantity) output from the heat quantity calculator 13 and a compensation quantity from a feedback compensation control system described later are applied to the heat quantity controller 11.

【0015】加熱帯4aの内部には炉温計8が設置さ
れ、保熱帯4bの出側には、鋼帯2の板温度を測定する
板温計10と、鋼帯2表面の放射率を測定する放射率計
9が配置されている。炉温計8が測定した炉温は入熱量
演算器13に入力され、板温計10の測定した板温度T
xは板温度補償器16に入力され、放射率計9の測定し
た放射率εxは放射率補償器15に入力される。なお放
射率計9は、放射率の測定原理として従来より公知の方
法を用いている。
A furnace thermometer 8 is installed inside the heating zone 4a, and a plate thermometer 10 for measuring the sheet temperature of the steel strip 2 and an emissivity of the surface of the steel strip 2 are provided on the outlet side of the heat retaining zone 4b. An emissometer 9 for measurement is arranged. The furnace temperature measured by the furnace thermometer 8 is input to the heat input calculator 13, and the plate temperature T measured by the plate thermometer 10 is input.
x is input to the plate temperature compensator 16, and the emissivity εx measured by the emissometer 9 is input to the emissivity compensator 15. The emissometer 9 uses a conventionally known method as a principle of measuring the emissivity.

【0016】ノズル3から出るガスの流量は、めっき付
着量調節器12によって制御される。めっき付着量調節
器12は、入力されるめっき付着量(設定値)に応じ
て、ノズル3に与えるガスの流量を制御する。プロセス
コンピュ−タ(プロコン)14は、溶融合金化亜鉛めっ
き鋼帯の製造工程の全体を管理しており、めっき付着量
調節器12に対してはめっき付着量の設定値を出力し、
入熱量演算器13に対しては、めっき付着量,鋼種,通
板速度,板幅及び板厚の情報を出力し、目標値演算器1
8に対しては、めっき付着量,鋼種,及び通板速度の情
報を出力する。入熱量演算器13は、入力される炉温
と、めっき付着量,鋼種,通板速度,板幅及び板厚の情
報に基づいて、入熱量Q、即ち熱量設定値を次の第(1)
式により計算し、その結果を熱量調節器11に印加す
る。
The flow rate of the gas discharged from the nozzle 3 is controlled by the plating amount controller 12. The coating amount controller 12 controls the flow rate of the gas supplied to the nozzle 3 in accordance with the input coating amount (set value). The process computer (pro computer) 14 controls the entire manufacturing process of the hot-dip galvanized steel strip, and outputs the set value of the coating amount to the coating amount controller 12,
To the heat input amount calculator 13, the information on the amount of plating adhered, the steel type, the plate passing speed, the plate width and the plate thickness is output, and the target value calculator 1
For No. 8, information about the amount of plated coating, steel type, and strip running speed is output. The heat input amount calculator 13 calculates the heat input amount Q, that is, the heat amount set value, based on the input furnace temperature and the information of the amount of adhered plating, the steel type, the plate passing speed, the plate width, and the plate thickness as follows.
It is calculated by the formula and the result is applied to the heat quantity controller 11.

【0017】[0017]

【数1】 Q=a0+a1×炉温+a2×めっき付着量×通板速度× [1+k1(板幅−板幅標準値)+k2(板厚−板厚標準値)]+a3×鋼種定数 但し、a0〜a3,k1,k2:定数 ・・・(1) またこの実施例では、Uパタ−ン材に対して入熱量に特
別な補償を施すために、入熱量演算器13は実際には図
4に示す処理を実行する。図5は、鋼帯2上の各位置と
それが加熱帯4aを通過する時刻及び入熱量Qの関係の
一例を示している。図4及び図5を参照して入熱量演算
器13の動作を説明する。
[Equation 1] Q = a0 + a1 × furnace temperature + a2 × plated coating amount × passing speed × [1 + k1 (plate width−plate width standard value) + k2 (plate thickness−plate thickness standard value) + a3 × steel grade constant where a0 to a3, k1, k2: constants (1) Further, in this embodiment, the heat input calculator 13 is actually shown in FIG. 4 in order to give special compensation to the heat input to the U pattern material. Perform the indicated process. FIG. 5 shows an example of the relationship between each position on the steel strip 2, the time when the steel strip 2 passes through the heating zone 4a, and the heat input amount Q. The operation of the heat input calculator 13 will be described with reference to FIGS. 4 and 5.

【0018】ステップ51では、継目検出器22が鋼帯
2の継目位置Pnを検出したか否かを識別する。継目位
置Pnが検出された時には、次にステップ52に進み、
そうでない時にはステップ56に進む。
In step 51, it is determined whether the seam detector 22 has detected the seam position Pn of the steel strip 2. When the seam position Pn is detected, the routine proceeds to step 52,
Otherwise, go to step 56.

【0019】ステップ52では、継目検出器22の位置
から加熱帯4aまでの距離と鋼帯2の通板速度とに基づ
いて、検出された継目位置、即ち次のコイルの先端位置
が加熱帯4aに到達する時刻tnを計算して求める。
In step 52, the detected seam position, that is, the position of the tip of the next coil is detected based on the distance from the position of the seam detector 22 to the heating zone 4a and the strip running speed of the steel strip 2. The time tn to arrive at is calculated and obtained.

【0020】この実施例では、Uパタ−ン材に対して
は、その先端から長さxの範囲、及び後端から長さxの
範囲について、それ以外の領域とは異なる入熱量になる
ように入熱量の補償を行なっている。そのために、次の
ステップ53では、継目位置Pnよりxだけ手前の位置
が加熱帯4aに到達する時刻te2を、tn,x及び通板
速度に基づいて計算する。同様に、ステップ54では、
継目位置Pnよりxだけ後方の位置が加熱帯4aに到達
する時刻te1を、tn,x及び通板速度に基づいて計算
する。
In this embodiment, with respect to the U pattern material, the heat input amount in the range from the front end to the length x and the range from the rear end to the length x are different from those in the other regions. The amount of heat input is compensated for. Therefore, in the next step 53, the time te2 at which the position before the joint position Pn by x reaches the heating zone 4a is calculated based on tn, x and the strip passing speed. Similarly, in step 54,
The time te1 at which the position behind the joint position Pn by x reaches the heating zone 4a is calculated based on tn, x and the strip passing speed.

【0021】ステップ55では、計算された各時刻t
n,te1及びte2においてそれぞれ後述する所定の処理
を実行するために、タイマをセットする。そして、時刻
te2になるとステップ56から57に進み、時刻tnに
なるとステップ59から60に進み、時刻te1になると
ステップ63から64に進む。
In step 55, each calculated time t
In n, te1 and te2, a timer is set to execute a predetermined process described later. Then, at time te2, the process proceeds from step 56 to 57, at time tn, the process proceeds from step 59 to 60, and at time te1, the process proceeds from step 63 to 64.

【0022】時刻tnになると、つまり鋼帯2の継目位
置Pnが合金化炉の加熱帯4aの位置に達すると、ステ
ップ60において前記第(1)式の計算を実施して、次に
合金化処理するコイル(鋼帯2)に対する入熱量Qを求
める。また次のステップ61で次コイルの鋼種をチェッ
クし、それがUパタ−ン材か否かを識別する。Uパタ−
ン材である時には、ステップ62を実行する。ステップ
62では、ステップ60で計算された入熱量(熱量設定
値)Qに補償量ΔQ(定数)を加算する。
At time tn, that is, when the seam position Pn of the steel strip 2 reaches the position of the heating zone 4a of the alloying furnace, the calculation of the equation (1) is carried out in step 60, and then the alloying is carried out. The heat input Q to the coil (steel strip 2) to be processed is obtained. Further, in the next step 61, the steel type of the next coil is checked to identify whether it is a U pattern material or not. U pattern
If it is a material, step 62 is executed. In step 62, the compensation amount ΔQ (constant) is added to the heat input amount (heat amount setting value) Q calculated in step 60.

【0023】時刻te1になると、つまり鋼帯2の継目位
置Pnから長さxだけ進んだ位置が合金化炉の加熱帯4
aの位置に達すると、ステップ64においてコイルの鋼
種をチェックし、それがUパタ−ン材か否かを識別す
る。Uパタ−ン材である時には、ステップ65を実行す
る。ステップ65では、それまでの入熱量(熱量設定
値)Qから補償量ΔQを減算する。
At time te1, that is, the position advanced from the joint position Pn of the steel strip 2 by the length x is the heating zone 4 of the alloying furnace.
When the position "a" is reached, the steel grade of the coil is checked in step 64 to identify whether or not it is a U pattern material. If it is a U pattern material, step 65 is executed. In step 65, the compensation amount ΔQ is subtracted from the heat input amount (heat amount setting value) Q up to that point.

【0024】また時刻te2になると、つまり鋼帯2の継
目位置Pn(後端)より長さxだけ手前の位置が合金化
炉の加熱帯4aの位置に達すると、ステップ57におい
てコイルの鋼種をチェックし、それがUパタ−ン材か否
かを識別する。Uパタ−ン材である時には、ステップ5
8を実行する。ステップ58では、それまでの入熱量
(熱量設定値)Qに補償量ΔQを加算する。
At time te2, that is, when the position before the joint position Pn (rear end) of the steel strip 2 by the length x reaches the position of the heating zone 4a of the alloying furnace, the steel type of the coil is selected in step 57. Check to identify if it is U-pattern material. If it is a U pattern material, step 5
Execute 8. In step 58, the compensation amount ΔQ is added to the heat input amount (heat amount set value) Q up to that point.

【0025】つまり、普通材を処理する時には、入熱量
Qは鋼帯2の継目位置Pnでのみ更新され、Uパタ−ン
材を処理する時には、鋼帯2の継目位置Pnで入熱量Q
が計算されるが、コイルの先端部(先端から長さxの範
囲)及び後端部(後端から長さxの範囲)では、第(1)
式で計算された入熱量に対し、補償量ΔQが加算された
値に修正され、それ以外の領域に対しては第(1)式で計
算された入熱量がそのまま設定される。
That is, when the ordinary material is processed, the heat input amount Q is updated only at the joint position Pn of the steel strip 2, and when the U pattern material is processed, the heat input amount Q at the joint position Pn of the steel strip 2.
Is calculated, but at the front end (range of length x from the front end) and the rear end (range of length x from the rear end) of the coil,
The heat input amount calculated by the equation is corrected to a value obtained by adding the compensation amount ΔQ, and the heat input amount calculated by the equation (1) is set as it is for the other regions.

【0026】Uパタ−ン材の場合、圧延・冷却工程での
温度分布の違いにより先端部及び後端部はそれ以外の部
分に比べて合金化処理炉4で焼けにくく、生焼けが生じ
易いが、予め先端部及び後端部の入熱量を大きめに設定
することによって、生焼けの発生を未然に防止しうる。
この補償は鋼帯の位置に応じたフィ−ドフォワ−ド補償
であるので、補償制御の遅れは生じない。
In the case of the U pattern material, due to the difference in temperature distribution in the rolling / cooling process, the leading end and the trailing end are less likely to be burned in the alloying furnace 4 than other portions, and raw burning is likely to occur. By setting a large amount of heat input to the front end portion and the rear end portion in advance, it is possible to prevent the occurrence of raw burn.
Since this compensation is feedforward compensation according to the position of the steel strip, there is no delay in compensation control.

【0027】なおこの実施例では、Uパタ−ン材に対し
て、先端部及び後端部の入熱量がその他の部分よりも大
きくなるように補償しているが、圧延・冷却工程での温
度分布のしかたによっては、逆に先端部及び後端部の入
熱量をその他の部分よりも小さくなるように補償した方
が良い場合も生じる。また、先端部及び後端部のトラッ
キングをタイマ−には行なったが、例えばロ−ル20に
取付けたパルス・ジェネレ−タのパルス・カウントによ
り行なってもよい。
In this embodiment, the U-pattern material is compensated so that the heat input amount at the leading end and the trailing end is larger than that at the other portions. On the contrary, depending on the distribution method, it may be better to compensate the heat input amount at the front end portion and the rear end portion so as to be smaller than the other portions. Further, although the leading end and the trailing end are tracked by the timer, they may be tracked by the pulse count of the pulse generator attached to the roll 20, for example.

【0028】再び図1を参照して説明を続ける。目標値
演算器18は、プロセスコンピュ−タ14が出力する情
報に基づいて、板温度目標値と放射率目標値を生成す
る。板温度目標値T0は板温度補償器16に印加され、
放射率目標値ε0は放射率補償器15に印加され、いず
れもフィ−ドバック制御のために利用される。これらの
目標値は次式により計算される。
The description will be continued with reference to FIG. 1 again. The target value calculator 18 generates a plate temperature target value and an emissivity target value based on the information output by the process computer 14. The plate temperature target value T0 is applied to the plate temperature compensator 16,
The emissivity target value ε0 is applied to the emissivity compensator 15 and is used for feedback control. These target values are calculated by the following formula.

【0029】[0029]

【数2】 T0=b0+b1×めっき付着量+b2×通板速度+b3×鋼種定数・・(2) ε0=c0+c1×めっき付着量+c2×通板速度+c3×鋼種定数・・(3) 但し、b0〜b3,c0〜c3:定数 入熱量演算器13によって計算される入熱量は、プロセ
ス条件(炉温,めっき付着量,通板速度,板幅,板厚,
鋼種定数)の設定値と実際の値とのずれ、及び溶融亜鉛
浴1中のアルミニウム濃度の変動によって、最適な入熱
量に対して僅かにずれを生じる。このような制御誤差を
補償するために、この実施例では保熱帯4bの出側で、
鋼帯2の合金化程度を測定し、その測定値に基づいてフ
ィ−ドバック補償制御を行なっている。
[Equation 2] T0 = b0 + b1 x coating amount + b2 x strip speed + b3 x steel type constant ... (2) ε0 = c0 + c1 x plating amount + c2 x strip speed + c3 x steel type constant (3) where b0 to b3, c0 to c3: constants The heat input amount calculated by the heat input amount calculator 13 is based on the process conditions (furnace temperature, plating deposition amount, strip passing speed, strip width, strip thickness,
Due to the deviation between the set value of the steel type constant) and the actual value and the fluctuation of the aluminum concentration in the molten zinc bath 1, there is a slight deviation from the optimum heat input amount. In order to compensate for such a control error, in this embodiment, on the outgoing side of the tropical zone 4b,
The degree of alloying of the steel strip 2 is measured, and feedback compensation control is performed based on the measured value.

【0030】即ち、図2に示すように、鋼帯の板温度及
び放射率は、それぞれ合金化程度と相関を有しており、
それらの値が大きいほど、合金化程度も大きい。但しこ
れらの関係は、非線形であり、鋼種,通板速度,めっき
付着量等のプロセス条件に応じても変化する。また、放
射率は合金化が進むと急激に大きくなり、望ましい合金
化程度を過ぎると合金化程度の変化に対する変化率が小
さくなる。更に、板温度及び放射率は、鋼帯の幅方向全
域で一様ではない。従って、合金化不足をなくするため
には、鋼帯の全幅にわたって板温度と放射率とを測定す
る必要がある。全幅にわたって測定された板温度デ−タ
群Txと放射率デ−タ群εxの管理方法はいろいろと考
えられるが、この実施例においては、板温度デ−タ群の
幅方向の平均値Tdを代表値として板温度補償制御に利
用し、放射率デ−タ群の幅方向の最低値εdを代表値と
して放射率補償制御に利用している。このような制御が
合金化不足の検出に効果的である。
That is, as shown in FIG. 2, the plate temperature and the emissivity of the steel strip have a correlation with the degree of alloying, respectively,
The greater their value, the greater the degree of alloying. However, these relationships are non-linear and change depending on the process conditions such as steel type, strip running speed, and coating weight. Further, the emissivity rapidly increases as the alloying progresses, and when the desired alloying degree is exceeded, the rate of change with respect to changes in the alloying degree decreases. Further, the plate temperature and the emissivity are not uniform in the entire width direction of the steel strip. Therefore, in order to eliminate the insufficient alloying, it is necessary to measure the plate temperature and the emissivity over the entire width of the steel strip. It is conceivable that there are various management methods for the plate temperature data group Tx and the emissivity data group εx measured over the entire width, but in this embodiment, the average value Td in the width direction of the plate temperature data group is calculated. The representative value is used for the plate temperature compensation control, and the minimum value εd in the width direction of the emissivity data group is used as the representative value for the emissivity compensation control. Such control is effective for detecting insufficient alloying.

【0031】フィ−ドバック補償制御系の一部を構成す
る板温度補償器16は、板温度目標値T0と板温度検出
値(幅方向平均値)Tdとの偏差に応じた補償量Ctを
計算により求め、最大値選択器17に出力する。またフ
ィ−ドバック補償制御系の一部を構成する放射率補償器
15は、放射率目標値ε0と放射率検出値(幅方向の最
小値)εdとの偏差に応じた補償量Cεを計算により求
め、最大値選択器17に出力する。最大値選択器17
は、入力される2つの補償量Ct及びCεを比較して、
両者のうち値の大きい方を選択し、選択した補償量をス
イッチSWを介してフィ−ドフォワ−ド制御系で生成さ
れた熱量設定値(入熱量目標値)に加算し、熱量調節器
11に印加する。
The plate temperature compensator 16 forming a part of the feedback compensation control system calculates the compensation amount Ct according to the deviation between the plate temperature target value T0 and the plate temperature detection value (width direction average value) Td. And output to the maximum value selector 17. The emissivity compensator 15 forming a part of the feedback compensation control system calculates the compensation amount Cε according to the deviation between the emissivity target value ε0 and the emissivity detection value (minimum value in the width direction) εd. Obtained and output to the maximum value selector 17. Maximum value selector 17
Compares two input compensation amounts Ct and Cε,
The larger value of the two is selected, the selected compensation amount is added to the heat amount set value (heat input target value) generated in the feedforward control system via the switch SW, and the heat amount adjuster 11 is selected. Apply.

【0032】フィ−ドバック補償制御系の動作例を図3
に示す。図3を参照すると、最初のうちは板温度補償量
Ctが放射率補償量Cεより大きいので、板温度補償量
Ctが入熱量補償量として出力され、板温度目標値T0
(合金化程度の目標値でもある)と板温度検出値Tdと
の偏差を0に近づけるように入熱量が修正される。放射
率補償量Cεが徐々に増大し、それが板温度補償量Ct
を越えると、つまり放射率検出値εdがその目標値ε0
(合金化程度の目標値でもある)を下回ると、放射率補
償量Cεが入熱量補償量として出力され、放射率検出値
εdがその目標値ε0に近づくように入熱量が修正され
る。
An example of the operation of the feedback compensation control system is shown in FIG.
Shown in. Referring to FIG. 3, since the plate temperature compensation amount Ct is larger than the emissivity compensation amount Cε at the beginning, the plate temperature compensation amount Ct is output as the heat input amount compensation amount, and the plate temperature target value T0
The amount of heat input is corrected so that the deviation between the plate temperature detection value Td (which is also the target value of the degree of alloying) and the plate temperature detection value Td approaches 0. The emissivity compensation amount Cε gradually increases, which is the plate temperature compensation amount Ct.
Is exceeded, that is, the detected emissivity value εd is equal to the target value ε0.
Below (which is also the target value for the degree of alloying), the emissivity compensation amount Cε is output as the heat input amount compensation amount, and the heat input amount is corrected so that the emissivity detection value εd approaches the target value ε0.

【0033】即ち、2つの補償量Ct及びCεのうち大
きい方を入熱量の補償量として選択することによって、
板温度と放射率とが共にそれらの設定値、つまり合金化
程度の設定値を下回らないように制御することができ
る。これにより、板温度と放射率のいずれの要素から推
定した場合でも、合金化不足の発生が確実に防止され
る。仮に、2つの補償量Ct及びCεのうち小さい方が
正しい合金化程度に対応した値であると、合金化程度を
促進する方向にその目標値から制御がずれることになる
が、その状態は合金化不足が生じる場合と比べると品質
上の問題が少なく、品質上安全な操業状態である。
That is, by selecting the larger one of the two compensation amounts Ct and Cε as the compensation amount of the heat input amount,
Both the plate temperature and the emissivity can be controlled so as not to fall below their set values, that is, the set values of the degree of alloying. As a result, the occurrence of insufficient alloying is reliably prevented regardless of whether the estimation is made from the factors of the plate temperature and the emissivity. If the smaller of the two compensation amounts Ct and Cε corresponds to the correct alloying degree, the control deviates from the target value in the direction of promoting the alloying degree. Compared to the case of insufficient liquefaction, there are fewer quality problems and the quality of operation is safe.

【0034】入熱量演算器13は、前述のようにプロセ
スコンピュ−タ14の出力する情報に基づいて熱量設定
値を計算するが、その他に、スイッチSWを開閉制御す
る。即ち、通常はスイッチSWを閉としてフィ−ドバッ
ク補償をオンにしておくが、鋼帯の継目の位置が通過す
るタイミングなどで、プロセスコンピュ−タ14の出力
するプロセス条件(鋼種,めっき付着量等)が変更にな
った場合には、一時的にスイッチSWを開いてフィ−ド
バック補償制御をオフする。
The heat input calculator 13 calculates the heat set value based on the information output from the process computer 14 as described above, but additionally controls the opening and closing of the switch SW. That is, normally, the switch SW is closed and the feedback compensation is turned on. However, the process conditions (steel type, plating adhesion amount, etc.) output by the process computer 14 are determined depending on the timing at which the seam position of the steel strip passes. ) Is changed, the switch SW is temporarily opened to turn off the feedback compensation control.

【0035】なお上記実施例においては、鋼帯の合金化
程度を推定する1つの手段として鋼帯の放射率を用いて
いるが、理論的には放射率の代わりに、それと似たパラ
メ−タである鋼帯表面の光反射率を用いることが可能で
ある。光反射率の場合には、合金化程度が低い時にその
値が大きく、合金化程度が高い時に値が小さくなる。但
し実際の操業において、保熱帯の出側で鋼帯の光反射率
を検出することが難しいので、放射率を用いるのが実用
的である。
In the above embodiment, the emissivity of the steel strip is used as one means for estimating the degree of alloying of the steel strip. However, theoretically, instead of the emissivity, a parameter similar to that is used. It is possible to use the light reflectance of the surface of the steel strip. In the case of light reflectance, its value is large when the degree of alloying is low, and it is small when the degree of alloying is high. However, it is practical to use the emissivity because it is difficult to detect the light reflectance of the steel strip on the outflow side of the tropical zone in the actual operation.

【0036】また、板温度目標値T0及び放射率目標値
ε0を求める計算式としては、前記第(2)式及び第(3)式
に限らず、例えば通板速度の項目を省略した次式により
求めてもよい。
Further, the calculation formulas for obtaining the plate temperature target value T0 and the emissivity target value ε0 are not limited to the above formulas (2) and (3), and for example, the following formula in which the item of strip speed is omitted You may ask by.

【0037】[0037]

【数3】 T0=b0+b1×めっき付着量+b2×鋼種定数 ・・・(4) ε0=c0+c1×めっき付着量+c2×鋼種定数 ・・・(5) また合金化程度の下限管理のみを実施する場合には、板
温度目標値T0及び放射率目標値ε0を各々定数としても
よい。
[Equation 3] T0 = b0 + b1 x coating weight + b2 x steel grade constant (4) ε0 = c0 + c1 x plating weight + c2 x steel grade constant (5) In addition, only the lower limit control of alloying is implemented Alternatively, the plate temperature target value T0 and the emissivity target value ε0 may be constants.

【0038】また、入熱量の推定式としては、前記第
(1)式に代えて例えば次に示す各式を用いてもよい。
Further, as the equation for estimating the heat input,
For example, the following equations may be used instead of the equation (1).

【0039】[0039]

【数4】 Q=a0+a1×(めっき付着量×通板速度)+a2×鋼種定数 ・・(6) Q=a0+a1×めっき付着量+a2×通板速度+a3×鋼種定数 ・・(7) Q=a0+a1×炉温+a2×めっき付着量+a3×通板速度 +a4×板幅+a5×板厚+a6×鋼種定数 ・・(8) また前記実施例においては、入熱量Qの絶対値を求める
ようにしているが、実際には一定の周期で入熱量の計算
を繰り返し実行することになるので、入熱量の偏差を繰
り返し演算し、得られた入熱量の偏差量をそれまでの入
熱量に加えるように制御内容を変更してもよい。その場
合には、次に示すいずれかの計算式を使用して入熱量偏
差を計算すればよい。なおここでは、1演算周期(Δ
t)間の変数の変化をΔで示す。
[Equation 4] Q = a0 + a1 x (coating adhesion amount x plate passing speed) + a2 x steel type constant ・ ・ (6) Q = a0 + a1 × plating adhesion amount + a2 × plate passing speed + a3 × steel type constant ・ ・ (7) Q = a0 + a1 × furnace temperature + a2 × coating amount + a3 × plate passing speed + a4 × plate width + a5 × plate thickness + a6 × steel type constant (8) In the above embodiment, the absolute value of the heat input Q is calculated. Actually, since the calculation of the heat input amount is repeatedly executed at a constant cycle, the deviation of the heat input amount is repeatedly calculated, and the control content is added so that the obtained heat input amount deviation amount is added to the heat input amount up to that point. May be changed. In that case, the heat input deviation may be calculated using one of the following formulas. Note that here, one calculation cycle (Δ
The change of the variable during t) is indicated by Δ.

【0040】[0040]

【数5】 ΔQ=a0+a1×Δ炉温+a2×Δ入熱量補正値+a3×Δ鋼種定数・・・(9) Δ入熱量補正値=Δ[めっき付着量×通板速度× {1+k1(板幅−板幅標準値)+k2(板厚−板厚標準値)}]・・(10) ΔQ=a0+a1×Δ(めっき付着量×通板速度)+a2×Δ鋼種定数 ・・・(11) ΔQ=a0+a1×Δめっき付着量+a2×Δ通板速度 +a3×Δ鋼種定数 ・・・(12) ΔQ=a0+a1×Δ炉温+a2×Δめっき付着量+a3×Δ通板速度 +a4×Δ板幅+a5×Δ板厚+a6×Δ鋼種定数 ・・・(13) なお、前述の各計算式における定数や補償量は、過去の
製造実績に基づいて、最適な結果が得られるような値に
予め設定される。
[Formula 5] ΔQ = a0 + a1 x Δ furnace temperature + a2 x Δ heat input correction value + a3 x Δ steel grade constant ... (9) Δ heat input correction value = Δ [plating adhesion amount x strip speed x {1 + k1 (plate width -Plate width standard value) + k2 (Plate thickness-Plate thickness standard value)}] ... (10) ΔQ = a0 + a1 x Δ (plating adhesion amount x stripping speed) + a2 x Δ Steel grade constant ... (11) ΔQ = a0 + a1 × Δ plating deposit + a2 × Δ strip speed + a3 × Δ steel grade constant (12) ΔQ = a0 + a1 × Δ furnace temperature + a2 × Δ plating deposit + a3 × Δ strip speed + a4 × Δ strip width + a5 × Δ Plate thickness + a6 × Δ steel type constant (13) The constants and compensation amounts in the above-mentioned calculation formulas are preset based on past manufacturing results so that optimum results can be obtained.

【0041】[0041]

【発明の効果】以上のとおり本発明によれば、冷却工程
における鋼帯の位置−温度分布パタ−ンがUパタ−ン材
のように特殊なものに対しては、予めその位置に適した
補償を自動的に実施する(図4のステップ58,62,
65)ので、この種の特殊な鋼帯の場合でも、全長にわ
たって生焼け等の発生を防止し、歩留まりを高めること
ができる。
As described above, according to the present invention, the position-temperature distribution pattern of the steel strip in the cooling step is suitable for the special position such as the U-pattern material in advance. Perform compensation automatically (steps 58, 62,
65), even in the case of this kind of special steel strip, it is possible to prevent the occurrence of raw burning over the entire length and to improve the yield.

【0042】また本願の第2番の発明においては、更
に、実際の合金化程度が目標値を外れた場合であって
も、検出した合金化程度に基づくフィ−ドバック補償制
御によって、合金化程度が好ましい方向に修正されるよ
うに、入熱量が自動的に補償されるので、歩留まりを更
に改善しうる。
Further, in the second invention of the present application, even if the actual alloying degree deviates from the target value, the alloying degree is controlled by the feedback compensation control based on the detected alloying degree. Since the amount of heat input is automatically compensated so that is corrected in a preferable direction, the yield can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 溶融合金化亜鉛めっき鋼帯の製造工程の主要
部の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a main part of a manufacturing process of a hot-dip galvanized steel strip.

【図2】 板温度と合金化程度及び放射率と合金化程度
との相関をそれぞれ示すグラフである。
FIG. 2 is a graph showing the correlation between plate temperature and alloying degree, and emissivity and alloying degree.

【図3】 フィ−ドバック補償制御系の動作例を示すタ
イミングチャ−トである。
FIG. 3 is a timing chart showing an operation example of a feedback compensation control system.

【図4】 入熱量演算器13の動作を示すフロ−チャ−
トである。
FIG. 4 is a flowchart showing the operation of the heat input calculator 13.
It is

【図5】 鋼帯の位置及び時刻と入熱量の変化の一例を
示すタイミングチャ−トである。
FIG. 5 is a timing chart showing an example of changes in the position and time of the steel strip and the heat input amount.

【符号の説明】[Explanation of symbols]

1:溶融亜鉛浴 2:鋼帯 3:
ノズル 4:合金化処理炉 4a:加熱帯 4
b:保熱帯 4c:冷却帯 8:炉温計 9:
放射率計 10:板温計 11:熱量調節器 12:めっき付着量調節器 1
3:入熱量演算器 14:プロコン 15:放射率補償器 1
6:板温度補償器 17:最大値選択器 18:目標値演算器 2
0:ロ−ル 22:継目検出器 SW:スイッチ
1: Molten zinc bath 2: Steel strip 3:
Nozzle 4: Alloying treatment furnace 4a: Heating zone 4
b: tropical zone 4c: cooling zone 8: furnace thermometer 9:
Emissivity meter 10: Plate thermometer 11: Heat quantity controller 12: Plating amount controller 1
3: Heat input calculator 14: Processor 15: Emissivity compensator 1
6: Plate temperature compensator 17: Maximum value selector 18: Target value calculator 2
0: Roll 22: Seam detector SW: Switch

フロントページの続き (72)発明者 中 村 功 北九州市八幡東区枝光1−1−1 新日本 製鐵株式会社技術開発本部設備技術センタ −内Continuation of the front page (72) Inventor Isao Nakamura 1-1-1 Edamitsu, Hachimanto-ku, Kitakyushu City Nippon Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱間圧延及び冷却工程を通り、更に溶融
亜鉛が付着された鋼帯を合金化炉に通し、該合金化炉で
加熱によって鋼帯に鉄と亜鉛の合金化層を形成する工程
で、前記合金化炉の入熱量を制御するに際して、 入熱量の設定値を、めっき鋼帯の鋼種,めっき付着量,
及び通板速度に基づいて求めるとともに、熱間圧延後の
冷却工程における各鋼帯の位置−温度分布パタ−ンを予
め識別し、合金化処理される鋼帯の位置を検知して、前
記位置−温度分布パタ−ンに基づき、前記入熱量の設定
値を、検知した各鋼帯上の位置に応じて補償する、溶融
合金化亜鉛めっき鋼帯の合金化炉入熱制御方法。
1. A steel strip having molten zinc adhered thereto is passed through a hot rolling and cooling step, and is passed through an alloying furnace, and an alloyed layer of iron and zinc is formed on the steel strip by heating in the alloying furnace. In controlling the heat input amount of the alloying furnace in the process, the set value of the heat input amount is set as follows:
And, the position of each steel strip in the cooling step after hot rolling-the temperature distribution pattern is identified in advance, and the position of the steel strip to be alloyed is detected, and the position is determined based on the strip speed. An alloying furnace heat input control method for a hot-dip galvanized steel strip, which compensates the set value of the heat input amount according to the detected position on each steel strip based on the temperature distribution pattern.
【請求項2】 合金化炉の保熱帯出側において、めっき
鋼帯の温度,放射率,及び光反射率の少なくとも1つを
測定して合金化程度を検出し、検出された合金化程度が
その目標値に近づくように、前記入熱量の設定値を補正
する、前記請求項1記載の溶融合金化亜鉛めっき鋼帯の
合金化炉入熱制御方法。
2. The alloying degree is detected by measuring at least one of the temperature, the emissivity, and the light reflectance of the plated steel strip on the heat retaining side of the alloying furnace, and the detected alloying degree is The alloying furnace heat input control method for a hot-dip galvanized steel strip according to claim 1, wherein the set value of the heat input amount is corrected so as to approach the target value.
JP3230219A 1991-09-10 1991-09-10 Heat input control method for alloying furnace of hot-dip galvanized steel strip Expired - Fee Related JP2545653B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3230219A JP2545653B2 (en) 1991-09-10 1991-09-10 Heat input control method for alloying furnace of hot-dip galvanized steel strip
EP92115409A EP0531963B1 (en) 1991-09-10 1992-09-09 Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel
US07/942,569 US5423926A (en) 1991-09-10 1992-09-09 Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel
DE69215613T DE69215613T2 (en) 1991-09-10 1992-09-09 Process for controlling the heating of an alloy furnace for the production of hot-dip metallized and alloy steel strip
US08/167,607 US5442570A (en) 1991-09-10 1993-12-15 Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3230219A JP2545653B2 (en) 1991-09-10 1991-09-10 Heat input control method for alloying furnace of hot-dip galvanized steel strip

Publications (2)

Publication Number Publication Date
JPH0565615A true JPH0565615A (en) 1993-03-19
JP2545653B2 JP2545653B2 (en) 1996-10-23

Family

ID=16904426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3230219A Expired - Fee Related JP2545653B2 (en) 1991-09-10 1991-09-10 Heat input control method for alloying furnace of hot-dip galvanized steel strip

Country Status (1)

Country Link
JP (1) JP2545653B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200760A (en) * 1989-01-30 1990-08-09 Mitsubishi Heavy Ind Ltd Strip temperature control method for heating furnace

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02200760A (en) * 1989-01-30 1990-08-09 Mitsubishi Heavy Ind Ltd Strip temperature control method for heating furnace

Also Published As

Publication number Publication date
JP2545653B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
JPH0645851B2 (en) Method for producing alloyed hot-dip galvanized steel strip
EP0531963B1 (en) Method of controlling heat input to an alloying furnace for manufacturing hot galvanized and alloyed band steel
JP2545653B2 (en) Heat input control method for alloying furnace of hot-dip galvanized steel strip
JP3261714B2 (en) Method for controlling alloying of galvanized steel sheet
JPH0598409A (en) Method for controlling heat gain in alloying furnace of galvannealed steel strip
JP2939033B2 (en) Manufacturing method of galvannealed steel sheet
JPH02254146A (en) Induction heating device, induction heating-type alloying furnace, and alloying method
JPH06322504A (en) Deposition controller for hot dip coated steel sheet
JP2699989B2 (en) Method of controlling heat input to alloying furnace for hot dip galvanized steel strip
JP2807156B2 (en) Method for controlling the degree of alloying of galvanized steel sheet
JP2795569B2 (en) Operating method of hot dip galvanizing alloying furnace
JP3175802B2 (en) Method for controlling alloying of hot-dip galvanized steel sheet
JPH06207296A (en) Method and equipment for plating strip material with zinc
JP3099990B2 (en) Operating method of hot dip galvanizing alloying furnace
JPH0533110A (en) Production of galvannealed steel sheet
JP2848989B2 (en) Method of controlling heat input to alloying furnace for hot dip galvanized steel strip
JPH06207297A (en) Method and equipment for plating strip material with zinc
JP3141722B2 (en) Method for controlling the degree of alloying of hot-dip galvanized steel sheet
JP2981290B2 (en) Manufacturing method of galvannealed steel sheet
JPH06330276A (en) Method for controlling degree of alloying of hot dip metal coated steel sheet in induction heating type alloying furnace
JP2644513B2 (en) Method for controlling the degree of alloying of galvannealed steel sheet
JP3227326B2 (en) Method for controlling alloying of galvannealed steel strip
JP2789946B2 (en) Manufacturing method of galvannealed steel sheet
JP2004137511A (en) Alloying control method in hot dip galvanizing line, and device therefor
JP3411712B2 (en) Alloying furnace for hot-dip galvanized steel sheet and its operation method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100808

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees