JPH0219909A - Constant current circuit - Google Patents

Constant current circuit

Info

Publication number
JPH0219909A
JPH0219909A JP16910488A JP16910488A JPH0219909A JP H0219909 A JPH0219909 A JP H0219909A JP 16910488 A JP16910488 A JP 16910488A JP 16910488 A JP16910488 A JP 16910488A JP H0219909 A JPH0219909 A JP H0219909A
Authority
JP
Japan
Prior art keywords
voltage
reference voltage
current
constant current
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16910488A
Other languages
Japanese (ja)
Inventor
Shinji Sakai
堺 信二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16910488A priority Critical patent/JPH0219909A/en
Publication of JPH0219909A publication Critical patent/JPH0219909A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize the reduction of the parts cost and the control manhour and at the same time to attain the control with high accuracy for a constant current circuit by providing a means which divides the reference voltage. CONSTITUTION:A voltage dividing circuit D consists of the resistances R1-R4 having different resistance values, and the switches 12-14. The switches 12-14 are turned on and off by the set inputs 9-11. For instance, the reference voltage serves directly as the plus input voltage of an OP amplifier 2 when the switches 12-14 are kept off. At the same time, the output current is equal to a constant current of about (voltage of reference voltage source 1)/(value of resistance 10). Then the switch 12 is turned on when the input 9 is turned on, and the reference voltage is divided by the resistances R1 and R2 and applied to the plus input of the amplifier 2. Thus it is possible to attain the reduction of the parts cost and the control manhour and also to perform the control with high accuracy for a constant current circuit.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は定電流回路に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to constant current circuits.

[従来の技術] カメラのシャッタのように、一定の動作をする必要のあ
るデバイスは、電源電圧によらず、定電圧および/また
は定電流回路で駆動することが多く、特に、精度を要す
るものとしては、従来、第5図に示すものが知られてい
る。
[Prior Art] Devices that require constant operation, such as camera shutters, are often driven by constant voltage and/or constant current circuits, regardless of the power supply voltage, especially those that require precision. As shown in FIG. 5, the one shown in FIG. 5 is conventionally known.

図において、1は基準電圧電で原で、比較手段としての
OPアンプ2のプラス端子に基準電圧を印加するもので
ある。4はスイッチで、制御手段としてのトランジスタ
5のベースとOPアンプ2出力端子の間に接続され、制
御信号3により0N10FF制御される。トランジスタ
5はコレクタが負荷7を介して電源8に接続され、エミ
ッタが可変抵抗6を介してグランドに接続されるととも
に、OPアンプ2のマイナス端子に接続されている。
In the figure, reference numeral 1 indicates a reference voltage, which is applied to the positive terminal of an OP amplifier 2 serving as comparison means. A switch 4 is connected between the base of a transistor 5 serving as a control means and the output terminal of the OP amplifier 2, and is controlled to be 0N10FF by a control signal 3. The transistor 5 has a collector connected to a power source 8 via a load 7, an emitter connected to ground via a variable resistor 6, and also connected to a negative terminal of the OP amplifier 2.

OPアンプ2は外部の制御信号3によって、出力がイネ
ーブルされ、このとき、トランジスタ5は、電源8から
の電流を負荷7を通してシンクする。
The output of the OP amplifier 2 is enabled by an external control signal 3, and at this time the transistor 5 sinks current from the power supply 8 through the load 7.

その電流および、微少なベース電流は抵抗6を通ってグ
ランドへ流入し、このときの抵抗6の電圧降下は、OP
アンプ2のマイナス入力へ印加される。
The current and the minute base current flow into the ground through the resistor 6, and the voltage drop across the resistor 6 at this time is OP
Applied to the negative input of amplifier 2.

負荷7を流れる電流は調整用の可変抵抗6により調整さ
れる。
The current flowing through the load 7 is adjusted by a variable resistor 6 for adjustment.

[発明が解決しようとする課題] 従来の定電流回路は、可変抵抗6により電流を調整する
ようにしたので、調整の工数も多く必要で、部品のコス
トも高価になってしまうという問題点があった。
[Problems to be Solved by the Invention] The conventional constant current circuit uses a variable resistor 6 to adjust the current, which has the problems of requiring a lot of man-hours for adjustment and increasing the cost of parts. there were.

このような問題点を解決したものとしては、E”FRO
Mを用いてシステムの調整を行なうようにしたカメラが
知られているが、このような調整はいわゆる「ゲタ調」
のように、駆動タイミングを変化させる等のいわゆる「
電子的」コントロールに限られており、駆vJN、流の
ようなアナログ的な値の高精度の調整ができないという
問題点があった。
As a solution to these problems, E”FRO
Cameras that use M to adjust the system are known, but such adjustments are so-called "getta-like"
The so-called "
The problem is that the control is limited to "electronic" control, and it is not possible to make high-precision adjustments to analog values such as drive, flow, etc.

本発明の目的は、上記のような問題点を解決し、部品コ
ストを軽減でき、かつ調整の工数を減少させるとともに
高精度の調整ができる定電流回路を提イjLするにある
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a constant current circuit that can reduce component costs, reduce the number of adjustment steps, and perform highly accurate adjustment.

[課題を解決するための手段] このような目的を達成するため、本発明は負荷を介して
定抵抗に電流を流す電源と、定抵抗の両端電圧と基1$
電圧を比較する比較手段と、比較手段から出力される誤
差電圧に応して電流を制御する制御手段と、基準電圧を
外部信号に応じて抵抗を組み合わせて分圧する分圧手段
とを備えたことを特徴とする。
[Means for Solving the Problems] In order to achieve such an object, the present invention provides a power source that allows current to flow through a constant resistor via a load, a voltage across the constant resistor, and a base voltage of $1.
Comparing means for comparing voltages, control means for controlling current according to the error voltage output from the comparing means, and voltage dividing means for dividing the reference voltage by combining resistors according to an external signal. It is characterized by

また、本発明は負荷に電流を流す電源と、負荷の両端電
圧と基準電圧とを実効的に比較する比較手段と、比較手
段から出力される誤差電圧に応じて電流を制御する制御
手段と、基準電圧を外部信号に応して抵抗を組み合わせ
て分圧する分圧手段とを備えたことを#l徴する。
Further, the present invention provides a power supply that flows a current through a load, a comparison means that effectively compares the voltage across the load and a reference voltage, a control means that controls the current according to an error voltage output from the comparison means, #l Features include voltage dividing means for dividing the reference voltage by combining resistors in accordance with an external signal.

[作 用] 本発明では、基準電圧を外部42号に応して抵抗を組み
合わせて分圧し、電源により負荷を介して定抵抗に電流
を流し、前記定抵抗の両端電圧と、分圧手段により基準
電圧を分圧して得られる電圧とを比較手段により比較し
、比較手段から出力される誤差電圧に応じて前記電流を
制御手段により制御する。
[Function] In the present invention, a reference voltage is divided by combining resistors according to external No. 42, a current is caused to flow through a constant resistor via a load by a power supply, and the voltage across the constant resistor is divided by a voltage dividing means. The comparison means compares the voltage obtained by dividing the reference voltage, and the control means controls the current according to the error voltage output from the comparison means.

また、本発明では、基準電圧を外部信号に応じて抵抗を
組み合わせて分圧し、電流源により負荷に電流を流し、
前記負荷の両端電圧と、分圧手段により基準電圧を分圧
して得られる電圧とを比較手段により比較し、比較手段
から出力される誤差電圧に応じて前記電流を制御手段に
より制御する。
Furthermore, in the present invention, the reference voltage is divided by combining resistors according to an external signal, and a current is passed through the load by a current source.
The comparison means compares the voltage across the load with the voltage obtained by dividing the reference voltage by the voltage dividing means, and the control means controls the current according to the error voltage output from the comparison means.

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の第1の実施例を示す。FIG. 1 shows a first embodiment of the invention.

本実施例は従来例との比較で言えば、トランジスタ5の
エミッタとグランドの間に接続した抵抗と、OPアンプ
2のプラス端子に印加される電圧が相違する。すなわち
、トランジスタ5のエミッタとグランドの間に接続した
抵抗は、従来例では可変抵抗6にしたが、本実施例では
固定抵抗10にした。また、OPアンプ2のプラス端子
に印加される電圧は、従来例では基準電圧電源1の電圧
であったが、本実施例では基準電圧電源1の電圧を分圧
回路りにより分圧して得られる電圧である。
In comparison with the conventional example, this embodiment is different in the resistor connected between the emitter of the transistor 5 and the ground and the voltage applied to the positive terminal of the OP amplifier 2. That is, the resistor connected between the emitter of the transistor 5 and the ground is a variable resistor 6 in the conventional example, but a fixed resistor 10 is used in this embodiment. In addition, the voltage applied to the positive terminal of the OP amplifier 2 is the voltage of the reference voltage power supply 1 in the conventional example, but in this embodiment, it is obtained by dividing the voltage of the reference voltage power supply 1 using a voltage dividing circuit. It is voltage.

次に、分圧回路りを説明する。Next, the voltage dividing circuit will be explained.

分圧回路りは抵抗値が1にΩの抵抗R1,抵抗値が10
にΩの抵抗R2,抵抗値が20にΩの抵抗R3,抵抗値
が40にΩの抵抗R4,スイッチ12,13.14によ
り構成されている。抵抗R1はOPアンプ2のプラス端
子と基準電圧電源1との間に接続されている。
In the voltage divider circuit, the resistance value is 1, the resistance R1 is Ω, and the resistance value is 10
The resistor R2 has a resistance value of 20.OMEGA., a resistor R3 has a resistance value of 20.OMEGA., a resistor R4 has a resistance value of 40.OMEGA., and switches 12, 13.14. A resistor R1 is connected between the positive terminal of the OP amplifier 2 and the reference voltage power supply 1.

スイッチ12はその端子か抵抗R2を介してoPアンプ
2のプラス端子に接続されるとともに、接片がグランド
に接続され、設定人力9により0N10FFされる。ス
イッチ13は端子が抵抗R3を介してoPアンプ2のプ
ラス端子に接続されるとともに、接片がグランドに接続
され、設定人力10により0N10FFされる。スイッ
チ14はその端子が抵抗R4を介してOPアンプ2のプ
ラス端子に接続されるとともに、接片がグランドに接続
され、設定人力11により0N10FFされる。
The switch 12 has its terminal connected to the positive terminal of the op amplifier 2 via the resistor R2, and its contact piece connected to the ground, and is set to 0N10FF by the setting manual 9. The switch 13 has a terminal connected to the positive terminal of the op amplifier 2 via a resistor R3, and a contact piece connected to the ground, and is set to 0N10FF by the setting manual 10. The switch 14 has its terminal connected to the positive terminal of the OP amplifier 2 via the resistor R4, and its contact piece connected to the ground, and is set to 0N10FF by the setting manual 11.

スイッチ12,13.14がOFFの時は基準電圧がそ
のままOPアンプ2のプラス入力端子となり、出力電流
はおよそ(基準電圧電源1の電圧)/(抵抗1oの値)
の定電流となる。設定人力9がONになるとスイッチI
2がONとなり、抵抗R1と抵抗R2により、基準電圧
は分圧されてOPアンプ2のプラス人力に印加され、1
0に/(1に+10k) 490%−・・約マイナス1
0零となる。また、設定人力10がONのときには、約
マイナス5狐設定人力lOがONのときには、約マイナ
ス2.5零となる。
When switches 12, 13, and 14 are OFF, the reference voltage becomes the positive input terminal of OP amplifier 2, and the output current is approximately (voltage of reference voltage power supply 1)/(value of resistor 1o)
It becomes a constant current. When setting manual 9 is turned on, switch I
2 is turned on, the reference voltage is divided by resistor R1 and resistor R2 and applied to the positive power of OP amplifier 2, and 1
To 0/(1 to +10k) 490%--approx. minus 1
It becomes 0 zero. Further, when the setting human power 10 is ON, it is about -5 foxes, and when the setting human power 10 is ON, it is about -2.5 zero.

このように、設定人力9,10.11によって、約2.
5°6のステップで100零から約マイナス17.59
6(f12.59L、)  まで、8通りの電流値が設
定できる。
In this way, approximately 2.
Approximately minus 17.59 from 100 zero in steps of 5°6
Eight current values can be set up to 6 (f12.59L,).

また、設定人力9.10.11はCPU等によって容易
にコントロールでき、また、設定値はE2PflOM等
に記憶てきるので、電流の設定が容易にできることにな
る。
Further, the manual setting 9.10.11 can be easily controlled by the CPU or the like, and the setting value can be stored in the E2PflOM or the like, so the current can be easily set.

第2図は本発明の第2の実施例を示す。FIG. 2 shows a second embodiment of the invention.

これは分圧回路りをIC化した例である。第1図と同一
または相当部分は同一符号を付しである。
This is an example of a voltage dividing circuit integrated into an IC. The same or corresponding parts as in FIG. 1 are given the same reference numerals.

未実施例は第1の実施例との比較で言えば設定入力9,
10.11により0N10FFされるスイッチと、制御
信号3により0N10FFされるスイッチとが相異する
。すなわち、設定人力9,10.11により0N10F
Fされるスイッチは、第1の実施例ではスイッチ12゜
13.14にしたが、本実施例ではトランジスタ24゜
25.26にした。また、制御信号3により0N10F
Fされるスイッチは、第1の実施例ではスイッチ4にし
たが、本実施例ではトランジスタ27にした。
In comparison with the first example, the unimplemented example has setting inputs 9,
10.11, the switch that is turned ON and 10FF is different from the switch that is turned ON and 10FF according to the control signal 3. In other words, 0N10F due to setting manual power 9, 10.11
The switch that is turned on is a 12° 13.14 switch in the first embodiment, but a 24° 25.26 transistor in this embodiment. Also, control signal 3 allows 0N10F
The switch that is turned on is the switch 4 in the first embodiment, but it is the transistor 27 in this embodiment.

本実施例では設定入力9,10.11は端子18に人力
される制御信号、端子19に人力されるクロック、端子
20に人力されるデータを論理回路しにより論理演算し
て青でいる。論理回路しはインバータ23、ナンドケー
ト21、アントケート22、D−フリップフロップ15
,16.17により構成したので、端子18をハイにし
て端子19にクロックを送り、端子2oからデータを送
ると、第3図のA部分のように、D−フリップフロップ
15,16.17の出力である設定入力9,10.11
か設定される。
In this embodiment, the setting inputs 9, 10, and 11 are colored blue by logically operating a control signal input to the terminal 18, a clock input to the terminal 19, and data input to the terminal 20 using a logic circuit. The logic circuit includes an inverter 23, a Nandgate 21, an Anthode 22, and a D-flip-flop 15.
, 16.17, when the terminal 18 is set high and a clock is sent to the terminal 19, and data is sent from the terminal 2o, the D-flip-flops 15, 16. Setting inputs 9, 10.11 which are outputs
is set.

設定時はデータ線であった端子2oは、インバータ23
、アンI・ゲート22によってコントロール人力となり
、制御信号3を制御し、第3図のB部分のように、出力
をコントロールする。この実施例ではICのビン数を減
らし、かっ、端子19は端子18によってイネーブルさ
れるので、他のICへの信号、例えば本ICと同一の他
の19PINとの時分割により兼用できる。
Terminal 2o, which was a data line at the time of setting, is connected to inverter 23.
, the control signal 3 is controlled by an I gate 22, and the output is controlled as shown in part B of FIG. In this embodiment, the number of IC bins is reduced, and since the terminal 19 is enabled by the terminal 18, it can be shared by time sharing with other 19 PINs, such as signals to other ICs, such as this IC.

第4図は本発明の第3の実施例を示す。FIG. 4 shows a third embodiment of the invention.

本実施例は第1の実施例との比較で言えば、フィードバ
ック回路が相違する。すなわち、第1の実施例では抵抗
lOの両端電圧をOPアンプ2のマイナス端子にフィー
ドバックするようにしたが、本実施例では負荷7の両端
電圧をOPアンプ2のマイナス端子にフィードバックす
るようにした。
This embodiment is different from the first embodiment in the feedback circuit. That is, in the first embodiment, the voltage across the resistor lO was fed back to the negative terminal of the OP amplifier 2, but in this embodiment, the voltage across the load 7 was fed back to the negative terminal of the OP amplifier 2. .

[発明の効果] 以上説明したように、本発明によれば、上記のように構
成したので、部品コストを軽減でき、かつ、調整工数を
減少させるとともに高精度の調整ができるという効果か
ある。
[Effects of the Invention] As explained above, according to the present invention, since it is configured as described above, it is possible to reduce the cost of parts, reduce the number of adjustment steps, and perform highly accurate adjustment.

1・・・基準電圧電源、 2・・・OPアンプ、 5・・・トランジスタ、 R1へR4,6・・・抵抗、 7・・・負荷、 +2.13.14・・・スイッチ。1...Reference voltage power supply, 2...OP amplifier, 5...transistor, R1 to R4, 6...resistance, 7...Load, +2.13.14...Switch.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1の実施例を示す回路図、第2図は本
発明第2の実施例を示す回路図、第3図は第2図に示す
各部の信号のタイミングを示す図、 第4図は本発明第3の実施例を示す回路図、第5図は従
来の定電流回路を示す図である。 益準錠圧電厚 OPア)フ。 ス・件・子 第1図
FIG. 1 is a circuit diagram showing a first embodiment of the present invention, FIG. 2 is a circuit diagram showing a second embodiment of the present invention, and FIG. 3 is a diagram showing the timing of signals of each part shown in FIG. FIG. 4 is a circuit diagram showing a third embodiment of the present invention, and FIG. 5 is a diagram showing a conventional constant current circuit. Yijun Tablet Piezoelectric Thickness OP A) F. Su, matter, child Figure 1

Claims (1)

【特許請求の範囲】 1)負荷を介して定抵抗に電流を流す電源と、前記定抵
抗の両端電圧と基準電圧を比較する比較手段と、 該比較手段から出力される誤差電圧に応じて前記電流を
制御する制御手段と、 前記基準電圧を外部信号に応じて抵抗を組み合わせて分
圧する分圧手段と を備えたことを特徴とする定電流回路。 2)負荷に電流を流す電源と、 前記負荷の両端電圧と基準電圧とを実効的に比較する比
較手段と、 該比較器から出力される誤差電圧に応じて前記電流を制
御する制御手段と、 前記基準電圧を外部信号に応じて抵抗を組み合わせて分
圧する分圧手段と を備えたことを特徴する定電流回路。
[Scope of Claims] 1) A power supply that causes current to flow through a constant resistor through a load, a comparison means for comparing a voltage across the constant resistor with a reference voltage, and A constant current circuit comprising: a control means for controlling a current; and a voltage dividing means for dividing the reference voltage by using a combination of resistors in accordance with an external signal. 2) a power source that causes current to flow through the load; a comparison device that effectively compares the voltage across the load with a reference voltage; and a control device that controls the current according to the error voltage output from the comparator; A constant current circuit comprising voltage dividing means for dividing the reference voltage by combining resistors in accordance with an external signal.
JP16910488A 1988-07-08 1988-07-08 Constant current circuit Pending JPH0219909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16910488A JPH0219909A (en) 1988-07-08 1988-07-08 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16910488A JPH0219909A (en) 1988-07-08 1988-07-08 Constant current circuit

Publications (1)

Publication Number Publication Date
JPH0219909A true JPH0219909A (en) 1990-01-23

Family

ID=15880381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16910488A Pending JPH0219909A (en) 1988-07-08 1988-07-08 Constant current circuit

Country Status (1)

Country Link
JP (1) JPH0219909A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051992A1 (en) * 2004-11-10 2006-05-18 Sony Corporation Constant current driving device
JP2009075882A (en) * 2007-09-20 2009-04-09 Sharp Corp Variable voltage regulator
JP2016149817A (en) * 2015-02-10 2016-08-18 Tdk株式会社 Constant voltage dc power supply device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216779B2 (en) * 1973-09-08 1977-05-11
JPS582020B2 (en) * 1978-04-24 1983-01-13 本田技研工業株式会社 Automatic spacer ring fitting device for the assembled oil ring on the piston of an internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5216779B2 (en) * 1973-09-08 1977-05-11
JPS582020B2 (en) * 1978-04-24 1983-01-13 本田技研工業株式会社 Automatic spacer ring fitting device for the assembled oil ring on the piston of an internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051992A1 (en) * 2004-11-10 2006-05-18 Sony Corporation Constant current driving device
US7808284B2 (en) 2004-11-10 2010-10-05 Sony Corporation Constant current drive device
JP2009075882A (en) * 2007-09-20 2009-04-09 Sharp Corp Variable voltage regulator
JP2016149817A (en) * 2015-02-10 2016-08-18 Tdk株式会社 Constant voltage dc power supply device

Similar Documents

Publication Publication Date Title
US4356450A (en) Offset compensating circuit for operational amplifier
JP3564228B2 (en) Power balance circuit
US20020125942A1 (en) Comparator circuit
JP2002199702A (en) Power converter with freely adjustable output voltage
JPS59108418A (en) Signal generating circuit
JPH0219909A (en) Constant current circuit
US4542332A (en) Precision current-source arrangement
JPH0250653B2 (en)
JP3979720B2 (en) Sample and hold circuit
US3211928A (en) Electronic switching device
JPH0543533Y2 (en)
US4280088A (en) Reference voltage source
JPH04145375A (en) Voltage drop detecting circuit for electric power supply
JPS63190586A (en) Electronic governor
JPS61156915A (en) Threshold value switching circuit
JPH0697740A (en) Reference voltage generating circuit
JP2002135966A (en) Overvoltage output protective circuit
JPH02188029A (en) Current dividing circuit
JPH05291918A (en) Hybrid integrated circuit
JPH02290193A (en) Motor driving circuit
JPH0484512A (en) Clamping circuit
JPH0312717A (en) Power supply circuit
JPH03220916A (en) Semiconductor integrated circuit
GB2139030A (en) Current mirror circuit
JPH02196509A (en) Hysteresis circuit