JPH0219500A - Method for regenerating iron plating solution - Google Patents
Method for regenerating iron plating solutionInfo
- Publication number
- JPH0219500A JPH0219500A JP16596188A JP16596188A JPH0219500A JP H0219500 A JPH0219500 A JP H0219500A JP 16596188 A JP16596188 A JP 16596188A JP 16596188 A JP16596188 A JP 16596188A JP H0219500 A JPH0219500 A JP H0219500A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- chamber
- cathode
- electrolytic cell
- chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 238000007747 plating Methods 0.000 title claims abstract description 32
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims description 12
- 230000001172 regenerating effect Effects 0.000 title claims description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229960002089 ferrous chloride Drugs 0.000 claims abstract description 15
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 claims abstract description 15
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000460 chlorine Substances 0.000 claims abstract description 11
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 11
- 238000005341 cation exchange Methods 0.000 claims abstract description 10
- 239000012528 membrane Substances 0.000 claims abstract description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 9
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims abstract description 7
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims abstract description 7
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 5
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000005611 electricity Effects 0.000 claims description 3
- 229920005597 polymer membrane Polymers 0.000 claims 1
- 238000004064 recycling Methods 0.000 claims 1
- 125000000542 sulfonic acid group Chemical group 0.000 claims 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 claims 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 7
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 abstract description 7
- 229910001447 ferric ion Inorganic materials 0.000 abstract description 7
- 229910001448 ferrous ion Inorganic materials 0.000 abstract description 7
- -1 hydrogen ions Chemical class 0.000 abstract description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract 1
- 238000009713 electroplating Methods 0.000 abstract 1
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、塩化第一鉄を含む鉄メッキ液の再生処理方法
、更に詳しくは隔膜電解を使用した鉄メッキ浴の再生処
理方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for regenerating an iron plating solution containing ferrous chloride, and more particularly to a method for regenerating an iron plating bath using diaphragm electrolysis.
【従来の技術1
従来、電解鉄メッキ液として、塩化第一鉄を含む多くの
組成が知られており、それぞれの特徴があり、目的に応
じて適宜使い分けられている。なかでも塩化第一鉄を主
成分とする鉄メッキ液は薬品が低順である点で実用性が
大きい。[Prior Art 1] Conventionally, many compositions containing ferrous chloride have been known as electrolytic iron plating solutions, each having its own characteristics and being used appropriately depending on the purpose. Among these, iron plating solutions whose main component is ferrous chloride are highly practical because they are low in chemicals.
しかし、塩化第一鉄を主成分とするメッキ液を用いたと
きには、第一鉄イオン(Fe”°)が容易に第二鉄イオ
ン(Fe3+ )に酸化され、この酸化により生じたF
e’“イオンが加水分解し、溶解度の小さい水酸化第二
鉄Fe (Oll) 3の沈殿となり、これがメッキ液
中に懸濁して液のpl+が不安定になるほか、懸濁粒子
がメッキ層中に共析又は混入するため、メッキ外観が著
しく損なわれる。However, when a plating solution containing ferrous chloride as the main component is used, ferrous ions (Fe"°) are easily oxidized to ferric ions (Fe3+), and the F produced by this oxidation
The e''' ions are hydrolyzed and precipitate ferric hydroxide Fe (Oll) 3, which has low solubility, and this is suspended in the plating solution, making the pl+ of the solution unstable, and the suspended particles are also deposited in the plating layer. The appearance of the plating is significantly impaired due to eutectoid deposition or mixing.
このような有害な第一鉄イオンFe”の酸化を防止する
ため、種々の方法が実施されるが、所定時間の後にはメ
ッキ液中の第二鉄イオン濃度が上界し、何らかの手段に
よりこれを除去しない限り、メッキ液としては使用不能
になる。Various methods are implemented to prevent the oxidation of such harmful ferrous ions (Fe), but after a certain period of time, the ferric ion concentration in the plating solution reaches an upper limit, and some method is used to prevent this. Unless removed, it becomes unusable as a plating solution.
従来、その再生に隔膜電解槽を用い陰極での還元作用に
より第二鉄イオンを第一鉄イオンに転換することも提案
されているが、この場合には、隔膜電解槽の陽極にて塩
素が発生し、その処理のためアルカリによる中和処理が
必要となるなどの副操作が必要となるために必ずしも実
用的な手段ではなかった。Conventionally, it has been proposed to use a diaphragm electrolytic cell for regeneration and convert ferric ions into ferrous ions through the reduction action at the cathode, but in this case, chlorine is converted to ferrous ions at the anode of the diaphragm electrolytic cell. This was not necessarily a practical method because it required secondary operations such as neutralization with an alkali to treat it.
[発明の解決しようとする課題1
本発明は、上記の如き問題点を有していた鉄メッキ液の
隔膜電解による再生処理を効率的にHつ安価に実施する
方法を提供するものであり、以下の特徴を有する。[Problem to be Solved by the Invention 1] The present invention provides a method for efficiently and inexpensively carrying out regeneration treatment of iron plating solution by diaphragm electrolysis, which has the above-mentioned problems. It has the following characteristics.
即ち、本発明は塩化第一鉄の一部が塩化第二鉄に変化し
た鉄メッキ液を再生するに当り、該メッキ液を陽イオン
交換膜で区画した隔膜電解槽の陰極室に供給し、陽極室
には塩酸を供給し、通電することにより、陰極室にて塩
化第二鉄を塩化第一鉄に転換するとともに、陽極で発生
した塩素は水素と反応させて塩化水素とし、これを隔膜
電解槽の陽極室に塩酸として供給することを特徴とする
。That is, in the present invention, when regenerating an iron plating solution in which a portion of ferrous chloride has been changed to ferric chloride, the plating solution is supplied to a cathode chamber of a diaphragm electrolytic cell partitioned by a cation exchange membrane, By supplying hydrochloric acid to the anode chamber and applying electricity, ferric chloride is converted to ferrous chloride in the cathode chamber, and chlorine generated at the anode is reacted with hydrogen to form hydrogen chloride, which is then passed through the diaphragm. It is characterized by being supplied as hydrochloric acid to the anode chamber of the electrolytic cell.
本発明で再生処理される鉄メッキ液は、塩化第一鉄を含
むものであればいずれでもよく、塩化第一鉄を主成分と
する塩化物浴、硫酸第一鉄を主成分とする硫酸塩浴など
が例示される。The iron plating solution to be recycled in the present invention may be any one containing ferrous chloride, such as a chloride bath containing ferrous chloride as a main component, or a sulfate bath containing ferrous sulfate as a main component. An example is a bath.
メッキ液中の塩化第一鉄イオンは、通常30〜80g/
忍が含まれる。The amount of ferrous chloride ion in the plating solution is usually 30 to 80 g/
Includes Shinobi.
鉄メッキ液が処理される隔膜電解槽は、陽イオン交換膜
によって陽極及び陰極が区画され、陽極室及び陰極室を
有する陽イオン交換膜は、陽イオンを選択的に透過する
特性を有するものであればいずれでもよく、炭化水素重
合体膜のものも使用されるが、陽極に塩素を発生ずるの
で、耐久性の点からフッ素化炭化水素重合体膜の使用が
好ましい。また陽イオン交換膜は、陽極室のpl+が0
.2〜0.5に低下するため強酸性の膜が好ましい。ま
た、陽極はチタン基材に貴金属をメッキした金属陽極が
用いられ、一方陰極は好ましくは、ステンレスSOS
316 が用いられるが、低濃度のF e 84を還
元するためには還元効率を上げるためにアルカリでエツ
チングしたステンレスなどの低過電圧陰極を用いるのが
好ましい。The diaphragm electrolytic cell in which the iron plating solution is processed has an anode and a cathode separated by a cation exchange membrane, and the cation exchange membrane, which has an anode chamber and a cathode chamber, has the property of selectively permeating cations. Any material may be used, and a hydrocarbon polymer film may also be used, but since chlorine is generated at the anode, it is preferable to use a fluorinated hydrocarbon polymer film from the viewpoint of durability. In addition, the cation exchange membrane has a pl+ of 0 in the anode chamber.
.. A strongly acidic film is preferable because the value decreases to 2 to 0.5. Further, the anode is a metal anode made by plating a titanium base material with a precious metal, while the cathode is preferably made of stainless steel SOS.
However, in order to reduce a low concentration of Fe 84, it is preferable to use a low overvoltage cathode such as alkali-etched stainless steel to increase the reduction efficiency.
隔膜電解槽の陰極室に対して、本発明では鉄メッキ液が
供給され、一方陽極室に対して好ましくは濃度5〜50
g/gの塩酸が供給され、好ましくは1〜IOA/do
s”にて通電される。各極液は好ましくは30〜40c
m/ secにて供給される。かくして、陰極室では、
陰極に水素ガスが発生し、同時にメッキ液中の第二鉄イ
オンF c 3 +は、第一鉄イオンFc24に還元さ
れる。一方、陽極室では、陽極に塩素が発生すると同時
に通電により、陽極液中の水素イオン11+が陽イオン
交換膜を通じて陰極室に移行し、実質上隔膜電解槽では
塩酸電解が行なわれる。To the cathode chamber of the diaphragm electrolytic cell, according to the invention, an iron plating solution is supplied, while to the anode chamber preferably a concentration of 5 to 50
g/g of hydrochloric acid is supplied, preferably 1 to IOA/do
s". Each polar liquid is preferably 30-40c
m/sec. Thus, in the cathode chamber,
Hydrogen gas is generated at the cathode, and at the same time, ferric ions F c 3 + in the plating solution are reduced to ferrous ions Fc24. On the other hand, in the anode chamber, at the same time as chlorine is generated at the anode, hydrogen ions 11+ in the anolyte are transferred to the cathode chamber through the cation exchange membrane by electricity, and hydrochloric acid electrolysis is essentially carried out in the diaphragm electrolytic cell.
かくして、隔膜電解槽の陰極室からは、鉄メッキ液中の
第二鉄イオンが第一鉄イオンに還元され、塩化第一鉄の
濃度が増大した鉄メッキ液が得られ、同時に陽極室から
は濃度が4.8〜49.8g/f2に低下した塩酸が排
出する。In this way, the ferric ions in the iron plating solution are reduced to ferrous ions and an iron plating solution with an increased concentration of ferrous chloride is obtained from the cathode chamber of the diaphragm electrolytic cell, and at the same time, from the anode chamber Hydrochloric acid whose concentration has decreased to 4.8 to 49.8 g/f2 is discharged.
本発明では、隔膜電解槽の陽極にて発生した塩素は、好
ましくは外部にとり出され、水素と反応させることによ
り、塩化水素が生成せしめられる。塩素と水素との反応
は、既存の方法に従って行なわれるが、好ましくは既存
の合成塩酸製造プロセスにて実施される。In the present invention, chlorine generated at the anode of the diaphragm electrolytic cell is preferably taken out to the outside and reacted with hydrogen to generate hydrogen chloride. The reaction of chlorine and hydrogen is carried out according to existing methods, preferably in existing synthetic hydrochloric acid manufacturing processes.
生成された塩化水素は、隔膜電解槽の陽極液に、そのま
ま又は必要に応じて水に吸収させて塩酸として添加し、
陽極液に還流される。かくして、隔膜電解槽の通電によ
って消耗した塩酸は、上記によって補給されるので、外
部から新たに補給する必要がないとともに、隔膜電解槽
にて発生する塩素は外部に放出することがなく、クロー
ズ化されるので、効率的である。The generated hydrogen chloride is added as hydrochloric acid to the anolyte of the diaphragm electrolytic cell as it is or if necessary absorbed in water.
It is refluxed into the anolyte. In this way, the hydrochloric acid consumed by the energization of the diaphragm electrolytic cell is replenished as described above, so there is no need to replenish it from the outside, and the chlorine generated in the diaphragm electrolytic cell is not released to the outside, making it a closed system. It is efficient.
以下に本発明について実施例を示す。Examples of the present invention are shown below.
[実施例]
陽イオン交換膜(旭硝子社製CMV)によって陰極室と
陽極室に仕切られ、陰極としてステンレスSO3316
を高濃度アルカリで処理した低過電圧陰極を又陽極とし
てチタンと白金の合金電極を用いた電解槽を用いた。[Example] A cathode chamber and an anode chamber are separated by a cation exchange membrane (CMV manufactured by Asahi Glass Co., Ltd.), and stainless steel SO3316 is used as the cathode.
An electrolytic cell was used with a low overvoltage cathode treated with a high concentration alkali and an alloy electrode of titanium and platinum as an anode.
そして塩化物系のメッキ浴からFe” 5 g/ A及
びFe” 60 g/ Aを有する液をff1l記槽の
陰極室に54/時で導入循環せしめ、陽極室には5%H
CIを5β/時で導入循環し、電流密度10A/dm”
で4時間連続電解した。Then, a solution containing Fe"5 g/A and Fe"60 g/A from the chloride plating bath was introduced and circulated at a rate of 54/hour into the cathode chamber of the ff1l tank, and 5% H was added to the anode chamber.
CI was introduced and circulated at a rate of 5β/hour, and the current density was 10A/dm.
Electrolysis was carried out continuously for 4 hours.
この結果Fe″+濃度は4g/lに低下し、陽極室から
はC1,ガスが151捕集できた。この捕集したC1.
ガスはH,ガスを直接反応させ、水に吸収されたllC
lとして1.34 molを回収することができた。As a result, the Fe″+ concentration decreased to 4 g/l, and 151 C1 gases were collected from the anode chamber.The collected C1.
The gas is H, and the gas is directly reacted with 1C absorbed by water.
1.34 mol was able to be recovered.
この回収された11C1は陽極で消費したIIcIにほ
ぼ匹敵することが分った。It was found that this recovered 11C1 was approximately comparable to IIcI consumed at the anode.
Claims (4)
キ液を再生するに当り、該メッキ液を陽イオン交換膜で
区画した隔膜電解槽の陰極室に供給し、陽極槽には塩酸
を供給し、通電することにより、陰極室にて塩化第二鉄
を塩化第一鉄に転換して再生するとともに、陽極室で発
生した塩素は、水素と反応させて塩化水素とし、これを
隔膜電解槽の陽極室に塩酸として供給することを特徴と
する鉄メッキ液の再生処理方法。(1) When regenerating the iron plating solution in which a portion of ferrous chloride has changed to ferric chloride, the plating solution is supplied to the cathode chamber of a diaphragm electrolytic cell divided by a cation exchange membrane, and the anode cell is By supplying hydrochloric acid and applying electricity, ferric chloride is converted to ferrous chloride and regenerated in the cathode chamber, and chlorine generated in the anode chamber is reacted with hydrogen to form hydrogen chloride. A method for recycling iron plating solution, which comprises supplying this as hydrochloric acid to the anode chamber of a diaphragm electrolytic cell.
第二鉄の濃度が、0.5〜10g/lであり、隔膜電解
槽出口での濃度が、0.2〜9.7g/lである請求項
(1)の方法。(2) The concentration of ferric chloride in the plating solution supplied to the cathode chamber of the diaphragm electrolytic cell is 0.5 to 10 g/l, and the concentration at the outlet of the diaphragm electrolytic cell is 0.2 to 9.7 g. The method according to claim 1, wherein /l.
0g/lである請求項(1)又は(2)の方法。(3) Hydrochloric acid concentration in the anode chamber of the diaphragm electrolytic cell is 5 to 20
The method according to claim (1) or (2), wherein the concentration is 0 g/l.
を有するパーフルオロカーボン重合体膜である請求項(
1)、(2)又は(3)の方法。(4) Claim in which the cation exchange membrane in the diaphragm electrolytic cell is a perfluorocarbon polymer membrane having sulfonic acid groups (
Method 1), (2) or (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16596188A JPH0219500A (en) | 1988-07-05 | 1988-07-05 | Method for regenerating iron plating solution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16596188A JPH0219500A (en) | 1988-07-05 | 1988-07-05 | Method for regenerating iron plating solution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0219500A true JPH0219500A (en) | 1990-01-23 |
Family
ID=15822305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16596188A Pending JPH0219500A (en) | 1988-07-05 | 1988-07-05 | Method for regenerating iron plating solution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0219500A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7156972B2 (en) * | 2003-04-30 | 2007-01-02 | Hitachi Global Storage Technologies Netherlands B.V. | Method for controlling the ferric ion content of a plating bath containing iron |
MD4159C1 (en) * | 2010-10-25 | 2012-10-31 | Государственный Университет Молд0 | Process for electrochemical regeneration of the oxidized iron plating electrolyte |
MD4229C1 (en) * | 2012-02-16 | 2013-12-31 | Государственный Университет Молд0 | Device and method for analytical control of the content of iron(III) ions in the iron plating electrolyte and plant for electrochemical regeneration of iron plating electrolyte with automatic control |
-
1988
- 1988-07-05 JP JP16596188A patent/JPH0219500A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7156972B2 (en) * | 2003-04-30 | 2007-01-02 | Hitachi Global Storage Technologies Netherlands B.V. | Method for controlling the ferric ion content of a plating bath containing iron |
US8221598B2 (en) | 2003-04-30 | 2012-07-17 | Hitachi Global Storage Technologies Netherlands B.V. | System for plating |
MD4159C1 (en) * | 2010-10-25 | 2012-10-31 | Государственный Университет Молд0 | Process for electrochemical regeneration of the oxidized iron plating electrolyte |
MD4229C1 (en) * | 2012-02-16 | 2013-12-31 | Государственный Университет Молд0 | Device and method for analytical control of the content of iron(III) ions in the iron plating electrolyte and plant for electrochemical regeneration of iron plating electrolyte with automatic control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5478448A (en) | Process and apparatus for regenerating an aqueous solution containing metal ions and sulfuric acid | |
CN101235511A (en) | Method for electrochemical dechlorination of anolyte brine by NaCI electrolysis | |
JPH09225470A (en) | Treatment of cyan-containing water | |
EP0474936A1 (en) | Electrochemical process for purifying chromium-containing wastes | |
US4064022A (en) | Method of recovering metals from sludges | |
JPH0219500A (en) | Method for regenerating iron plating solution | |
JPH06256999A (en) | Method for recovering and regenerating tin plating liquid | |
JPH0780253A (en) | Electrodialytic purifying method | |
EP0267704A1 (en) | Electrochemical removal of chromium from chlorate solutions | |
JPS62297476A (en) | Method and device for regenerating copper chloride etching waste solution | |
WO1995023880A1 (en) | Treatement of electrolyte solutions | |
JP2001192875A (en) | Method and apparatus for preparing hydrogen peroxide | |
JPH08966A (en) | Purification by electrodialysis | |
JPS61261488A (en) | Electrolyzing method for alkaline metallic salt of amino acid | |
US4699701A (en) | Electrochemical removal of chromium from chlorate solutions | |
JPS60128271A (en) | Method for producing metallic copper and chlorine from cupric chloride solution | |
JPS622036B2 (en) | ||
JPS61246395A (en) | Treatment of waste copper liquid containing hydrochloric acid | |
JPS5855577A (en) | Preparation of amino acid | |
RU2709305C1 (en) | Regeneration of hydrochloric copper-chloride solution of copper etching by membrane electrolytic cells | |
JPS61104092A (en) | Method for regenerating etching solution | |
WO1993006261A1 (en) | Electrowinning metals from solutions | |
JP3651872B2 (en) | Method for removing sulfate and chlorate radicals in brine | |
RU2180693C2 (en) | Electrolytic process of regeneration of pickling solutions based on ferric chloride | |
JP3304221B2 (en) | Method for removing chlorate from aqueous alkali chloride solution |