JPH02196004A - Formation of oxide superconducting film - Google Patents

Formation of oxide superconducting film

Info

Publication number
JPH02196004A
JPH02196004A JP1013119A JP1311989A JPH02196004A JP H02196004 A JPH02196004 A JP H02196004A JP 1013119 A JP1013119 A JP 1013119A JP 1311989 A JP1311989 A JP 1311989A JP H02196004 A JPH02196004 A JP H02196004A
Authority
JP
Japan
Prior art keywords
film
substrate
oxide superconducting
formula
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1013119A
Other languages
Japanese (ja)
Inventor
Naoki Awaji
直樹 淡路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1013119A priority Critical patent/JPH02196004A/en
Publication of JPH02196004A publication Critical patent/JPH02196004A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To form a good oxide superconducting film regardless of a substrate by forming a substrate thin film made of an oxide superconducting material on the substrate, recrystallizing the film by an energy beam, and then epitaxially growing an oxide superconducting film thereon. CONSTITUTION:The surface of a silicon substrate 1, for example, is oxidized to form an SiO2 film 2, and a film 3 of the formula is deposited on the SiO2 film 2 on the substrate 1 by sputtering. In this case, the substrate is heated, or the deposited film 3 is annealed and crystallized. The obtained film 3 is polycrystalline. The polycrystalline film 3 of the formula is irradiated by an energy beam, melted, and recrystallized. The density of the recrystallized film 4 is high, the film 4 is flat, but the superconductivity is not sufficient. The oxide of the formula is again formed on the recrystallized film 4 by sputtering the oxide of the formula to obtain the superconducting film 5 of the formula which is epitaxially grown. By this method, a good oxide superconducting film is formed regardless of a substrate.

Description

【発明の詳細な説明】 〔概 要〕 酸化物超伝導膜の作製方法に関し、 格子定数や熱膨張率の異なる基板上に良質の酸化物超伝
導薄膜を作製する方法を提供することを目的とし、 基板上に下地酸化物超伝導薄膜を形成し、エネルギービ
ームで再結晶化処理した上に、酸化物超伝導薄膜をエピ
タキシャル成長するように構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for producing an oxide superconducting film, the present invention aims to provide a method for producing a high quality oxide superconducting thin film on substrates having different lattice constants and coefficients of thermal expansion. , A base oxide superconducting thin film is formed on a substrate, recrystallized with an energy beam, and then an oxide superconducting thin film is epitaxially grown.

〔産業上の利用分野〕[Industrial application field]

本発明は酸化物超伝導膜の作製方法、とりわけシリコン
やアルミナなどの基板上に良質の酸化物超伝導膜を作製
する方法に関する。
The present invention relates to a method for producing an oxide superconducting film, and particularly to a method for producing a high-quality oxide superconducting film on a substrate such as silicon or alumina.

〔従来の技術〕[Conventional technology]

近年、高温超伝導膜の電子デバイスへの応用が活発に研
究されている。高温超伝導膜の作製方法としては蒸着法
、スパッタ法、CVD法、印刷焼付法などの各種の方法
について、出発原料の選択から成膜条件、成膜後のアニ
ール条件までいろいろ研究されているが、下地基材とし
てはMgO。
In recent years, the application of high-temperature superconducting films to electronic devices has been actively researched. Various methods for producing high-temperature superconducting films, such as vapor deposition, sputtering, CVD, and printing/baking methods, have been studied, from the selection of starting materials to film formation conditions and annealing conditions after film formation. , MgO as the underlying base material.

5rTiO,、サファイヤ、イツトリム安定化ジルコニ
ア(YS2)の各単結晶など限られたものだけが良質の
酸化物超伝導膜を与えるものとして用いられている。
Only a limited number of single crystals such as 5rTiO, sapphire, and yttrium stabilized zirconia (YS2) are used to provide good quality oxide superconducting films.

また、Bi系やTe系の酸化物超伝導材では上記のよう
な基板上でもエピタキシャル成長膜は作製されていない
Furthermore, no epitaxially grown film has been produced using Bi-based or Te-based oxide superconducting materials even on the above-mentioned substrates.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の方法では、シリコンやアルミナの基板を用いた場
合、基板と超伝導材の格子定数や熱膨張係数の違いによ
り、また構成元素の相互拡散のために、欠陥やマイクロ
クラックの多い多結晶質の膜しか得られていない。
In conventional methods, when silicon or alumina substrates are used, polycrystalline materials with many defects and microcracks are produced due to differences in lattice constant and thermal expansion coefficient between the substrate and superconducting material, and due to mutual diffusion of constituent elements. Only 100% of the film has been obtained.

また、上記の如く、Bi系やTe系の酸化物超伝導材で
は、MgO等の基板上でもエピタキシャル成長超伝導膜
は作製されていない。
Further, as described above, an epitaxially grown superconducting film has not been produced using a Bi-based or Te-based oxide superconducting material even on a substrate such as MgO.

そこで、本発明は、シリコンやアルミナなどのように格
子定数や熱膨張率の異なる基板上にも良質の酸化物超伝
導膜を作製することを目的とする。
Therefore, an object of the present invention is to produce a high-quality oxide superconducting film even on substrates having different lattice constants and coefficients of thermal expansion, such as silicon and alumina.

〔課題を解決しようとする手段〕[Means to try to solve the problem]

上記目的を達成するために、本発明は、基板上に酸化物
超伝導材又はこれに近い組成の下地薄膜を形成し、この
下地薄膜をエネルギービームで再結晶化した後、その上
に酸化物超伝導膜をエピタキシャル成長することを特徴
とする酸化物超伝導膜の作製方法を提供する。
In order to achieve the above object, the present invention forms a base thin film of an oxide superconducting material or a composition similar to this on a substrate, recrystallizes this base thin film with an energy beam, and then forms an oxide superconductor on top of the base thin film. A method for producing an oxide superconducting film is provided, which comprises epitaxially growing the superconducting film.

本発明の酸化物超伝導膜はシリコンやアルミナなどの半
導体装置の分野において広く用いられる基板材料上に作
製することを目的としているが、基板の材質、特に格子
定数や熱膨張率には限定されない。
Although the oxide superconducting film of the present invention is intended to be fabricated on a substrate material such as silicon or alumina that is widely used in the field of semiconductor devices, it is not limited to the material of the substrate, especially the lattice constant and coefficient of thermal expansion. .

本発明では、基板上に先ず酸化物超伝導材をエピタキシ
ャル成長するための下地薄膜を形成する。
In the present invention, first, a base thin film for epitaxially growing an oxide superconducting material is formed on a substrate.

この下地薄膜は、酸化物超伝導膜を形成し、再結晶化処
理を行なうことによって形成する。再結晶化、特にレー
ザービームや電子ビームのエネルギービームによる再結
晶化を行なうことによって、その上に形成する酸化物超
伝導膜と格子定数や熱膨張率の違いのないバッファー層
が形成される。
This base thin film is formed by forming an oxide superconducting film and performing a recrystallization process. By performing recrystallization, particularly recrystallization using an energy beam such as a laser beam or an electron beam, a buffer layer is formed that has no difference in lattice constant or thermal expansion coefficient from the oxide superconducting film formed thereon.

このバッファー層は平坦性が向上し、また密度も向上し
て拡散も少ない。従って、このバッファー層上では酸化
物超伝導膜がエピタキシャル成長することができる。こ
のように下地薄膜はその上に形成する酸化物超伝導膜と
同じ組成であることが望ましいが、必ずしも同じ組成で
なくてもよい。
This buffer layer has improved flatness, improved density, and less diffusion. Therefore, an oxide superconducting film can be epitaxially grown on this buffer layer. As described above, it is desirable that the base thin film has the same composition as the oxide superconducting film formed thereon, but it does not necessarily have to have the same composition.

例えば、BaCuO□とYの混合物からなる薄膜でも工
下地薄膜の厚みはバッファー層として機能する膜が得ら
れるに足りる厚みがあればよいが、−船釣には500〜
4000人程度の厚みが採用される。下地薄膜の形成方
法は限定されないが、蒸着法、スパッタ法が簡便である
For example, even with a thin film made of a mixture of BaCuO
Approximately 4,000 people will be hired. The method for forming the base thin film is not limited, but vapor deposition and sputtering are convenient.

下地薄膜の再結晶化は、上記の如く、レーザービーム、
電子ビームなどのエネルギービームによる溶融、急冷に
よる。
Recrystallization of the underlying thin film is performed using a laser beam,
By melting and rapid cooling using energy beams such as electron beams.

エネルギービームで再結晶化した下地薄膜上には目的と
する酸化物超伝導材をエピタキシャル成長することがで
きる。エピタキシャル成長を行なうには、スパッタ法、
CVD法などが優れているが、蒸着法なども利用できる
The desired oxide superconducting material can be epitaxially grown on the underlying thin film recrystallized by the energy beam. To perform epitaxial growth, sputtering method,
CVD methods are better, but vapor deposition methods can also be used.

本発明が適用できる酸化物超伝導材は限定されないが、
少なくとも下地のものについては、いずれでも有効であ
る。
The oxide superconducting material to which the present invention can be applied is not limited, but
Either method is effective, at least for the base material.

+) (La+−、IMw)2CuO,(M=Ba、 
Sr、 Ca)ii) LnBa2Cu30t−a  
  (Ln−希土類及びY;Ce、 Pr、 Tbを除
く。) 771)  (BiO)2Sr2Can−+0□−+z
     (n=1〜3)By)  (Ten)2Ba
2Car、−1Cu、、Ozn+2(n=1〜3)(T
eO)Ba2Can−tcur、0.r、+2(n=1
〜5)〔作 用〕 下地が薄膜として酸化物超伝導材又はこれに近い組成の
薄膜を用い、かつこれをエネルギービームを用いて再結
晶化処理することによって、再結晶化した酸化物超伝導
材からなる下地が得られ、この下地超伝導薄膜は格子定
数が目的とする超伝導膜と一致し、その上に酸化物超伝
導材をエピタキシャル成長するには十分な薄質を有する
+) (La+-, IMw)2CuO, (M=Ba,
Sr, Ca) ii) LnBa2Cu30t-a
(Ln- rare earth and Y; excluding Ce, Pr, and Tb.) 771) (BiO)2Sr2Can-+0□-+z
(n=1~3)By) (Ten)2Ba
2Car, -1Cu, , Ozn+2 (n=1~3) (T
eO) Ba2Can-tcur, 0. r, +2 (n=1
~5) [Function] By using an oxide superconducting material or a thin film with a composition similar to this as a thin film, and recrystallizing this using an energy beam, a recrystallized oxide superconductor is formed. This superconducting thin film has a lattice constant that matches that of the target superconducting film, and is thin enough to epitaxially grow an oxide superconducting material thereon.

〔実施例〕 図面を参照して実施例について説明する。〔Example〕 Examples will be described with reference to the drawings.

この実施例では、基板としてシリコン基板1の表面を酸
化して5in2膜2を形成したものを用いる。
In this embodiment, a silicon substrate 1 whose surface is oxidized to form a 5in2 film 2 is used as the substrate.

この基板1上にBi2Sr、Ca2Cu、0.膜3をス
パッタ法で2000人堆積する。この堆積時に基板加熱
(700℃)するか、又は堆積後アニール(850℃、
1時間〉して結晶化する。こうして得られるBizSr
zCa2CusO。
On this substrate 1, Bi2Sr, Ca2Cu, 0. 2000 layers of film 3 are deposited by sputtering. Either the substrate is heated (700°C) during this deposition, or the post-deposition annealing (850°C,
1 hour> to crystallize. BizSr obtained in this way
zCa2CusO.

膜3は多結晶質である。Membrane 3 is polycrystalline.

〔第1図(a)〕 次いで、この多結晶質B+2Sr2Ca2Cu3L膜3
にエキシマレーザ−ビーム(λ=193nm、パワー1
mJ/crl)を照射して溶融再結晶化する。再結晶化
して得られる膜4は密度が高く、平坦であるが、超伝導
特性(臨界温度、臨界電流)は未だ十分ではない。〔第
1図(b)〕 しかし、この再結晶化膜4上に再びB125rzcaz
cu、[)。
[FIG. 1(a)] Next, this polycrystalline B+2Sr2Ca2Cu3L film 3
Excimer laser beam (λ = 193 nm, power 1
mJ/crl) for melt recrystallization. Although the film 4 obtained by recrystallization has a high density and is flat, its superconducting properties (critical temperature, critical current) are still insufficient. [FIG. 1(b)] However, B125rzcaz was deposited on this recrystallized film 4 again.
cu, [).

を基板加熱750℃でスパッタすると、Bi25r2C
a、Cu、El、l超伝導膜5がエピタキシャル成長す
る。図中、6は拡散領域である。
When sputtered with substrate heating at 750℃, Bi25r2C
A, Cu, El, I superconducting film 5 is epitaxially grown. In the figure, 6 is a diffusion region.

こうして得られるBi25r2Ca、Cu30x膜5は
結晶粒径数10−に及び、臨界温度87に1臨界電流数
10万A / ciの良好な超伝導特性を示す。なお、
M g O単結晶基板上にB+zSraCa2Cu30
.Iをスパッタ成膜しアニールした超伝導膜は結晶粒径
1−程度で、臨界温度87に、臨界電流数1000A/
ctlである。
The Bi25r2Ca, Cu30x film 5 thus obtained has a crystal grain size of several 10 -, and exhibits good superconductivity with a critical temperature of 87 and a critical current of 100,000 A/ci. In addition,
B+zSraCa2Cu30 on M g O single crystal substrate
.. The superconducting film formed by sputtering I and annealing has a crystal grain size of about 1, a critical temperature of 87, and a critical current of 1000 A/.
ctl.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板の制約なしで良好な酸化物超伝導
を作製することが可能である。
According to the present invention, it is possible to produce good oxide superconductivity without restrictions on the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の超伝導膜の作製方法の主要工程を示す
模式断面図である。 ■・・・シリコン基板、  2・・・5102膜、3.
4・・・下地Bi。5r2Ca2Cu、ON薄膜、5 
・−・xビ成長Bi2Sr、[’a、Cu30+を膜。
FIG. 1 is a schematic cross-sectional view showing the main steps of a method for manufacturing a superconducting film according to an example. ■...Silicon substrate, 2...5102 film, 3.
4...Base Bi. 5r2Ca2Cu, ON thin film, 5
・-・x-grown Bi2Sr, ['a, Cu30+ film.

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に酸化物超伝導材又はこれに近い組成の下地
薄膜を形成し、該下地薄膜をエネルギービームで再結晶
化処理した後、その上に酸化物超伝導膜をエピタキシャ
ル成長することを特徴とする酸化物超伝導膜の作製方法
1. A thin base film of an oxide superconducting material or a composition similar to this is formed on a substrate, and after recrystallizing the base thin film with an energy beam, an oxide superconducting film is epitaxially grown thereon. A method for producing an oxide superconducting film.
JP1013119A 1989-01-24 1989-01-24 Formation of oxide superconducting film Pending JPH02196004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013119A JPH02196004A (en) 1989-01-24 1989-01-24 Formation of oxide superconducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013119A JPH02196004A (en) 1989-01-24 1989-01-24 Formation of oxide superconducting film

Publications (1)

Publication Number Publication Date
JPH02196004A true JPH02196004A (en) 1990-08-02

Family

ID=11824270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013119A Pending JPH02196004A (en) 1989-01-24 1989-01-24 Formation of oxide superconducting film

Country Status (1)

Country Link
JP (1) JPH02196004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350195A (en) * 1989-07-19 1991-03-04 Mitsubishi Materials Corp Single crystal wafer material for forming superconducting ceramic thin film for production of semiconductor element
JP2006096577A (en) * 2004-09-28 2006-04-13 Tokyo Institute Of Technology Metal oxide film, method for producing the same, and formed article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350195A (en) * 1989-07-19 1991-03-04 Mitsubishi Materials Corp Single crystal wafer material for forming superconducting ceramic thin film for production of semiconductor element
JP2006096577A (en) * 2004-09-28 2006-04-13 Tokyo Institute Of Technology Metal oxide film, method for producing the same, and formed article

Similar Documents

Publication Publication Date Title
JPH0354116A (en) Compound oxide superconducting thin film and production thereof
JPH02196004A (en) Formation of oxide superconducting film
KR100883228B1 (en) Magnesium oxide single crystal having controlled crystallinity and method for preparation thereof, and substrate using said single crystal
JPS63239742A (en) Manufacture for film superconductor
JPH0218974A (en) Supeconducting device and its manufacture
JPH04298020A (en) Manufacture of silicon thin film crystal
JPH01145397A (en) Production of oxide superconducting thin film
JPH01208327A (en) Production of thin film of superconductor
JPH01100096A (en) Production of oxide superconductor thin film
JP2936481B1 (en) Single crystal SiC and method for producing the same
JPH01119076A (en) Manufacture of oxide superconductive film
JPH01115899A (en) Production of oxide superconductor film
JPH02172893A (en) Production of thin oxide superconducting film and substrate used therefor
JP2754494B2 (en) Method for producing an oriented layer of Bi-Sr-Ca-Cu-oxide or T1-Ba-Ca-Cu-oxide high temperature superconductor
JPH0375204A (en) Production of oxide superconductive film pattern
JPH01100095A (en) Production of oxide superconductor circuits
JPH01276617A (en) Manufacture of semiconductor device
JPH01167912A (en) Sheathing material of superconducting material and manufacture thereof
JP2532252B2 (en) Method for manufacturing SOI substrate
JPS61144816A (en) Semiconductor device
JP3068917B2 (en) Superconducting device
JPH0354819A (en) Manufacture of soi substrate
Zubets et al. Nonepitaxial growth of oxide films
JPH02196099A (en) Formation of thin superconductor film
JPH02196006A (en) Formation of superconducting thin film