JP3304221B2 - Method for removing chlorate from aqueous alkali chloride solution - Google Patents

Method for removing chlorate from aqueous alkali chloride solution

Info

Publication number
JP3304221B2
JP3304221B2 JP30653994A JP30653994A JP3304221B2 JP 3304221 B2 JP3304221 B2 JP 3304221B2 JP 30653994 A JP30653994 A JP 30653994A JP 30653994 A JP30653994 A JP 30653994A JP 3304221 B2 JP3304221 B2 JP 3304221B2
Authority
JP
Japan
Prior art keywords
chlorate
salt water
cathode
exchange membrane
alkali chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30653994A
Other languages
Japanese (ja)
Other versions
JPH08165589A (en
Inventor
修 有元
剛陸 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Uhde Chlorine Engineers Japan Ltd
Original Assignee
Chlorine Engineers Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chlorine Engineers Corp Ltd filed Critical Chlorine Engineers Corp Ltd
Priority to JP30653994A priority Critical patent/JP3304221B2/en
Publication of JPH08165589A publication Critical patent/JPH08165589A/en
Application granted granted Critical
Publication of JP3304221B2 publication Critical patent/JP3304221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はイオン交換膜法塩化アル
カリ水溶液の電気分解に供する塩化アルカリ水溶液(以
下、塩水とも称する。)の精製に関するもので、特に循
環塩水中に蓄積してくる塩素酸塩を効果的かつ経済的な
方法で除去する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the purification of an aqueous alkali chloride solution (hereinafter also referred to as "brine water") for electrolysis of an aqueous alkali chloride solution by an ion exchange membrane method, and particularly to chloric acid accumulated in circulating saline water. It relates to a method for removing salts in an effective and economical manner.

【0002】[0002]

【従来の技術】イオン交換膜で陽極室と陰極室に区画し
た電解槽において塩水を電気分解する際に、陰極室中の
水酸化物イオンがイオン交換膜を透過して、陽極液中に
おいて塩素と反応して塩素酸塩が生成することが知られ
ている。塩素酸塩は、電解の進行に伴って塩水中に蓄積
し、陽イオン交換膜を透過して陰極室中に拡散して水酸
化アルカリの品質を損なうため、循環する塩水中の塩素
酸塩を除去し、一定の濃度以下に保持することが行われ
ており、各種の除去方法が提案されている。
2. Description of the Related Art When electrolyzing salt water in an electrolytic cell partitioned into an anode chamber and a cathode chamber by an ion exchange membrane, hydroxide ions in the cathode chamber permeate the ion exchange membrane and become chlorinated in the anolyte. It is known that chlorate reacts with chlorate. Chlorate accumulates in salt water with the progress of electrolysis, permeates through the cation exchange membrane, diffuses into the cathode compartment, and impairs the quality of alkali hydroxide. Removal has been performed to maintain the concentration below a certain level, and various removal methods have been proposed.

【0003】例えば、塩水に塩酸を過剰に添加して、以
下に示す反応により、塩水中の塩素酸塩を分解して除去
する方法が知られている。 ClO3 - +6HCl→3Cl2 +Cl- +3H2 O しかしこの反応は理論必要量の数倍の塩酸を添加しなけ
れば反応が速やかに進行しないため、反応終了後に過剰
の塩酸の中和用に大量の水酸化アルカリが必要になると
いう欠点があった。
For example, there is known a method in which hydrochloric acid is excessively added to salt water, and chlorate in the salt water is decomposed and removed by the following reaction. However, this reaction does not proceed rapidly unless hydrochloric acid several times the theoretically required amount is added. Therefore, a large amount of the hydrochloric acid is used for neutralizing excess hydrochloric acid after the reaction is completed because ClO 3 +6 HCl → 3Cl 2 + Cl + 3H 2 O. There was a disadvantage that alkali hydroxide was required.

【0004】この改良方法としてイオン交換膜法塩化ア
ルカリ水溶液電解において、塩素酸塩を含む陽極液の一
部を抜き出して、過剰の塩酸を添加し、塩水中の塩素酸
塩を分解した後、塩水の脱塩素工程で塩素を回収するこ
とで中和用のアルカリを節減して塩素酸塩の蓄積を防止
する方法(特開昭53−18498号および特開昭54
−28294号)が提案されている。しかしながらこの
方法においても塩酸添加量はなお過剰であること、また
中和用アルカリ量を減少させるためには処理塩水量を低
く抑える必要があり、結果として塩水中の塩素酸塩濃度
を10g/l以下に維持することが困難であるなどの欠
点を有する。
As an improved method, in the electrolysis of an alkali chloride aqueous solution using an ion exchange membrane method, a part of the anolyte containing chlorate is extracted, excess hydrochloric acid is added, and the chlorate in the salt water is decomposed. A method for preventing the accumulation of chlorate by recovering chlorine in the dechlorination step of (1) to save the alkali for neutralization (JP-A-53-18498 and JP-A-54-1984)
-28294) has been proposed. However, even in this method, the amount of hydrochloric acid added is still excessive, and in order to reduce the amount of alkali for neutralization, the amount of treated salt water must be kept low. As a result, the chlorate concentration in the salt water is reduced to 10 g / l. It has drawbacks such as being difficult to maintain below.

【0005】またイオン交換膜法塩化アルカリ水溶液電
解槽に供給される循環塩水を、循環経路中に設けられた
塩素酸塩分解触媒層に、水素または水素を含有するガス
の存在下で導入する方法(特開昭56−163286
号)、あるいは水素ガスを必要としない塩素酸塩分解触
媒を用いる方法(特開平3−65507号)が提案され
ているが、これらの方法では、高分解率を達成するため
にはニッケル、コバルト等のイオン交換膜法塩化アルカ
リ電解槽に装着されているイオン交換膜に性能低下を引
き起こす金属を触媒として使用する必要があり、塩水中
への溶出の危険性をはらんでいる。さらに、循環塩水の
一部を抜き出し、冷却することで塩素酸塩を晶出分離す
る方法(特開昭51−144399号)は、工程が複雑
となるとともに、冷却および晶出分離は費用が膨大とな
り、工業的には採用が困難である。また、塩水中に亜硫
酸ナトリウム、硫化水素、ホルムアルデヒド等の還元剤
を添加する方法(特開昭53−1233396号、特開
昭60−77982号および特開平3−153890
号)等があるが、これらの方法では、添加する薬品の費
用を要するとともに、また除去工程では、イオン交換膜
の性能低下を引き起こす硫酸塩が生成するので、さらに
これの除去を行わなければならず、またホルムアルデヒ
ドとの反応によって生成する塩素ガス中には二酸化炭素
が含まれるので、これをそのまま電解槽で発生した塩素
ガスと同様に処理することはできず、二酸化炭素の除去
工程が必要となること、あるいは薬品の保管、取り扱い
に危険を伴う等の問題がある。
Further, a method of introducing circulating salt water supplied to an electrolytic cell of an aqueous alkali chloride solution by an ion exchange membrane method into a chlorate decomposition catalyst layer provided in a circulation path in the presence of hydrogen or a gas containing hydrogen. (JP-A-56-163286)
) Or a method using a chlorate decomposition catalyst that does not require hydrogen gas (Japanese Patent Application Laid-Open No. 3-65507). However, in these methods, nickel or cobalt is required to achieve a high decomposition rate. It is necessary to use, as a catalyst, a metal that causes a decrease in the performance of an ion exchange membrane installed in an alkali chloride electrolytic cell such as an ion exchange membrane method, and there is a risk of elution into salt water. Furthermore, the method of extracting and cooling chlorate by extracting a part of the circulating salt water and cooling it (Japanese Patent Laid-Open No. 51-144399) complicates the process, and the cooling and crystallization separation are costly. And it is difficult to employ it industrially. Also, a method of adding a reducing agent such as sodium sulfite, hydrogen sulfide, formaldehyde or the like to salt water (JP-A-53-1233396, JP-A-60-77982, and JP-A-3-153890).
However, in these methods, the cost of chemicals to be added is required, and in the removal step, sulfate that causes a decrease in the performance of the ion exchange membrane is generated. In addition, since the chlorine gas generated by the reaction with formaldehyde contains carbon dioxide, it cannot be treated as it is in the same manner as the chlorine gas generated in the electrolytic cell. And there is a problem that storage and handling of chemicals are dangerous.

【0006】[0006]

【発明が解決しようとする課題】本発明は、塩酸の添加
量を極めて低く抑えることが可能で、処理後の塩水に不
純物等を蓄積させることなく、高効率で塩水中の塩素酸
塩を除去する方法を提供することを課題とするものであ
る。
SUMMARY OF THE INVENTION According to the present invention, the amount of hydrochloric acid to be added can be extremely low, and the chlorate in the salt water can be efficiently removed without accumulating impurities and the like in the treated salt water. It is an object of the present invention to provide a method for performing the above.

【0007】[0007]

【課題を解決するための手段】本発明者らは上記課題を
解決するため、塩水中の塩素酸塩の分解方法を鋭意検討
した結果、塩素酸塩を含有する塩水に塩酸を添加して酸
性とした後、陽イオン交換膜で区画したイオン交換膜電
解槽の陰極室に導入し、陽極室には陽極においてプロト
ン生成反応が起こる電解液を導入して電気分解を行うこ
とにより、塩水中の塩素酸塩を除去できることを見出
し、本発明を完成するに至った。また、陽極液として硫
酸を使用して電気分解をする塩水中の塩素酸塩の除去方
法である。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on a method for decomposing chlorate in salt water. As a result, hydrochloric acid was added to salt water containing chlorate to obtain an acidic solution. After that, it is introduced into the cathode compartment of the ion exchange membrane electrolytic cell partitioned by the cation exchange membrane, and into the anode compartment, an electrolytic solution in which a proton generation reaction occurs at the anode is introduced, and electrolysis is performed. The inventors have found that chlorate can be removed, and have completed the present invention. Further, it is a method for removing chlorate in salt water which is electrolyzed using sulfuric acid as an anolyte.

【0008】すなわち、本発明の方法は、イオン交換膜
電解槽の陰極室において塩素酸塩を分解除去するととと
もに、陽極室においてプロトン生成反応を起こし、陽極
室からプロトンを陰極室へ導入し、陰極液中のpHの上
昇を防止して効率的に塩素酸塩を分解することが可能な
塩素酸塩の除去方法である。本発明の方法に使用するイ
オン交換膜電解槽に使用する陽イオン交換膜はフッ素樹
脂系および炭化水素系のものを用いることができるが、
とくに、耐食性に優れたパーフルオロスルホン酸系の陽
イオン交換膜が望ましい。炭化水素系の陽イオン交換膜
は、陰極液室の温度が高温になり、陽極室が極めて強い
酸化性雰囲気となることから長期間の使用には好ましく
ない。また、電解槽には、フィルタープレス型、箱型等
の任意の構造のものを用いることができる。
That is, according to the method of the present invention, chlorate is decomposed and removed in the cathode chamber of the ion exchange membrane electrolytic cell, and a proton generation reaction is caused in the anode chamber. This is a method for removing chlorate, which is capable of efficiently decomposing chlorate by preventing an increase in pH in the liquid. The cation exchange membrane used in the ion exchange membrane electrolytic cell used in the method of the present invention can be a fluororesin type and a hydrocarbon type,
In particular, a perfluorosulfonic acid-based cation exchange membrane having excellent corrosion resistance is desirable. Hydrocarbon-based cation exchange membranes are not preferable for long-term use because the temperature of the catholyte compartment becomes high and the anode compartment becomes an extremely oxidizing atmosphere. The electrolytic cell may have any structure such as a filter press type and a box type.

【0009】陰極室に導入する塩水は、塩化ナトリウ
ム、塩化カリウムなどの塩化アルカリの濃度が通常の塩
化アルカリ電解に供される150〜300g/l程度の
濃度のものが適している。陰極室に導入する前に、塩水
中に塩酸を添加して液性を酸性にするが、これは陰極室
の陰極表面上での塩素酸塩の還元を効率よく行うために
必要である。塩水が酸性域にあれば塩素酸塩の陰極還元
は進行するが、高効率で反応を進行させるためには塩水
のpHが1〜2程度であることが望ましい。
The salt water to be introduced into the cathode chamber is suitably one having a concentration of an alkali chloride such as sodium chloride or potassium chloride of about 150 to 300 g / l, which is used for ordinary alkali chloride electrolysis. Prior to introduction into the cathode compartment, hydrochloric acid is added to the salt water to make the solution acidic, which is necessary for efficient reduction of chlorate on the cathode surface of the cathode compartment. Cathodic reduction of chlorate proceeds when the salt water is in the acidic region, but the pH of the salt water is desirably about 1 to 2 for the reaction to proceed with high efficiency.

【0010】イオン交換膜法による塩化アルカリ電気分
解における循環塩水中の塩素酸塩の濃度を10g/l程
度とする場合には、塩水のpHは2程度とすれば十分で
あり、脱塩素工程直後の塩水を抜き出して本発明の電解
槽へ供給する場合には、あらたな塩酸の添加はほとんど
必要ない。また、循環塩水中の塩素酸塩の濃度を5g/
l程度とする場合には、塩水のpHは1程度に設定する
のが望ましい。また、陰極室における塩素酸塩の分解効
率を高く維持するためには、塩水の温度は少なくとも6
0℃以上、望ましくは75℃以上に設定するのがよい。
When the concentration of the chlorate in the circulating salt water in the alkali chloride electrolysis by the ion exchange membrane method is about 10 g / l, it is sufficient if the pH of the salt water is about 2, and immediately after the dechlorination step. When the salt water is extracted and supplied to the electrolytic cell of the present invention, almost no new hydrochloric acid needs to be added. Also, the concentration of chlorate in the circulating saline was 5 g /
When it is set to about 1, it is desirable to set the pH of the salt water to about 1. In order to keep the chlorate decomposition efficiency in the cathode chamber high, the temperature of the salt water should be at least 6 ° C.
The temperature is set to 0 ° C. or higher, preferably 75 ° C. or higher.

【0011】陰極では、塩素酸塩の還元および水素発生
反応の両者が起こるが、塩水中の塩素酸塩濃度が高くか
つ陰分極の度合いが小さい場合には、陰極上で水素の発
生が観察されない。これは塩素酸塩の陰極還元電位が水
素発生電位よりも貴であるためである。陰分極の度合い
が大きくなり水素の発生が確認されるようになると電流
効率は著しく低下する。陰極には、酸化パラジウム、白
金、酸化ルテニウム等の貴金属もしくはその酸化物を電
極触媒物質とした電極、チタン、ジルコニウム等を用い
ることができるが、とくに酸化パラジウム、白金、酸化
ルテニウム等を電極触媒物質とした電極が好ましく、酸
化パラジウムが好ましい。
At the cathode, both the reduction of chlorate and the hydrogen generation reaction occur. However, when the chlorate concentration in the salt water is high and the degree of negative polarization is small, no generation of hydrogen is observed on the cathode. . This is because the cathode reduction potential of chlorate is more noble than the hydrogen generation potential. When the degree of negative polarization increases and generation of hydrogen is confirmed, the current efficiency is significantly reduced. For the cathode, an electrode using a noble metal such as palladium oxide, platinum, ruthenium oxide or an oxide thereof as an electrode catalyst material, titanium, zirconium, or the like can be used. In particular, palladium oxide, platinum, ruthenium oxide, or the like is used as an electrode catalyst material. The preferred electrode is palladium oxide.

【0012】本発明のイオン交換膜電解槽の陽極室に
は、陽極室液としては陽極反応によってプロトンを生成
する硫酸、硝酸等の無機酸が好ましい。硫酸を陽極液と
して循環した場合には、陽極室では、酸素の発生と同時
にプロトンが発生し、発生したプロトンは陰極室内へ移
行する。一方、陰極室では導入した塩水が反応の結果、
水酸化物イオンが発生し、陰極室内のpHが上昇する
が、移行したプロトンは陰極室内において生成する水酸
化物イオンと反応し、塩水のpHが上昇するのを抑制す
る役目を果たしている。
In the anode chamber of the ion exchange membrane electrolytic cell of the present invention, the anode chamber liquid is preferably an inorganic acid such as sulfuric acid or nitric acid which generates protons by an anodic reaction. When sulfuric acid is circulated as the anolyte, protons are generated in the anode chamber at the same time as oxygen is generated, and the generated protons move into the cathode chamber. On the other hand, in the cathode chamber, the salt water introduced
Although hydroxide ions are generated and the pH in the cathode chamber increases, the transferred protons react with hydroxide ions generated in the cathode chamber and play a role in suppressing the increase in pH of the salt water.

【0013】陽極室では、酸素と共にプロトンが発生
し、陽イオン交換膜をプロトンと共に水和水が陰極室へ
移行するので、陽極室液の濃度を一定に保つために陽極
反応によって消費された水および水和水を陽極液に補充
するのみでよい。陽極液の濃度が高いほど溶液の電気抵
抗が小さくなり、電解槽電圧を低減することが可能であ
るが、陽極材料等の耐食性およびプロトン発生効率を考
慮すると0.5〜2規定程度が望ましい。陽極には、白
金、酸化イリジウム等の貴金属、貴金属酸化物を電極触
媒物質とした電極あるいは二酸化鉛電極等を用いること
ができ、とくに、チタン、タンタル等の薄膜形成性金属
の基体に酸化イリジウムを含有した被覆を形成した電極
を用いることが好ましい。
In the anode compartment, protons are generated together with oxygen, and hydration water is transferred to the cathode compartment together with the protons on the cation exchange membrane. Therefore, water consumed by the anodic reaction to maintain the concentration of the anode compartment liquid constant. It is only necessary to replenish the anolyte with hydration water. The higher the concentration of the anolyte, the lower the electric resistance of the solution and the lower the electrolytic cell voltage. However, in consideration of the corrosion resistance of the anode material and the like and the efficiency of proton generation, about 0.5 to 2 normal is desirable. As the anode, an electrode using a noble metal such as platinum or iridium oxide, a noble metal oxide as an electrode catalyst material, a lead dioxide electrode, or the like can be used.In particular, iridium oxide is used for a base of a thin film-forming metal such as titanium or tantalum. It is preferable to use an electrode on which a coating is contained.

【0014】[0014]

【作用】本発明の塩素酸塩の除去方法は、陽イオン交換
膜で陽極室と陰極室を区画した電解槽において、陽極室
で発生したプロトンを陰極室に移行させ、陰極室のpH
を常に酸性に維持することで、陰極室において塩素酸塩
を効率良く除去する方法であり、塩水中に添加する塩酸
の量を大幅に削減することができる。
According to the method for removing chlorate of the present invention, protons generated in the anode compartment are transferred to the cathode compartment in the electrolytic cell in which the anode compartment and the cathode compartment are partitioned by a cation exchange membrane, and the pH of the cathode compartment is adjusted.
Is a method for efficiently removing chlorate in the cathode chamber by constantly maintaining acidity, and the amount of hydrochloric acid added to the salt water can be greatly reduced.

【0015】[0015]

【実施例】以下に本発明の実施例および比較例を挙げて
本発明を更に詳細に説明する。 実施例1 陽イオン交換膜(ナフィオン550 デュポン社製)で
区画した電解槽の陽極室には、チタン基体上に酸化イリ
ジウム被覆を形成した陽極を設け、陰極室には、チタン
基体上に酸化パラジウムと白金を4:1の割合の被覆を
形成した陰極を設け、陽極室に 1規定の硫酸(和光純
薬製 試薬特級)300mlを循環し、陰極室には、濃
度5.071g/lの塩素酸ナトリウム(和光純薬製
試薬特級)を含有した濃度200g/lの食塩水を塩酸
によってpH1に調整し、300mlを循環した。電解
液温度は、陽極室循環液、陰極室循環液共に75〜85
℃となるように温度調整をしながら、陽極と陽イオン交
換膜を密着し、陰極と陽イオン交換膜の距離を13mm
に設定して、 電流密度6.29A/dm2 で電気分解
した。電気分解を3時間継続し、1、2および3時間経
過後の塩水中の塩素酸ナトリウム濃度をイオンクロマト
アナライザ(横河アナリティカルシステムズ製IC−7
000E カラムICS−A13)で測定した。その結
果を表1に示す。
The present invention will be described in more detail with reference to the following examples and comparative examples. Example 1 An anode having an iridium oxide coating formed on a titanium substrate was provided in an anode chamber of an electrolytic cell partitioned by a cation exchange membrane (Nafion 550 manufactured by DuPont), and a palladium oxide was formed on a titanium substrate in a cathode chamber. And a platinum coated with platinum at a ratio of 4: 1 were provided, 300 ml of 1N sulfuric acid (reagent grade, manufactured by Wako Pure Chemical Industries, Ltd.) was circulated in the anode chamber, and 5.071 g / l chlorine was passed through the cathode chamber. Sodium acid (manufactured by Wako Pure Chemical Industries, Ltd.)
A saline solution containing a reagent (special grade) having a concentration of 200 g / l was adjusted to pH 1 with hydrochloric acid, and 300 ml was circulated. The electrolyte temperature is 75 to 85 for both the anode chamber circulating liquid and the cathode chamber circulating liquid.
While the temperature was adjusted to be ℃, the anode and the cation exchange membrane were in close contact with each other, and the distance between the cathode and the cation exchange membrane was 13 mm.
And electrolysis was performed at a current density of 6.29 A / dm 2 . The electrolysis was continued for 3 hours, and the sodium chlorate concentration in the salt water after 1, 2 and 3 hours had passed was measured using an ion chromatography analyzer (IC-7 manufactured by Yokogawa Analytical Systems).
000E column ICS-A13). Table 1 shows the results.

【0016】[0016]

【表1】 [Table 1]

【0017】ただし、電流効率は測定時点の前の1時間
の平均電流効率を示し、平均電流効率は運転開始から測
定時点までの平均電流効率を示す。表1から塩素酸ナト
リウム濃度が3g/l程度までであればほぼ100%の
効率で分解可能であることがわかった。また運転を開始
して1時間を経過した頃より陰極上で水素の発生が観察
されるようになり、それと同時に電流効率の低下傾向が
顕著となった。
Here, the current efficiency indicates the average current efficiency for one hour before the measurement time, and the average current efficiency indicates the average current efficiency from the start of operation to the measurement time. From Table 1, it was found that if the concentration of sodium chlorate was up to about 3 g / l, decomposition was possible with almost 100% efficiency. Further, one hour after the start of the operation, the generation of hydrogen began to be observed on the cathode, and at the same time, the tendency of the reduction in current efficiency became remarkable.

【0018】実施例2 実施例1と同じ装置を用い、以下に示す条件だけを変更
して試験を行った。
Example 2 Using the same apparatus as in Example 1, a test was conducted under the following conditions only.

【0019】陰極:チタン基体上に酸化イリジウムを被
覆したものに変更。 陰極室循環液:塩素酸ナトリウムの濃度が4.070g
/lの200g/lの食塩水(pH=1)300mlに
変更。 電流密度:3.14A/dm2 に変更。 結果を表2に示す。
Cathode: Changed to a titanium substrate coated with iridium oxide. Cathode chamber circulating fluid: the concentration of sodium chlorate is 4.070 g
/ L 200g / l saline (pH = 1) changed to 300ml. Current density: changed to 3.14 A / dm 2 . Table 2 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】ただし、電流効率は測定時点の前の1時間
の平均電流効率を示し、平均電流効率は運転開始から測
定時点までの平均電流効率を示す。酸化イリジウム被覆
陰極の場合、電流密度をこれ以上高くすると水素の発生
が顕著となり、高い電流効率を維持することが困難であ
った。
Here, the current efficiency indicates the average current efficiency for one hour before the measurement time, and the average current efficiency indicates the average current efficiency from the start of operation to the measurement time. In the case of the iridium oxide-coated cathode, when the current density is further increased, generation of hydrogen becomes remarkable, and it has been difficult to maintain high current efficiency.

【0022】実施例3 実施例1と同じ装置を用い、以下に示す条件だけを変更
して試験を行った。 陰極:白金被覆チタンに変更 陰極室循環液:塩素酸ナトリウムの濃度が5.562g
/lの200g/lの食塩水(pH=1)300mlに
変更。 結果を表3に示す。
Example 3 Using the same apparatus as in Example 1, a test was conducted under the following conditions only. Cathode: Changed to platinum-coated titanium Cathode chamber circulating fluid: The concentration of sodium chlorate is 5.562 g
/ L 200g / l saline (pH = 1) changed to 300ml. Table 3 shows the results.

【0023】[0023]

【表3】 [Table 3]

【0024】ただし、電流効率は測定時点の前の1時間
の平均電流効率を示し、平均電流効率は運転開始から測
定時点までの平均電流効率を示す。 実施例4 実施例1と同じ装置を用い、以下に示す条件だけを変更
して試験を行った。
Here, the current efficiency indicates the average current efficiency for one hour before the measurement time, and the average current efficiency indicates the average current efficiency from the start of operation to the measurement time. Example 4 A test was performed using the same apparatus as in Example 1 except for changing only the following conditions.

【0025】陰極:チタンに変更 陰極室循環液:塩素酸ナトリウムの濃度が5.048g
/lの200g/lの食塩水(pH=1)300mlに
変更。 結果を表4に示す。
Cathode: changed to titanium Cathode chamber circulating fluid: sodium chlorate concentration of 5.048 g
/ L 200g / l saline (pH = 1) changed to 300ml. Table 4 shows the results.

【0026】[0026]

【表4】 [Table 4]

【0027】ただし、電流効率は測定時点の前の1時間
の平均電流効率を示し、平均電流効率は運転開始から測
定時点までの平均電流効率を示す。
Here, the current efficiency indicates the average current efficiency for one hour before the measurement time, and the average current efficiency indicates the average current efficiency from the start of operation to the measurement time.

【0028】[0028]

【発明の効果】本発明の方法によれば、少量の塩酸添加
で塩水中の塩素酸塩を容易に還元、除去することが可能
である。特にイオン交換膜法食塩電解の場合、塩素酸塩
除去後の塩水を電解槽からの戻り塩水の脱塩素工程に戻
せば本発明に使用された塩酸を回収でき、かつ従来の塩
酸分解法では困難であった塩素酸ナトリウム管理濃度5
g/l以下が容易に達成でき、工業的プロセスとしての
価値が高いものである。
According to the method of the present invention, chlorate in salt water can be easily reduced and removed by adding a small amount of hydrochloric acid. In particular, in the case of ion exchange membrane method salt electrolysis, the hydrochloric acid used in the present invention can be recovered by returning the salt water after chlorate removal to the dechlorination step of returning salt water from the electrolytic cell, and it is difficult with the conventional hydrochloric acid decomposition method. Sodium chlorate management concentration 5
g / l or less can be easily achieved, and is of high value as an industrial process.

フロントページの続き (56)参考文献 特開 昭53−18498(JP,A) 特開 昭54−28294(JP,A) 特開 昭56−163286(JP,A) 特開 平3−65507(JP,A) 特開 昭51−144399(JP,A) 特開 昭53−123396(JP,A) 特開 昭60−77982(JP,A) 特開 平3−153890(JP,A) 特開 平1−219185(JP,A) (58)調査した分野(Int.Cl.7,DB名) C25B 1/00 - 15/08 Continuation of front page (56) References JP-A-53-18498 (JP, A) JP-A-54-28294 (JP, A) JP-A-56-163286 (JP, A) JP-A-3-65507 (JP) JP-A-51-144399 (JP, A) JP-A-53-123396 (JP, A) JP-A-60-77982 (JP, A) JP-A-3-153890 (JP, A) 1-219185 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C25B 1/00-15/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 塩化アルカリ水溶液中の塩素酸塩の除去
方法において、陽イオン交換膜で仕切られた電解槽の陰
極室に塩素酸塩を含有する塩化アルカリ水溶液を導入す
るとともに、陽極室には陽極においてプロトン生成反応
をする電解液を導入して電気分解することを特徴とする
塩化アルカリ水溶液中の塩素酸塩の除去方法。
In the method for removing chlorate from an aqueous alkali chloride solution, an aqueous chlorate-containing aqueous alkali chloride solution is introduced into a cathode compartment of an electrolytic cell partitioned by a cation exchange membrane, and a chlorate-containing aqueous alkali chloride solution is introduced into an anode compartment. A method for removing chlorate from an aqueous alkali chloride solution, comprising introducing an electrolytic solution that undergoes a proton generation reaction at the anode and performing electrolysis.
【請求項2】 陽極液が無機酸であることを特徴とする
請求項1記載の塩化アルカリ水溶液中の塩素酸塩の除去
方法。
2. The method according to claim 1, wherein the anolyte is an inorganic acid.
JP30653994A 1994-12-09 1994-12-09 Method for removing chlorate from aqueous alkali chloride solution Expired - Fee Related JP3304221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30653994A JP3304221B2 (en) 1994-12-09 1994-12-09 Method for removing chlorate from aqueous alkali chloride solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30653994A JP3304221B2 (en) 1994-12-09 1994-12-09 Method for removing chlorate from aqueous alkali chloride solution

Publications (2)

Publication Number Publication Date
JPH08165589A JPH08165589A (en) 1996-06-25
JP3304221B2 true JP3304221B2 (en) 2002-07-22

Family

ID=17958261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30653994A Expired - Fee Related JP3304221B2 (en) 1994-12-09 1994-12-09 Method for removing chlorate from aqueous alkali chloride solution

Country Status (1)

Country Link
JP (1) JP3304221B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5314273B2 (en) * 2007-12-11 2013-10-16 三菱重工業株式会社 Electrolyzer and fuel cell power generation system using the same
CN103272410B (en) * 2013-05-31 2015-11-18 青海华信冶炼有限公司 In a kind of manganese sulfate electrolyte, the circularly removing technique of chlorion and cuprous hydroxide are as the application of antichlor

Also Published As

Publication number Publication date
JPH08165589A (en) 1996-06-25

Similar Documents

Publication Publication Date Title
US4405465A (en) Process for the removal of chlorate and hypochlorite from spent alkali metal chloride brines
AU5347794A (en) Electrodialytic conversion of complexes and salts of metal cations
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
JPH04500097A (en) Improved method for producing quaternary ammonium hydroxide
US4279712A (en) Method for electrolyzing hydrochloric acid
US4483754A (en) Electrolysis of sodium chloride with the use of ion exchange membranes
KR870001768B1 (en) Improved operation and regeneration of permselective ion-exchange membranes in brine electrolysis cells
US4425202A (en) Method of making and color stabilization of choline base
EP0210769B1 (en) Removal of arsenic from acids
DE10101494A1 (en) Tetramethylammonium hydroxide synthesis
US5242552A (en) System for electrolytically generating strong solutions by halogen oxyacids
US20130101499A1 (en) METHODS FOR ELECTROCHEMICAL DECHLORINATION OF ANOLYTE BRINE FROM NaCl ELECTROLYSIS
JP3304221B2 (en) Method for removing chlorate from aqueous alkali chloride solution
EP0266127B1 (en) Selective removal of chlorine from solutions of chlorine dioxide and chlorine
US5035778A (en) Regeneration of spent ferric chloride etchants
JP3265495B2 (en) Method for producing nickel hypophosphite
US4773975A (en) Electrochemical removal of hypochlorites from chlorate cell liquors
US4731169A (en) Selective removal of chlorine from solutions of chlorine dioxide and chlorine
EP0267704A1 (en) Electrochemical removal of chromium from chlorate solutions
EP0136794A2 (en) Treatment of cathodes for use in electrolytic cell
US4699701A (en) Electrochemical removal of chromium from chlorate solutions
JP3651872B2 (en) Method for removing sulfate and chlorate radicals in brine
US4834848A (en) Electrical removal of chromium from chlorate solutions
JPH0978279A (en) Hydrochloric acid electrolysis device
JPH07300686A (en) Method for restoring and maintaining capacity of liquid etchant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100510

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110510

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120510

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130510

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees