JPH02199244A - Correcting method for air-fuel ratio at transition time - Google Patents

Correcting method for air-fuel ratio at transition time

Info

Publication number
JPH02199244A
JPH02199244A JP1879989A JP1879989A JPH02199244A JP H02199244 A JPH02199244 A JP H02199244A JP 1879989 A JP1879989 A JP 1879989A JP 1879989 A JP1879989 A JP 1879989A JP H02199244 A JPH02199244 A JP H02199244A
Authority
JP
Japan
Prior art keywords
fuel ratio
fuel
air
transition time
ratio correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1879989A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kajitani
梶谷 勝之
Yoichi Iwakura
洋一 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP1879989A priority Critical patent/JPH02199244A/en
Publication of JPH02199244A publication Critical patent/JPH02199244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To quickly and properly regulate the quantity of fuel supply in response to transition conditions, and thereby prevent an air-fuel ratio from being fluctuated by increasing/decreasing a transition time air-fuel ratio correcting factor which regulates the quantity of fuel injection at the transition times in reverse proportion to the absolute value of intake air pressure. CONSTITUTION:The electronic control device 4 of an electronically controlled fuel injection system 1 determines a transition time air-fuel ratio correction factor in response to the variation of intake air pressure detected by a pressure sensor 9 so as to regulate the quantity of fuel injection at the transition time. In this case, the transition time air-fuel ratio correcting factor is increased/decreased in reverse proportion to the absolute value of intake air pressure. Which permits the transition time air-fuel ratio correction factor to be increased/decreased as the variation of intake air pressure is increased/decreased. Meanwhile, when the absolute value of intake air pressure is low, the correction factor becomes great, and when said value is high, the factor becomes little. For example, when an engine is shifted from a normal operation to an accelerating one, the quantity of fuel supply is regulated so as to be increased at the early stage of acceleration, being gradually regulated so as to be decreased as acceleration comes to an end. Thus, the quantity of fuel supply can thereby be regulated quickly and properly in response to transition conditions.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子制御燃料噴射装置を備えた自動車等のエ
ンジンに採用される過渡時の空燃比補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transient air-fuel ratio correction method employed in an engine of an automobile or the like equipped with an electronically controlled fuel injection device.

[従来の技術] 燃料噴射弁を備えた電子制御燃料噴射装置には、定期的
に検出した吸気圧の変化によってエンジンの負荷変化を
判別するとともに、本発明の先行技術として、例えば特
開昭58−144632号公報に示されるように、吸気
圧の変化量に対応させて過渡時空燃比補正係数を決定す
るようにしているものもある。そして、この過渡時空燃
比補正係数によって過渡時に燃料噴射弁から供給される
燃料噴射量が修正され、エンジンに供給される混合気の
空燃比が調節されるようになっている。
[Prior Art] An electronically controlled fuel injection device equipped with a fuel injection valve is capable of determining changes in engine load based on regularly detected changes in intake pressure. As shown in Japanese Patent No. 144632, there are some systems in which the transient air-fuel ratio correction coefficient is determined in accordance with the amount of change in the intake pressure. The transient air-fuel ratio correction coefficient corrects the amount of fuel injected from the fuel injection valve during a transient period, and adjusts the air-fuel ratio of the air-fuel mixture supplied to the engine.

[発明が解決しようとする課題] ところが、このような方式は、吸気圧変化に対する噴射
量調節の応答性に優れてはいるものの、過渡状況に対す
る制御精度の点では不十分な面がある。例えば、加速時
における燃料の要求歯は、加速初期から加速途中にかけ
て多く、加速後半から定常運転に移行するに伴って徐々
に減量させるのが望ましい。しかしながら、過渡時空燃
比補正係数を吸気圧の変化量のみによって決定すると、
加速時における吸気圧の変化量が一定の場合には、第4
図に概略的に示すように、吸気圧の絶対値が上昇して負
荷が大きくなっても、過渡時空燃比補正係数は一定値に
決定されるため、これにかかる補正量も一定となる。そ
のため、吸気圧の変化が小さな加速初期においては燃料
不足となって空燃比がリーン側にずれ、加速後半から定
常運転への移行直後にかけては燃料の減量が不十分とな
って空燃比が大きくリッチ側にずれる傾向がある。そし
て、これらが過渡時のエミッションやドライバビリティ
等を悪化させる原因となっている。
[Problems to be Solved by the Invention] However, although such a system is excellent in the responsiveness of injection amount adjustment to changes in intake pressure, it is insufficient in terms of control accuracy for transient situations. For example, it is desirable that the amount of fuel required during acceleration increases from the beginning of acceleration to the middle of acceleration, and gradually decreases as the engine shifts to steady operation from the latter half of acceleration. However, if the transient air-fuel ratio correction coefficient is determined only by the amount of change in intake pressure,
If the amount of change in intake pressure during acceleration is constant, the fourth
As schematically shown in the figure, even if the absolute value of the intake pressure increases and the load increases, the transient air-fuel ratio correction coefficient is determined to be a constant value, so the correction amount applied thereto also remains constant. Therefore, at the beginning of acceleration when the change in intake pressure is small, there is a fuel shortage and the air-fuel ratio shifts to the lean side, and in the latter half of acceleration and immediately after the transition to steady operation, the amount of fuel is not reduced enough and the air-fuel ratio becomes rich. It tends to shift to the side. These factors cause deterioration in transient emissions, drivability, and the like.

本発明は、このような課題を解消することを目的として
いる。
The present invention aims to solve such problems.

[課題を解決するための手段] 本発明は、かかる目的を達成するために、吸気圧の変化
量に対応させて過渡時空燃比補正係数を決定し、その過
渡時空燃比補正係数によってエンジンの過渡時における
燃料噴射量を調節するようにした過渡時の空燃比補正方
法において、前記過渡時空燃比補正係数を吸気圧の絶対
値に反比例させて増減するようにしたことを特徴とする
[Means for Solving the Problems] In order to achieve the above object, the present invention determines a transient air-fuel ratio correction coefficient corresponding to the amount of change in intake pressure, and uses the transient air-fuel ratio correction coefficient to adjust the transient air-fuel ratio correction coefficient of the engine. In the transient air-fuel ratio correction method for adjusting the fuel injection amount, the transient air-fuel ratio correction coefficient is increased or decreased in inverse proportion to the absolute value of the intake pressure.

[作用] このような構成によれば、過渡時空燃比補正係数は、少
なくとも2種の要因によって決定されることになる。す
なわち、この過渡時空燃比補正係数は、吸気圧の変化量
が増減すればこれに伴って増減する一方、吸気圧の絶対
値が小さな場合は大きくなり、吸気圧の絶対値が大きく
なれば小さな値となる。このため、例えば定常運転から
加速が行われると、加速初期には過渡時空燃比補正係数
にかかる燃料供給量が増量調節され、加速初期から加速
が終りに至るにつれて、過渡時空燃比補正係数にかかる
燃料供給量が徐々に減量調節されることになる。
[Operation] According to such a configuration, the transient air-fuel ratio correction coefficient is determined by at least two types of factors. In other words, this transient air-fuel ratio correction coefficient increases or decreases as the amount of change in intake pressure increases or decreases, and increases or decreases when the absolute value of intake pressure is small, and decreases when the absolute value of intake pressure increases. becomes. For this reason, for example, when acceleration is performed from steady-state operation, the amount of fuel supplied according to the transient air-fuel ratio correction coefficient is adjusted to increase at the beginning of acceleration, and as the acceleration reaches the end from the beginning of acceleration, the amount of fuel supplied according to the transient air-fuel ratio correction coefficient is increased. The supply amount will be gradually adjusted down.

[実施例] 以下、本発明の一実施例を第1図から第3図を参照して
説明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.

第1図に概略的に示したエンジンは、自動車に利用され
るもので、電子制御燃料噴射装置1を備えている。電子
制御燃料噴射装置1は、吸気管2に装着した燃料噴射弁
3と、この燃料噴射弁3の開弁時間をエンジン状況に応
じて制御する電子制御装置4とを具備してなるもので、
前記電子制御装置4に混合気の空燃比等を調節するため
の種々の情報が入力されるようになっている。
The engine schematically shown in FIG. 1 is used in an automobile and is equipped with an electronically controlled fuel injection device 1. The engine shown schematically in FIG. The electronically controlled fuel injection device 1 includes a fuel injection valve 3 attached to an intake pipe 2, and an electronic control device 4 that controls the opening time of the fuel injection valve 3 according to engine conditions.
Various information for adjusting the air-fuel ratio of the air-fuel mixture, etc. is input to the electronic control device 4.

燃料噴射弁3は、電磁コイルを内蔵しており、その電磁
コイルに前記電子制御装置4から燃料噴射信号aが印加
されると、燃料噴射信号aの印加時間に相当する世の燃
料を吸気ポート付近に噴射するように構成されたもので
ある。
The fuel injection valve 3 has a built-in electromagnetic coil, and when a fuel injection signal a is applied from the electronic control device 4 to the electromagnetic coil, fuel corresponding to the application time of the fuel injection signal a is injected into the intake port. It is designed to be sprayed nearby.

電子制御装置4は、中央演算処理装置5と、メモリー6
と、入力インターフェース7と、出力インターフェース
8とを備えてなるマイクロコンピュータユニットからな
り、その入力インターフェース7に、少なくとも、圧力
センサ9からの吸気圧信号すと、クランク角センサ10
からのエンジン回転信号Cと、エンジン冷却水の温度情
報等が入力されるようになっている。圧力センサ9は、
サージタンク11内の吸気圧PMTPが検出し得るよう
になっており、ディストリビュータ12内に設けたクラ
ンク角センサ10は、エンジン回転数が検出し得るよう
に構成されたものである。−方、出力インターフェース
8からは、前記燃料噴射弁3に向けて燃料噴射信号aが
出力されるようになっている。
The electronic control device 4 includes a central processing unit 5 and a memory 6.
, an input interface 7 , and an output interface 8 . The input interface 7 receives at least an intake pressure signal from a pressure sensor 9 and a crank angle sensor 10 .
The engine rotation signal C from the engine, engine cooling water temperature information, etc. are input. The pressure sensor 9 is
The intake pressure PMTP in the surge tank 11 can be detected, and the crank angle sensor 10 provided in the distributor 12 is configured to be able to detect the engine speed. On the other hand, the output interface 8 outputs a fuel injection signal a toward the fuel injection valve 3.

そして、この電子制御装置4は、前記吸気圧信号す及び
エンジン回転信号C等から吸入空気量を求め、その吸入
空気量に応じて決定した基本噴射量をエンジン状況に応
じて決まる各種の補正係数で補正し、前記燃料噴射弁3
から燃焼室13に供給する燃料噴射量を調節する役割等
を担っている。
Then, this electronic control device 4 calculates the amount of intake air from the intake pressure signal C, engine rotation signal C, etc., and adjusts the basic injection amount determined according to the intake air amount by various correction coefficients determined according to the engine situation. The fuel injection valve 3 is corrected by
It plays the role of adjusting the amount of fuel injected from the combustion chamber 13 to the combustion chamber 13.

例えば、エンジンの加速時には、1点火毎に吸気圧PM
TPの変化fiDPMTPに対応させて過渡時空燃比補
正係数FAEWAのベース値DPMTPAを求め、その
ベース値DPMTPAを吸気圧の絶対値I PMTP 
Iに反比例させて調節するようにしである。そして、決
定した過渡時空燃比補正係数FAEWAを基本噴射量に
がけて基本噴射量を調節し、加速時の燃料噴射量を増量
補正するように設定しである。
For example, when accelerating the engine, the intake pressure PM
The base value DPMTPA of the transient air-fuel ratio correction coefficient FAEWA is determined in response to the change in TP fiDPMTP, and the base value DPMTPA is calculated as the absolute value of the intake pressure I PMTP.
It is designed to be adjusted in inverse proportion to I. Then, the basic injection amount is adjusted by multiplying the determined transient air-fuel ratio correction coefficient FAEWA by the basic injection amount, and the fuel injection amount during acceleration is set to be increased.

そして、上記電子制御装置4には、過渡時空燃比補正係
数FAEWAを決定するために、第2図に概略的に示す
ようなプログラムを設定してあり、そのプログラムを点
火ダイミング毎に実行するようにしである。まず、ステ
ップ51で、圧力センサ9からの吸気圧信号すにより、
吸気圧PMTPを検出してステップ52に進む。ステッ
プ52では、1点火毎に検出した最新の吸気圧pMTp
lと前回の吸気圧P M T P I−zとの差から吸
気圧PMTPの変化量DPMTPを計算してステップ5
3に進む。ステップ53では、上記変化ffiDPMT
Pに対応させて過渡時空燃比補正係数FAEWAのベー
ス値DPMTPAを決定し、ステップ54に進む。ステ
ップ54では、吸気圧PMTPの絶対値I PMTP 
lに反比例させた補正係数KPPMを予め設定したマツ
プから検索してステップ55に進む。ステップ55では
、上記補正係数KPPMと、エンジンの冷却水温等によ
って決まる所定の補正係数Kを、前記ベース値DPMT
PAに掛けて過渡時空燃比補正係数FAEWAを決定す
る。
A program as schematically shown in FIG. 2 is set in the electronic control device 4 in order to determine the transient air-fuel ratio correction coefficient FAEWA, and the program is executed every time ignition dimming is performed. It is. First, in step 51, based on the intake pressure signal from the pressure sensor 9,
The intake pressure PMTP is detected and the process proceeds to step 52. In step 52, the latest intake pressure pMTp detected for each ignition is
Step 5: Calculate the amount of change DPMTP in the intake pressure PMTP from the difference between l and the previous intake pressure PMTPI-z.
Proceed to step 3. In step 53, the above change ffiDPMT
A base value DPMTPA of the transient air-fuel ratio correction coefficient FAEWA is determined in correspondence with P, and the process proceeds to step 54. In step 54, the absolute value I PMTP of the intake pressure PMTP
A correction coefficient KPPM inversely proportional to l is searched from a preset map, and the process proceeds to step 55. In step 55, the above-mentioned correction coefficient KPPM and a predetermined correction coefficient K determined by the engine cooling water temperature etc. are set to the base value DPMT.
The transient air-fuel ratio correction coefficient FAEWA is determined by multiplying by PA.

このような構成によると、加速時における吸気圧PMT
Pの変化量DPM工Pが増減すれば、基本的には過渡時
空燃比補正係数FAEWAも吸気圧PMTPの変化ff
iDPMTPに伴って増減することになる(ステップ5
1〜53)。また、吸気圧PMTPの変化量DPMTP
が一定の場合には、第3図に概略的に示すように、吸気
圧PMTPの絶対値I PMTP Iが小さくなると、
その絶対値PMTPIに反して過渡時空燃比補正係数F
AEWAが大きな値に修正される。そして、吸気圧PM
TPの絶対値l PMTP Iが徐々に大きくなると、
これに反して過渡時空燃比補正係数FAEWAが徐々に
小さな値に修正されていく。このため、過渡時空燃比補
正係数FAEWAにかかる燃料供給量は、吸気圧PMT
Pの変化量DPMTPに応じて調節され・るとともに、
加速初期から加速が終りに移行するに伴って徐々に減量
されていくことになる。
According to such a configuration, the intake pressure PMT during acceleration
If the amount of change in P increases or decreases, the transient air-fuel ratio correction coefficient FAEWA will basically change due to the change in intake pressure PMTP ff
It will increase or decrease according to iDPMTP (Step 5
1-53). In addition, the amount of change DPMTP in the intake pressure PMTP
When is constant, as schematically shown in FIG. 3, as the absolute value I of the intake pressure PMTP becomes smaller,
Contrary to the absolute value PMTPI, the transient air-fuel ratio correction coefficient F
AEWA is corrected to a large value. And the intake pressure PM
As the absolute value of TP l PMTP I gradually increases,
On the other hand, the transient air-fuel ratio correction coefficient FAEWA is gradually corrected to a smaller value. Therefore, the fuel supply amount related to the transient air-fuel ratio correction coefficient FAEWA is equal to the intake pressure PMT.
It is adjusted according to the amount of change in P DPMTP, and
The amount is gradually reduced from the beginning of acceleration to the end of acceleration.

したがって、このような構成によれば、加速間゛始から
加速途中にかけての燃料不足が解消できるとともに、加
速後半から定常運転に至る領域での燃料供給過剰が有効
に解消できるので、加速時及び加速から定常運転への移
行直後にかけての空燃比のばらつきが抑制できる。その
結果、空燃比のばらつき等に起因する過渡時のドライバ
ビリティの悪化やエミッション等の悪化を確実に改善す
ることができる。
Therefore, according to such a configuration, it is possible to eliminate fuel shortage from the beginning of acceleration to the middle of acceleration, and it is also possible to effectively eliminate excess fuel supply in the region from the latter half of acceleration to steady operation. It is possible to suppress variations in the air-fuel ratio from the time to immediately after the transition to steady operation. As a result, it is possible to reliably improve the deterioration of drivability during transient periods and the deterioration of emissions caused by variations in the air-fuel ratio and the like.

なお、本発明は、吸気圧やエンジン回転数等から吸入空
気量を検出する場合に限らず、エアフロメータで直接に
吸入空気量を検出する場合にも採用可能である。
Note that the present invention is not limited to detecting the amount of intake air from intake pressure, engine speed, etc., but can also be applied to cases where the amount of intake air is directly detected using an air flow meter.

[発明の効果] 以上のような構成からなる本発明によれば、過渡状況に
応じて迅速かつ適確に燃料供給量が調節できるとともに
、空燃比のばらつきを有効に抑制することができるので
、過渡時のドライバビリティやエミッシヨン等を効果的
に向上させることができる制御精度に優れた過渡時の空
燃比補正方法を提供できる。
[Effects of the Invention] According to the present invention configured as described above, the fuel supply amount can be quickly and accurately adjusted according to the transient situation, and variations in the air-fuel ratio can be effectively suppressed. It is possible to provide an air-fuel ratio correction method during a transient period with excellent control accuracy that can effectively improve drivability, emissions, etc. during a transient period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第3図は本発明の一実施例を示し、第1図は
概略的な全体構成図、第2図は制御手順を示すフローチ
ャート図、第3図は制御態様を示すタイミングチャート
図である。第4図は従来例を示す第3図相当のタイミン
グチャート図である。 1・・・電子制御燃料噴射装置 3・・・燃料噴射弁 4・・・電子制御装置 9・・・圧力センサ
1 to 3 show an embodiment of the present invention, in which FIG. 1 is a schematic overall configuration diagram, FIG. 2 is a flowchart showing the control procedure, and FIG. 3 is a timing chart showing the control mode. It is. FIG. 4 is a timing chart corresponding to FIG. 3 showing a conventional example. 1...Electronically controlled fuel injection device 3...Fuel injection valve 4...Electronic control device 9...Pressure sensor

Claims (1)

【特許請求の範囲】[Claims]  吸気圧の変化量に対応させて過渡時空燃比補正係数を
決定し、その過渡時空燃比補正係数によってエンジンの
過渡時における燃料噴射量を調節するようにした過渡時
の空燃比補正方法において、前記過渡時空燃比補正係数
を吸気圧の絶対値に反比例させて増減するようにしたこ
とを特徴とする過渡時の空燃比補正方法。
In the transient air-fuel ratio correction method, the transient air-fuel ratio correction coefficient is determined in accordance with the amount of change in the intake pressure, and the transient air-fuel ratio correction coefficient adjusts the fuel injection amount during the engine transient. A transient air-fuel ratio correction method characterized in that a temporal air-fuel ratio correction coefficient is increased or decreased in inverse proportion to the absolute value of intake pressure.
JP1879989A 1989-01-28 1989-01-28 Correcting method for air-fuel ratio at transition time Pending JPH02199244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1879989A JPH02199244A (en) 1989-01-28 1989-01-28 Correcting method for air-fuel ratio at transition time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1879989A JPH02199244A (en) 1989-01-28 1989-01-28 Correcting method for air-fuel ratio at transition time

Publications (1)

Publication Number Publication Date
JPH02199244A true JPH02199244A (en) 1990-08-07

Family

ID=11981637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1879989A Pending JPH02199244A (en) 1989-01-28 1989-01-28 Correcting method for air-fuel ratio at transition time

Country Status (1)

Country Link
JP (1) JPH02199244A (en)

Similar Documents

Publication Publication Date Title
KR940701498A (en) Idle speed control method of internal combustion engine
KR100240970B1 (en) Method for controlling mixture compositions of fuel and air for internal combustion engine
JPH09287513A (en) Torque controller for engine
JPS6278449A (en) Fuel injection controller of internal combustion engine
US5101787A (en) Ignition timing control apparatus for an engine
JPH02199244A (en) Correcting method for air-fuel ratio at transition time
JPS6296751A (en) Fuel injection controller for internal combustion engine
JP3789597B2 (en) Engine idle rotation control device
US4787358A (en) Fuel supply control system for an engine
JPH02181043A (en) Air-fuel ratio control device for electronic control fuel injection type engine
JPS6287651A (en) Method of controlling operating characteristic amount of operating control means in internal combustion engine
JPH09126018A (en) Device for internal combusion engine
US4773377A (en) Engine air fuel ratio control system
KR100305791B1 (en) Fuel injection method when idle driving of vehicle
JPH02199241A (en) Correcting method for air-fuel ratio at transition time
JPH02199243A (en) Correcting method for air-fuel ratio at transition time
KR100251168B1 (en) Fuel-air ration feedback control method
JPH0746750Y2 (en) Air-fuel ratio controller for engine
JPH02119651A (en) Air-fuel ratio control method for transient period
JPH0791304A (en) Fuel supply controller of internal combustion engine
JP2750777B2 (en) Electronic control fuel supply device for internal combustion engine
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine
JPH02199242A (en) Correcting method for air-fuel ratio at transition time
JPH04134136A (en) Fuel injection controller for internal combustion engine
JPH01116265A (en) Fuel injection height correcting device for internal combustion engine