JPH02199241A - Correcting method for air-fuel ratio at transition time - Google Patents

Correcting method for air-fuel ratio at transition time

Info

Publication number
JPH02199241A
JPH02199241A JP1879689A JP1879689A JPH02199241A JP H02199241 A JPH02199241 A JP H02199241A JP 1879689 A JP1879689 A JP 1879689A JP 1879689 A JP1879689 A JP 1879689A JP H02199241 A JPH02199241 A JP H02199241A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
ratio correction
transient
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1879689A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kajitani
梶谷 勝之
Yoichi Iwakura
洋一 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP1879689A priority Critical patent/JPH02199241A/en
Publication of JPH02199241A publication Critical patent/JPH02199241A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To properly regulate an air-fuel ratio in response to transition conditions by making up a transition time air-fuel ratio correction factor out of the first and second transition time air-fuel ratio correction factor, and thereby making detecting time intervals of the variation mutually different, which is the decisive element for said correction factor. CONSTITUTION:An electronic control device 4 sets up the first and second transition time air-fuel ratio correction factor based on intake air pressure detected by a pressure sensor 9. In this case, the first transition time air-fuel ratio correction factor is determined based on the variation of intake air pressure every short time, being instantly determined in response to the variation of it even if intake air pressure is changed comparatively to a great extent. On the other hand, the second transition time air-fuel ratio correction factor is determined based on the variation of intake air pressure detected by time intervals longer than the first factor, the minute variation of it being reflected. Then, a transition time air-fuel ratio correction factor is set up based on both of the first and second factor, the basic quantity of fuel injection being corrected, the quantity of fuel injection at the transition time being regulated so that a fuel injection valve 3 is actuated. Thus air-fuel ratio control is thereby executed in response to transition conditions.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子制御燃料噴射装置を備えた自動車等のエ
ンジンに採用される過渡時の空燃比補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transient air-fuel ratio correction method employed in an engine of an automobile or the like equipped with an electronically controlled fuel injection device.

[従来の技術] エンジン回転数や吸気圧等によって基本噴射量を決定す
るように構成された電子制御燃料噴射装置では、吸気脈
動等による悪影響を防止するために、一定時間毎に検出
した吸気圧をなまし処理して利用するのが普通である。
[Prior Art] In an electronically controlled fuel injection system configured to determine the basic injection amount based on engine speed, intake pressure, etc., in order to prevent adverse effects due to intake pulsation, etc., the intake pressure detected at regular intervals is used. It is common to use a smoothed version of the .

そして、第6図に概略的に示すように、エンジンが過渡
時に移行して吸気圧が変化すると、その変化量に応じて
過渡時空燃比補正係数を変化させるようにしている。し
かして、過渡時空燃比補正係数が変化すると、これに応
じて燃料噴射量が修正され、過渡時にエンジンに供給さ
れる混合気の空燃比が調節されるようになっている。こ
のような過渡時空燃比補正方法に関する具体的な先行技
術としては、例えば特開昭58−144632号公報に
示されるものがある。
As schematically shown in FIG. 6, when the engine shifts to a transient state and the intake pressure changes, the transient air-fuel ratio correction coefficient is changed in accordance with the amount of change. Thus, when the transient air-fuel ratio correction coefficient changes, the fuel injection amount is corrected accordingly, and the air-fuel ratio of the air-fuel mixture supplied to the engine during the transient is adjusted. A specific prior art related to such a transient air-fuel ratio correction method is disclosed in, for example, Japanese Unexamined Patent Publication No. 144632/1983.

[発明が解決しようとする課題] ところが、従来の手法では、過渡時空燃比補正係数が一
定時間毎に検出された吸気圧の変化量に応じて決定され
るため、吸気圧が比較的緩やかに変化している場合には
、これに有効に対処できないという不具合がある。すな
わち、一定時間毎の吸気圧の変化量が比較的大きな場合
には、最短時間内にその変化量をとらえることができ、
これに応じて過渡時空燃比補正係数を効果的に変化させ
ることができるので、過渡時における燃料調節の応答性
がよくなる。しかしながら、第7図に概略的に示すよう
に、吸気圧の変化量が比較的小さく、一定時間毎に検出
し得る量を下回っている場合には、その変化量をとらえ
ることができないため、過渡時空燃比補正係数にその変
化を反映させることができない。そのため、第8図に概
略的に示すように、吸気圧の変化が比較的小さな過渡運
転時(図は加速時)には過渡時空燃比補正係数による燃
料噴射量の調節が行われず、状況に反して空燃比がリー
ン側にずれ、エミッションやドライバビリティ等が悪化
する傾向がある。
[Problems to be Solved by the Invention] However, in the conventional method, the transient air-fuel ratio correction coefficient is determined according to the amount of change in the intake pressure detected at regular intervals, so the intake pressure changes relatively gradually. If so, there is a problem in that it cannot be dealt with effectively. In other words, if the amount of change in intake pressure over a certain period of time is relatively large, the amount of change can be captured within the shortest amount of time.
Since the transient air-fuel ratio correction coefficient can be effectively changed in accordance with this, the responsiveness of fuel adjustment during transient times is improved. However, as schematically shown in Figure 7, if the amount of change in intake pressure is relatively small and is below the amount that can be detected at regular intervals, the amount of change cannot be detected, so transient The change cannot be reflected in the temporal air-fuel ratio correction coefficient. Therefore, as schematically shown in Figure 8, during transient operation where the change in intake pressure is relatively small (the diagram shows acceleration), the fuel injection amount is not adjusted by the transient air-fuel ratio correction coefficient, which is contrary to the situation. This tends to cause the air-fuel ratio to shift toward the lean side, resulting in poor emissions, drivability, etc.

また、このような不具合は、過渡時の終り付近において
吸気圧が緩やかに変化する場合にも生じる。このため、
加速から定常運転に移行する場合に吸気管内が燃料不足
となって追従性が悪化する原因ともなる。
Further, such a problem also occurs when the intake pressure changes gradually near the end of the transient period. For this reason,
When transitioning from acceleration to steady operation, there may be a lack of fuel in the intake pipe, which may cause deterioration in tracking performance.

本発明は、このような課題を解消することを目的として
いる。
The present invention aims to solve such problems.

[課題を解決するための手段] 本発明は、上記目的を達成するために、吸気圧の変化量
に対応させて過渡時空燃比補正係数を決定し、その過渡
時空燃比補正係数によってエンジンの過渡時における燃
料噴射量を調節するようにした過渡時の空燃比補正方法
において、前記過渡時空燃比補正係数を第1の過渡時空
燃比補正係数と第2の過渡時空燃比補正係数によって構
成するとともに、これらの決定要因たる前記変化量の検
出時間々隔を相互に異ならせたことを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention determines a transient air-fuel ratio correction coefficient in accordance with the amount of change in intake pressure, and uses the transient air-fuel ratio correction coefficient to adjust the transient air-fuel ratio correction coefficient of the engine. In the transient air-fuel ratio correction method, the transient air-fuel ratio correction coefficient is configured by a first transient air-fuel ratio correction coefficient and a second transient air-fuel ratio correction coefficient, and The present invention is characterized in that the time intervals at which the amount of change, which is a determining factor, is detected are different from each other.

[作用] このような構成によれば、第1の過渡時空燃比補正係数
を、例えば短時間毎の吸気圧の変化量によって決定する
と、吸気圧が比較的大きく変化した場合には、その変化
量に対応して即座に該第1の過渡時空燃比補正係数が決
定されることになる。
[Operation] According to such a configuration, when the first transient air-fuel ratio correction coefficient is determined based on, for example, the amount of change in the intake pressure every short time, when the intake pressure changes relatively largely, the amount of change is In response to this, the first transient air-fuel ratio correction coefficient is immediately determined.

他方、第2の過渡時空燃比補正係数の決定要因たる吸気
圧の変化量を、第1の過渡時空燃比補正係数を決定する
際の検出時間よりも長い時間々隔でもって検出すると、
第1の過渡時空燃比補正係数に反映させることのできな
い微小な吸気圧の変化量を該第2の過渡時空燃比補正係
数に反映させることができる。
On the other hand, if the amount of change in the intake pressure, which is the determining factor of the second transient air-fuel ratio correction coefficient, is detected at a time interval longer than the detection time when determining the first transient air-fuel ratio correction coefficient,
A minute change in intake pressure that cannot be reflected in the first transient air-fuel ratio correction coefficient can be reflected in the second transient air-fuel ratio correction coefficient.

そして、上記第1及び第2の過渡時空燃比補正係数から
過渡時空燃比補正係数が決まると、それによって基本噴
射量が補正され、エンジンの過渡時における燃料噴射量
が調節される。そのため、吸気圧変化が大きな過渡時に
は、主に第1の過渡時空燃比補正係数が燃料噴射量に反
映され、吸気圧変化が比較的緩やかな過渡時や過渡時の
終わり付近では、第2の過渡時空燃比補正係数が燃料噴
射量に反映されることになる。
When the transient air-fuel ratio correction coefficient is determined from the first and second transient air-fuel ratio correction coefficients, the basic injection amount is corrected based on the transient air-fuel ratio correction coefficient, and the transient fuel injection amount of the engine is adjusted. Therefore, during a transient period when the intake pressure change is large, the first transient air-fuel ratio correction coefficient is mainly reflected in the fuel injection amount, and during a transient period when the intake pressure change is relatively gradual or near the end of the transition period, the second transient air-fuel ratio correction coefficient is The temporal air-fuel ratio correction coefficient is reflected in the fuel injection amount.

[実施例コ 以下、本発明の一実施例を第1図から第5図を参照して
説明する。
[Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 5.

第1図に概略的に示したエンジンは、自動車に利用され
るもので、電子制御燃料噴射装置1を備えている。電子
制御燃料噴射装置1は、吸気管2に装着した燃料噴射弁
3と、この燃料噴射弁3の開弁時間を制御する電子制御
装置4とを具備してなるもので、前記電子制御装置4に
混合気の空燃比等を調節するための種々の情報が入力さ
れるようになっている。
The engine schematically shown in FIG. 1 is used in an automobile and is equipped with an electronically controlled fuel injection device 1. The engine shown schematically in FIG. The electronically controlled fuel injection device 1 includes a fuel injection valve 3 attached to an intake pipe 2 and an electronic control device 4 that controls the opening time of the fuel injection valve 3. Various information for adjusting the air-fuel ratio of the air-fuel mixture, etc. is input to the controller.

燃料噴射弁3は、電磁コイルを内蔵しており、その電磁
コイルに前記電子制御装置4から燃料噴射信号aが印加
されると、燃料噴射信号aの印加時間に相当する量の燃
料を吸気ポート付近に噴射するようになっている。
The fuel injection valve 3 has a built-in electromagnetic coil, and when a fuel injection signal a is applied from the electronic control device 4 to the electromagnetic coil, an amount of fuel corresponding to the application time of the fuel injection signal a is injected into the intake port. It is designed to be sprayed nearby.

電子制御装置4は、中央演算処理装置5と、メモリー6
と、入力インターフェース7と、出力インターフェース
8とを備えてなるマイクロコンピュータユニットからな
り、その入力インターフェース7に、少なくとも、圧力
センサ9からの吸気圧信号すと、クランク角センサ10
からのエンジン回転信号Cと、エンジン冷却水の温度情
報等が入力されるようになっている。圧力センサ9は、
サージタンク11内の吸気圧PMが検出し得るようにな
っており、ディストリビュータ12内に設けたクランク
角センサ10は、エンジン回転数が検出し得るように構
成されたものである。一方、出力インターフェース8か
らは、燃料噴射弁3に燃料噴射信号aが出力されるよう
になっている。
The electronic control device 4 includes a central processing unit 5 and a memory 6.
, an input interface 7 , and an output interface 8 . The input interface 7 receives at least an intake pressure signal from a pressure sensor 9 and a crank angle sensor 10 .
The engine rotation signal C from the engine, engine cooling water temperature information, etc. are input. The pressure sensor 9 is
The intake pressure PM in the surge tank 11 can be detected, and the crank angle sensor 10 provided in the distributor 12 is configured to be able to detect the engine speed. On the other hand, the output interface 8 outputs a fuel injection signal a to the fuel injection valve 3.

そして、この電子制御装置4は、前記吸気圧信号す及び
エンジン回転信号C等から吸入空気量を求め、その吸入
空気量に応じて決定した基本噴射量をエンジン状況に応
じて決まる各種の補正係数で補正し、前記燃料噴射弁3
から燃焼室13に供給する燃料噴射量を調節する役割等
を担っている。
Then, this electronic control device 4 calculates the amount of intake air from the intake pressure signal C, engine rotation signal C, etc., and adjusts the basic injection amount determined according to the intake air amount by various correction coefficients determined according to the engine situation. The fuel injection valve 3 is corrected by
It plays the role of adjusting the amount of fuel injected from the combustion chamber 13 to the combustion chamber 13.

例えば、エンジンの過渡時には、吸気圧PMの変化量に
応じて過渡時空燃比補正係数FAEWを決定するととも
に、その過渡時空燃比補正係数FAEWによって基本噴
射量を補正し、前記燃料噴射量を調節するようにしであ
る。過渡時空燃比補正係数FAEWは、エンジン始動時
や始動後一定時間、及び、スロットルバルブ14がアイ
ドル位置にある場合等には0にセットされる過渡的な補
正係数であり、第1の過渡時空燃比補正係数FAEWA
と第2の過渡時空燃比補正係数FAEWBとの和によっ
て決定するようにしである。そして、第1の過渡時空燃
比補正係数FAEWAは、比較的短い時間毎(例えば点
火毎)の吸気圧PMの変化量によって決定し、第2の過
渡時空燃比補正係数FAEWBは、これよりも長い時間
毎(例えば400m5毎)の吸気圧PMの変化量によっ
て決定するようにしている。
For example, during engine transients, the transient air-fuel ratio correction coefficient FAEW is determined according to the amount of change in the intake pressure PM, and the basic injection amount is corrected using the transient air-fuel ratio correction coefficient FAEW to adjust the fuel injection amount. It's Nishide. The transient air-fuel ratio correction coefficient FAEW is a transient correction coefficient that is set to 0 when the engine is started, for a certain period of time after engine startup, and when the throttle valve 14 is in the idle position, and is set to 0 when the first transient air-fuel ratio Correction coefficient FAEWA
and the second transient air-fuel ratio correction coefficient FAEWB. The first transient air-fuel ratio correction coefficient FAEWA is determined by the amount of change in the intake pressure PM at relatively short intervals (for example, every ignition), and the second transient air-fuel ratio correction coefficient FAEWB is determined for a longer period. It is determined based on the amount of change in the intake pressure PM every time (for example, every 400 m5).

そして、この電子制御装置4には、上記過渡時空燃比補
正係数FAEWを決定するために、第2図に概略的に示
すようなプログラムを設定しである。まず、ステップ5
1では、1点火毎に検出した最新の吸気圧P M +と
前回の吸気圧P M 、−0との差から吸気圧PMの変
化量ΔPM工を求めた後、ステップ52に進む。ステッ
プ52では、所定の補正値C1と、エンジン冷却水の温
度によって決まる水温補正値KT工とを、前記変化量Δ
PM。
A program as schematically shown in FIG. 2 is set in this electronic control unit 4 in order to determine the above-mentioned transient air-fuel ratio correction coefficient FAEW. First, step 5
In step 1, after determining the amount of change ΔPM in the intake pressure PM from the difference between the latest intake pressure P M + detected for each ignition and the previous intake pressure P M , -0, the process proceeds to step 52 . In step 52, the predetermined correction value C1 and the water temperature correction value KT determined depending on the temperature of the engine cooling water are changed to the change amount Δ
P.M.

に掛けて第1の過渡時空燃比補正係数FAEWAを決定
し、ステップ53に移行する。ステップ53では、最新
の吸気圧PM、と400m5前の吸気圧P M l−4
00との差から吸気圧PMの変化量ΔPM2を求めてス
テップ54に進む。ステップ54では、所定の補正値C
2と、エンジン冷却水の温度によって決まる水温補正値
KT2とを、前記変化量ΔPM2に掛けて第2の過渡時
空燃比補正係数FAEWBを決定する。
The first transient air-fuel ratio correction coefficient FAEWA is determined by multiplying by FAEWA, and the process proceeds to step 53. In step 53, the latest intake pressure PM and the intake pressure 400m5 ago P M l-4
The amount of change ΔPM2 in the intake pressure PM is determined from the difference from the difference from 00, and the process proceeds to step 54. In step 54, a predetermined correction value C
The second transient air-fuel ratio correction coefficient FAEWB is determined by multiplying the amount of change ΔPM2 by 2 and a water temperature correction value KT2 determined by the temperature of the engine coolant.

このような構成によると、第3図に概略的に示すように
、エンジンが過渡時にあって一定時間毎の吸気圧PMの
変化量が比較的大きな場合には、その変化量に応じて直
ちに第1の過渡時空燃比補正係数FAEWA及び第2の
過渡時空燃比補正係数FAEWBが決定されるとともに
、これらの和によって過渡時空燃比補正係数FAEWが
決定される。そして、この過渡時空燃比補正係数FAE
Wによって基本噴射量が補正され、エンジンの過渡時に
おいて実際に燃料噴射弁3から供給される燃料噴射量が
調節されることになる。
According to such a configuration, as schematically shown in FIG. 3, when the engine is in a transient state and the amount of change in the intake pressure PM at fixed time intervals is relatively large, the change in intake pressure PM is immediately performed according to the amount of change. A first transient air-fuel ratio correction coefficient FAEWA and a second transient air-fuel ratio correction coefficient FAEWB are determined, and the transient air-fuel ratio correction coefficient FAEW is determined by the sum of these. Then, this transient air-fuel ratio correction coefficient FAE
The basic injection amount is corrected by W, and the fuel injection amount actually supplied from the fuel injection valve 3 during engine transients is adjusted.

他方、第4図に概略的に示すように、過渡時における吸
気圧PMが比較的緩やかに変化し、その変化量が点火間
隔毎ではとらえられない場合には、第1の過渡時空燃比
補正係数FAEWAが0となるが、第2の過渡時空燃比
補正係数FAEWBは有効に決定される。すなわち、上
述のように、吸気圧PMが緩慢に変化していても、点火
毎より長い時間々隔でもって吸気圧PMを検出すると、
その変化量が確実に検出できるので、第2の過渡時空燃
比補正係数FAEWBが決定できる。しかして、このよ
うな場合には、第2の過渡時空燃比補正係数FAEWB
が実質的に過渡時空燃比補正係数FAEWとなる。そし
て、この過渡時空燃比補正係数FAEWによって基本噴
射量が補正され、エンジンの過渡時において実際に燃料
噴射弁3から供給される燃料噴射量が負荷変化に応じて
調節されることになる。このため、第5図に示すように
、吸気圧PMの変化が小さな過渡運転時における空燃比
A/Fの乱れが抑制される。
On the other hand, as schematically shown in FIG. 4, when the intake pressure PM changes relatively slowly during a transient period and the amount of change cannot be captured at each ignition interval, the first transient air-fuel ratio correction coefficient Although FAEWA becomes 0, the second transient air-fuel ratio correction coefficient FAEWB is effectively determined. That is, as mentioned above, even if the intake pressure PM changes slowly, if the intake pressure PM is detected at intervals longer than each ignition,
Since the amount of change can be reliably detected, the second transient air-fuel ratio correction coefficient FAEWB can be determined. Therefore, in such a case, the second transient air-fuel ratio correction coefficient FAEWB
substantially becomes the transient air-fuel ratio correction coefficient FAEW. Then, the basic injection amount is corrected by this transient air-fuel ratio correction coefficient FAEW, and the fuel injection amount actually supplied from the fuel injection valve 3 during engine transient is adjusted in accordance with load changes. Therefore, as shown in FIG. 5, disturbances in the air-fuel ratio A/F during transient operation with small changes in the intake pressure PM are suppressed.

したがって、このような構成によれば、過渡時の負荷変
化が比較的大きな場合は勿論、従来の手法では看過され
がちな小さな負荷変化をも、本実施例によると、燃料噴
射量に確実に反映させることができる。すなわち、この
ような構成にすれば、過渡状況に応じて迅速かつ適確に
燃料供給量の調節が行えるので、負荷変化に対する空燃
比調節の追従性がよくなり、過渡時におけるドライバビ
リティやエミッション等を確実に向上させることができ
る。
Therefore, with this configuration, not only relatively large transient load changes, but also small load changes that are often overlooked by conventional methods can be reliably reflected in the fuel injection amount according to this embodiment. can be done. In other words, with this configuration, the fuel supply amount can be adjusted quickly and accurately according to transient conditions, which improves the ability of air-fuel ratio adjustment to follow changes in load, improving drivability, emissions, etc. during transient conditions. can definitely be improved.

なお、上記実施例では、第1の過渡時空燃比補正係数と
第2の過渡時空燃比補正係数とを加算して利用したが、
いずれかの値が大きな方を優先させて利用してもよい。
In addition, in the above embodiment, the first transient air-fuel ratio correction coefficient and the second transient air-fuel ratio correction coefficient were added and used.
The one with a larger value may be used preferentially.

また、上記実施例では、エンジンの加速時について述べ
たが、本発明にかかる方法はエンジンの減速時にも有効
に採用することができる。
Further, in the above embodiment, the case was described when the engine was accelerating, but the method according to the present invention can also be effectively employed when the engine is decelerating.

[発明の効果コ 以上のような構成からなる本発明によれば、吸気圧が急
速に変化している場合は勿論、緩慢に変化している場合
においても、それぞれの過渡状況に応じて適切に空燃比
が調節できるとともに、負荷変化に対する空燃比調節の
追従性をよくすることができるので、過渡時のドライバ
ビリティやエミッション等を確実に向上させることがで
きる制御精度及び応答性に優れた過渡時の空燃比補正方
法を提供できる。
[Effects of the Invention] According to the present invention having the above-described configuration, whether the intake pressure is changing rapidly or slowly, it can be adjusted appropriately according to each transient situation. The air-fuel ratio can be adjusted and the air-fuel ratio adjustment can follow load changes better, so it is possible to reliably improve drivability and emissions during transient periods.It has excellent control accuracy and responsiveness during transient periods. The present invention can provide an air-fuel ratio correction method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第5図は本発明の一実施例を示し、第1図は
概略的な全体構成図、第2図は制御手順を示すフローチ
ャート図、第3図と第4図は作動説明図、第5図は効果
の一例を示す図である。第6図から第8図は従来例を示
し、第6図は第3図相当の作動説明図、第7図は第4図
相当の作動説明図、第8図は従来例における不具合を示
す第5図相当の図である。 1・・・電子制御燃料噴射装置 3・・・燃料噴射弁 4・・・電子制御装置 9・・・圧力センサ FAEW・・・過渡時空燃比補正係数
1 to 5 show an embodiment of the present invention, FIG. 1 is a schematic overall configuration diagram, FIG. 2 is a flowchart showing the control procedure, and FIGS. 3 and 4 are operation explanatory diagrams. , FIG. 5 is a diagram showing an example of the effect. 6 to 8 show conventional examples, FIG. 6 is an operation explanatory diagram equivalent to FIG. 3, FIG. 7 is an operation explanatory diagram equivalent to FIG. This is a diagram equivalent to Figure 5. 1...Electronically controlled fuel injection device 3...Fuel injection valve 4...Electronic control device 9...Pressure sensor FAEW...Transient air-fuel ratio correction coefficient

Claims (1)

【特許請求の範囲】[Claims]  吸気圧の変化量に対応させて過渡時空燃比補正係数を
決定し、その過渡時空燃比補正係数によってエンジンの
過渡時における燃料噴射量を調節するようにした過渡時
の空燃比補正方法において、前記過渡時空燃比補正係数
を第1の過渡時空燃比補正係数と第2の過渡時空燃比補
正係数によって構成するとともに、これらの決定要因た
る前記変化量の検出時間々隔を相互に異ならせたことを
特徴とする過渡時の空燃比補正方法。
In the transient air-fuel ratio correction method, the transient air-fuel ratio correction coefficient is determined in accordance with the amount of change in the intake pressure, and the transient air-fuel ratio correction coefficient adjusts the fuel injection amount during the engine transient. The temporal air-fuel ratio correction coefficient is configured by a first transient air-fuel ratio correction coefficient and a second transient air-fuel ratio correction coefficient, and the detection time intervals of the amount of change, which are determining factors thereof, are made different from each other. Air-fuel ratio correction method during transient periods.
JP1879689A 1989-01-28 1989-01-28 Correcting method for air-fuel ratio at transition time Pending JPH02199241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1879689A JPH02199241A (en) 1989-01-28 1989-01-28 Correcting method for air-fuel ratio at transition time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1879689A JPH02199241A (en) 1989-01-28 1989-01-28 Correcting method for air-fuel ratio at transition time

Publications (1)

Publication Number Publication Date
JPH02199241A true JPH02199241A (en) 1990-08-07

Family

ID=11981557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1879689A Pending JPH02199241A (en) 1989-01-28 1989-01-28 Correcting method for air-fuel ratio at transition time

Country Status (1)

Country Link
JP (1) JPH02199241A (en)

Similar Documents

Publication Publication Date Title
JPH0436651A (en) Control method and controller for air fuel ratio of internal combustion engine
CA2514394C (en) Fuel injection controller of engine
JPS6296751A (en) Fuel injection controller for internal combustion engine
JPH02199241A (en) Correcting method for air-fuel ratio at transition time
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPH02207157A (en) Air-fuel ratio control method at transient time
KR100305791B1 (en) Fuel injection method when idle driving of vehicle
JPH0325622B2 (en)
JPH02199244A (en) Correcting method for air-fuel ratio at transition time
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0544515A (en) Idle rotation control device of internal combustion engine
JPH02199243A (en) Correcting method for air-fuel ratio at transition time
JPH02199242A (en) Correcting method for air-fuel ratio at transition time
JP2003254121A (en) Fuel injection control system for internal combustion engine
JPS6394040A (en) Method of controlling fuel injection amount for internal combustion engine
JPH02119651A (en) Air-fuel ratio control method for transient period
JPH04143435A (en) Air-fuel ratio control method of internal combustion engine
JPS59141730A (en) Method of controlling fuel injection quantity of internal-combustion engine
JPH0654096B2 (en) Fuel control method for electronically controlled engine
JPS6123845A (en) Air-fuel ratio controller
JPH0336143B2 (en)
JPH03115754A (en) Controller of engine
JPH0754744A (en) Correcting method for idle stabilizing ignition timing
JPH0454260A (en) Control of internal combustion engine
JPH04134136A (en) Fuel injection controller for internal combustion engine