JPH02194108A - Manufacture of alloy powder for rare earth metal magnet - Google Patents

Manufacture of alloy powder for rare earth metal magnet

Info

Publication number
JPH02194108A
JPH02194108A JP1012118A JP1211889A JPH02194108A JP H02194108 A JPH02194108 A JP H02194108A JP 1012118 A JP1012118 A JP 1012118A JP 1211889 A JP1211889 A JP 1211889A JP H02194108 A JPH02194108 A JP H02194108A
Authority
JP
Japan
Prior art keywords
rare earth
powder
alloy
alloy powder
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1012118A
Other languages
Japanese (ja)
Inventor
Takasumi Shimizu
孝純 清水
Yoshihiro Sumida
隅田 義博
Yutaka Yoshida
裕 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP1012118A priority Critical patent/JPH02194108A/en
Priority to CA 2008640 priority patent/CA2008640C/en
Publication of JPH02194108A publication Critical patent/JPH02194108A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Abstract

PURPOSE:To easily obtain powder having the prescribed particle size in much quantity by reacting rare earth metal or alloy thereof with hydrogen at the specific temp., embrittling and, after that, pulverizing. CONSTITUTION:By alloying raw material powder with mechanical alloying method, the alloy powder for rare earth metal magnet composed of the rare earth metal - transition metal - metalloid is manufactured. Then, the rare metal or the alloy thereof is embrittled by being reacted with hydrogen at 300 - 1,000 deg.C, and after that, this is pulverized to make the raw material powder. In this result, a uniform alloy powder for magnet can be mass-produced, and the good yield is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は希土類磁石用合金粉末の製造方法に関し、詳
しくは原料粉末を機械的合金法により合金化して磁石用
合金粉末を得る方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing rare earth alloy powder for magnets, and more particularly to a method for obtaining alloy powder for magnets by alloying raw material powders by a mechanical alloying method.

(従来の技術) Nd−Fe−B磁石等の希土類金m (R)−遷移金B
 (T)−半金Ji! (M)系磁石の製造方法として
、従来、焼結法と超急冷法とが知られている。
(Prior art) Rare earth gold m (R)-transition gold B such as Nd-Fe-B magnets
(T) - Hankin Ji! Conventionally, the sintering method and the ultra-quenching method are known as methods for manufacturing (M)-based magnets.

焼結法は既に実用化されている方法であるが、この方法
は特殊複雑形状の製品やボンド磁石用粉末を得ることが
困難である欠点がある。
Although the sintering method is already in practical use, this method has the disadvantage that it is difficult to obtain products with special and complex shapes or powder for bonded magnets.

一方超急冷法はバルク材の製造はもとよりボンド磁石用
粉末の製造にも適しているが、反面、得られる粉末の均
一性や歩留り、更には生産性の点で問題がある。
On the other hand, the ultra-quenching method is suitable not only for the production of bulk materials but also for the production of powder for bonded magnets, but on the other hand, there are problems in terms of the uniformity of the obtained powder, yield, and productivity.

超急冷法は、溶融した合金をノズルより回転するロール
上に落して超急冷し、これを粉砕、熱処理導流して磁石
用粉末を得るものであるが、この方法では原料を一旦溶
融する工程が必要であり、またノズルからロール上に合
金溶湯を落とす際1、ノズルに合金溶湯が残ったり、ロ
ールに落下した合金溶湯が跳ね飛んだり、或いはロール
による冷却が効かなかったものについては使用できなか
ったりして歩留りが悪くなるのである。また合金溶湯を
ロール表色に落下させたとき、合金溶湯の冷却速度が必
ずしも均等でなく、七のために冷却の良く効いたものと
そうでないものとが混ざった状態となって、均一性の点
でも問題があったのである。
In the ultra-quenching method, the molten alloy is dropped from a nozzle onto a rotating roll to be ultra-quenched, then crushed, heat-treated, and passed through to obtain powder for magnets. In addition, when dropping the molten alloy from the nozzle onto the roll, it cannot be used if the molten alloy remains in the nozzle, the molten alloy that has fallen onto the roll splashes, or if the cooling by the roll is not effective. Otherwise, the yield will be poor. Furthermore, when molten alloy is dropped onto a roll surface, the cooling rate of the molten alloy is not necessarily uniform, resulting in a mixture of molten alloy that cooled well and molten alloy that did not. There were also problems with this.

このことから、近時1合金粉末製造技術としての機械的
合金法が開発・検討されている。この機械的合金法は、
特開昭62−240742号にも開示されているように
、原料粉末を高効率のボールミル等を用いて長時間磨砕
処理し、その過程で粉末を磨砕すると同時に合金化する
ものである。
For this reason, mechanical alloying methods have recently been developed and studied as a technology for producing 1-alloy powder. This mechanical alloying method
As disclosed in Japanese Patent Application Laid-Open No. 62-240742, raw material powder is ground for a long time using a highly efficient ball mill or the like, and in the process, the powder is ground and alloyed at the same time.

(発明が解決しようとするrawI) しかしながら原料となる希土類金属或いは希土類金属−
遷移金属合金は非常に延性が高く、従っでその粉末を得
る方法として鋸引きやヤスリ掛けによって削り屑を造る
といった方法に頼っており、工業的生産を考えると現実
的でなく、シかもその際に原料粉末が酸化されるという
重大な問題があった。
(Raw I to be solved by the invention) However, rare earth metals or rare earth metals as raw materials -
Transition metal alloys are very ductile, and the methods used to obtain their powders, such as producing shavings by sawing or filing, are impractical from an industrial production perspective and can be difficult to obtain. There was a serious problem that the raw material powder was oxidized.

また機械的合金化処理中においては粉末が数終mの微粉
末となるため、細心の注意を払っても雰囲気からの酸化
を避は得ない問題も存していた。
Further, during the mechanical alloying process, the powder becomes a fine powder of several meters in size, so there is a problem that oxidation from the atmosphere cannot be avoided even if careful attention is taken.

(課題を解決するための手段) 本発明はこのような課題を解決するためになされたもの
であり、その要旨は、原料粉末を機械的合金法によって
合金化することにより希土類金属−遷移金属一半金属か
ら成る島土類磁石用合金粉末を製造するに際して、該希
土類金属ないしその合金を温度300〜tooo℃で水
素と反応させることにより脆化させ、しかる後これを粉
砕して前記原料粉末と為すことにある。
(Means for Solving the Problems) The present invention has been made to solve the above problems, and its gist is to form a rare earth metal-transition metal semi-alloy by alloying raw material powder by a mechanical alloying method. When producing an alloy powder for island earth magnets made of metal, the rare earth metal or its alloy is made to embrittle by reacting with hydrogen at a temperature of 300 to tooo Celsius, and then pulverized to form the raw material powder. There is a particular thing.

かかる本発明において、希土類金属としては通常Nd又
はP「が用いられるが、低源なCeや保磁力向、Eのた
めにDyやTb等のffi晶土類を含有しても良い。
In the present invention, Nd or P is normally used as the rare earth metal, but low-source Ce or ffi crystalline earth metals such as Dy and Tb may be included for coercivity and E.

本発明においては、このような希土類金属を単独で粉末
とし、或いは他の成分との合金の形態で粉末化し、これ
を機械的合金化処理の出発粉とする。而してその粉末を
得る方法として、希土類金属ないしその合金を水素化処
理して脆化し、しかる後にこれを粉砕することを特徴と
している。尚合金形態としては、希土類金属−遷移金属
合金が望ましい、ここで遷移金属としてはFe 、 F
e −Go等が有効である。希土類金属をこのような合
金形態で水素化した場合においても、希土類金属を単独
で水素化処理した場合と同様の効果が得られ、しかもこ
の場合には原料が安価に入手できる利点が生ずる。
In the present invention, such a rare earth metal is powdered alone or in the form of an alloy with other components, and this is used as a starting powder for mechanical alloying treatment. The method for obtaining the powder is characterized by hydrogenating the rare earth metal or its alloy to embrittle it, and then pulverizing it. The alloy form is preferably a rare earth metal-transition metal alloy, where the transition metals include Fe, F,
e-Go etc. are effective. Even when rare earth metals are hydrogenated in the form of such alloys, the same effects as when hydrogenating rare earth metals alone can be obtained, and in this case, there is an advantage that raw materials can be obtained at low cost.

本発明において、上記水素化処理は温度300〜100
0℃の範囲、望ましくは700〜900℃のW&囲で行
われる。温度がこれより低過ざても又高過ぎても反応が
うま〈進まない。
In the present invention, the above hydrogenation treatment is carried out at a temperature of 300 to 100
It is carried out in the range of 0°C, preferably in the range of 700 to 900°C. If the temperature is lower or higher than this, the reaction will not proceed properly.

また水素の圧力は1気圧以上に加圧すると有効であるが
1通常は1気圧で十分である。11!に水素の流量は、
希土類金属ないしその合金の量にもよるが通常は2〜5
皇/分で良い。
Further, it is effective to pressurize the hydrogen to 1 atm or more, but 1 atm is usually sufficient. 11! The flow rate of hydrogen is
Depending on the amount of rare earth metal or its alloy, usually 2 to 5
Emperor/minute is fine.

このような条件で所定時間(例えば30分〜2時間程度
)反応させた後これを冷却すると、この段階で希土類金
属ないしその合金は水素化により脆化しており、そこで
これを適当な粉砕機1例えばショークラッシャー等を用
いて粗粉砕する。
When the reaction is allowed to take place under these conditions for a predetermined period of time (for example, about 30 minutes to 2 hours) and then cooled, the rare earth metal or its alloy has become brittle due to hydrogenation at this stage. For example, it is coarsely crushed using a show crusher or the like.

これにより所定粒度(例えばl1腸以下)の粉末が容易
に得られる。尚この操作は発火防止のために不活性ガス
中で行うのが望ましい。
As a result, a powder having a predetermined particle size (for example, less than 11 mm) can be easily obtained. Note that this operation is preferably performed in an inert gas to prevent ignition.

このようにして希土類金属ないしその合金粉末を得たら
1次にこれを別途用意した金属粉末(例えばFa 、 
Co 、 Fe −Co合金を中心とし、特性向上のた
めにAI、Ti、Nb、Zr、 V 、Cr、Ga等の
純金属又は合金の粉末を混合しても良い)及び半金属(
Bを主としC,Si、S、P或いはFe −B等の合金
形態であっても良い)と共に機械的合金化処理を施す、
この機械的合金化処理には、ポールミルやアトライター
等の磨砕機が用いられる。特に遊星ボールミル、振動ボ
ールミルといった高エネルギータイプのものを用いれば
、処理時間が短くなって好都合である。
Once a rare earth metal or its alloy powder is obtained in this way, the first step is to prepare a separately prepared metal powder (for example, Fa,
Mainly Co, Fe-Co alloys, powders of pure metals or alloys such as AI, Ti, Nb, Zr, V, Cr, Ga may be mixed to improve properties) and semimetals (
Performing mechanical alloying treatment with B as the main component (which may also be in the form of an alloy such as C, Si, S, P or Fe-B),
A grinding machine such as a pole mill or an attriter is used for this mechanical alloying treatment. In particular, it is advantageous to use a high-energy type mill such as a planetary ball mill or a vibrating ball mill because the processing time is shortened.

この機械的合金化処理に際しては、粉末の酸化防止のた
め内部に不活性ガス又は適当な液体(ヘプタン、ヘキサ
ン等)を入れて非酸化性雰囲気中で行うのが良い。
This mechanical alloying treatment is preferably carried out in a non-oxidizing atmosphere by introducing an inert gas or a suitable liquid (heptane, hexane, etc.) inside to prevent oxidation of the powder.

尚、上記操作で水素化処理した希土類金属ないしその合
金粉末に対して1機械的合金処理に先立って、高温で真
空引きして脱水素処理しておくことも可能であるが、こ
のような脱水素処理を行うことなくそのまま機械的合金
化処理を施しても、希土類金属と他成分との合金化は進
行することが確認されている。しかもその際に活性の高
い希土類金属の酸化が抑制されることが確認され、従っ
て上記脱水素処理は1機械的合金化処理の前でなく、そ
の後に行う方が好都合であることが解った。
It should be noted that it is also possible to dehydrogenate the rare earth metal or its alloy powder that has been hydrogenated by the above procedure by evacuation at a high temperature prior to the mechanical alloying treatment. It has been confirmed that even if mechanical alloying treatment is directly performed without performing elementary treatment, alloying of rare earth metals and other components will proceed. Moreover, it was confirmed that the oxidation of highly active rare earth metals was suppressed at that time, and it was therefore found that it is more convenient to carry out the dehydrogenation treatment after the mechanical alloying treatment, rather than before.

さて機械的合金化処理は、使用する磨砕機の種類その他
の条件にもよるが、通常1時間〜40時間の範囲で行わ
れ、この間に出発粉の微粉砕、凝着1合金化成いは非晶
質化が進行する。
Now, mechanical alloying treatment is usually carried out for a period of 1 hour to 40 hours, depending on the type of grinder used and other conditions, and during this time the starting powder is finely pulverized and the coagulation 1 alloy formation is not performed. Crystallization progresses.

このようにして得た粉末に対して適当な温度(例えば4
00〜700℃)で熱処理すると、強磁性化合物R7T
14B相の微細な析出と脱水素が生じる。その結果得ら
れた粉末は、ボンド磁石用合金粉末として好適に用いる
ことができる。
The powder thus obtained is heated to an appropriate temperature (e.g. 4
00~700℃), the ferromagnetic compound R7T
Fine precipitation of 14B phase and dehydrogenation occur. The resulting powder can be suitably used as an alloy powder for bonded magnets.

また熱処理の代わりにホットプレスやHIP等の高温度
での緻密化処理を行えば、等方性の高密度磁石が得られ
、更にアプセット加工、押出し。
In addition, if a high-temperature densification treatment such as hot pressing or HIP is performed instead of heat treatment, an isotropic high-density magnet can be obtained, which can be further processed through upsetting and extrusion.

圧延加工といった熱間での塑性変形加工を施して任意の
方向に磁化容易軸を揃えることにより異方性磁石を得る
ことができる。更にこの異方性磁石を粉砕することによ
り、異方性ボンド磁石用の粉末を得ることができる。
An anisotropic magnet can be obtained by performing hot plastic deformation such as rolling to align the axis of easy magnetization in any direction. Furthermore, by pulverizing this anisotropic magnet, powder for an anisotropic bonded magnet can be obtained.

(作用及び発明の効果) さて上記のように本発明は機械的合金化処理のための出
発粉となる希土類金属ないしその合金粉末を、水素化反
応による脆化処理とその後の粉砕処理によって得るもの
であり、所定粒度の粉末を容易に且つ大量に得ることが
でき1歩留りも高率である。またその粉砕工程において
粉末の層化反応を抑制でき、加えてこのようにして製造
した粉末はそのまま機械的合金化処理することも「i(
能である。この場合には機械的合金化処理中における粉
末の酸化も防止できる。
(Operations and Effects of the Invention) As described above, the present invention provides rare earth metals or alloy powders thereof, which are used as starting powders for mechanical alloying, through embrittlement treatment through hydrogenation reaction and subsequent pulverization treatment. Therefore, powder with a predetermined particle size can be easily obtained in large quantities, and the yield rate is also high. In addition, the stratification reaction of the powder can be suppressed during the pulverization process, and the powder produced in this way can also be mechanically alloyed as it is.
It is Noh. In this case, oxidation of the powder during mechanical alloying treatment can also be prevented.

このように本発明によれば、均一な磁石用合金粉末を量
産でき、しかも歩留りは良好である。
As described above, according to the present invention, uniform alloy powder for magnets can be mass-produced, and the yield is good.

尚この合金粉末から希土類磁石を製造する過程では最終
的に脱水素処理は必要であるが、合金粉末から磁石を製
造するには熱処理、ホットプレス、HIP等が必要であ
り、而してそれら処理を真空中で行えば自動的に脱水素
処理できるので、脱水素処理のための特別な処理工程を
別途に設けることは必要でない。
In the process of manufacturing rare earth magnets from this alloy powder, dehydrogenation treatment is ultimately necessary, but heat treatment, hot pressing, HIP, etc. are required to manufacture magnets from alloy powder, and these treatments Since dehydrogenation can be carried out automatically if it is carried out in a vacuum, it is not necessary to separately provide a special treatment step for dehydrogenation.

一方、本方法にて得られた磁石は酸素含有昔が少なく、
磁石として良好な特性を示す。
On the other hand, the magnet obtained by this method contains less oxygen,
Shows good properties as a magnet.

(実施例) 次に本発明の特徴をより明確にすべく、以下にその実施
例を詳述する。
(Example) Next, in order to clarify the characteristics of the present invention, examples thereof will be described in detail below.

[実施例1] Ndメタル(99−9%)を水素処理炉に入れ、真空引
きの後にAr22検して800℃まで昇温し。
[Example 1] Nd metal (99-9%) was placed in a hydrogen treatment furnace, and after evacuation, Ar22 inspection was performed and the temperature was raised to 800°C.

これにH2ガスを3又/分流して1時間反応させた。そ
の後これを冷却して取り出したところ、NdはH2と反
応して水素化物をつくり脆化していた。そこで、これを
Ar雰囲気のグローブボックス内で40メツシユ以下に
粗粉砕した。この粉砕物とFe、Go、Hの各粉末(4
0メツシユ以下)を重層比で3 ONd −64Fe 
−5Co −I Bとなるようニ秤量してそれらを内径
200mm、高さ2001の遊星ボールミル内に直径8
腸鳳の鋼球と共に入れ、内部をAr雰囲気とするととも
にこれを密封して所定の磨砕処理を行った。磨砕処理は
4時間行い、得られた粉末を600℃の真空処理を行っ
た後エポキシ樹脂2重量%を添加混合し、これをプレス
成形して等方性ボンド磁石を得た。
H2 gas was flowed into the mixture three times/part, and the reaction was allowed to proceed for 1 hour. When it was then cooled and taken out, it was found that Nd reacted with H2 to form a hydride and became brittle. Therefore, this was coarsely ground to 40 meshes or less in a glove box with an Ar atmosphere. This pulverized product and each powder of Fe, Go, and H (4
0 mesh or less) with a multilayer ratio of 3 ONd -64Fe
-5Co -I B were weighed and placed in a planetary ball mill with an inner diameter of 200 mm and a height of 200 mm.
It was put in together with a steel ball made of steel, the interior was made into an Ar atmosphere, the atmosphere was sealed, and a predetermined grinding process was performed. The grinding process was carried out for 4 hours, and the obtained powder was subjected to a vacuum process at 600°C, and then 2% by weight of epoxy resin was added and mixed, and this was press-molded to obtain an isotropic bonded magnet.

またこれとは別に得られた粉末を750℃×1分の条件
でホットプレス処理して等方性磁石を得た。更にこれを
高さが173になるまで750℃でアプセット加工して
異方性磁石を得た。またこの異方性磁石を粉砕してエポ
キシ樹脂と混合し、更に磁界中でプレス成形して異方性
ボンド磁石を得た。そしてこれら磁石の緒特性を測定し
たところ第1表の如くであった。
Separately, the obtained powder was hot-pressed at 750° C. for 1 minute to obtain an isotropic magnet. Furthermore, this was upset-processed at 750° C. until the height reached 173 to obtain an anisotropic magnet. Further, this anisotropic magnet was crushed, mixed with an epoxy resin, and further press-molded in a magnetic field to obtain an anisotropic bonded magnet. The properties of these magnets were measured and were as shown in Table 1.

〔比較例1] Ndメタルをヤスリ引きにより0.5■■程度の小片に
し、これを実施例1と同様にFe、Co、B粉末と混合
して遊星ボールミルにより合金化した。これを実施例1
と同様に処理して等方性ボンド磁石、ホットプレス磁石
、アプセット磁石、異方性ボンド磁石を作成した。それ
らの緒特性を測定したところ第2表の如くであった。
[Comparative Example 1] Nd metal was cut into small pieces of about 0.5 mm by sanding, mixed with Fe, Co, and B powders in the same manner as in Example 1, and alloyed using a planetary ball mill. Example 1
Isotropic bonded magnets, hot-pressed magnets, upset magnets, and anisotropic bonded magnets were prepared in the same manner as above. When their properties were measured, they were as shown in Table 2.

[実施例2] (Nd 、 Pr 、 Dy) −Fe母合金を実施例
!と同様に水素化処理した後粉砕した。これをフェロボ
ロン(Fe−B)及びCo粉末と共に混合し、水平ボー
ルミルにより機械的合金化処理を施した0組成は重量比
で2 ONd −8Pr −20r −65Fe −4
Ca −18となるようにした。
[Example 2] Example of (Nd, Pr, Dy) -Fe master alloy! It was hydrotreated in the same manner as above and then crushed. This was mixed with ferroboron (Fe-B) and Co powder, and mechanically alloyed using a horizontal ball mill.
It was set to Ca-18.

得られた粉末に対して実施例1と同様の処理を施して4
種類の磁石を得、それらの緒特性を測定したところ第3
表の如くであった。
The obtained powder was treated in the same manner as in Example 1 to obtain 4
When we obtained different kinds of magnets and measured their core characteristics, we found that
It was as shown in the table.

〔比較例2] 前記実施例2において水素化処理及びその粉砕処理を行
う代わりに、(Nd、Pr、Dy) −Fe母合金の旋
盤による削り屑を用いて同様の機械的合金化処理を行い
、そして得られた合金粉末に対して実施例2と同様の処
理を施し、得られた414類の磁石の特性を測定したと
ころ第4表に示す如くであった。
[Comparative Example 2] Instead of performing the hydrogenation treatment and its pulverization treatment in Example 2, the same mechanical alloying treatment was performed using lathe shavings of the (Nd, Pr, Dy) -Fe master alloy. Then, the obtained alloy powder was subjected to the same treatment as in Example 2, and the characteristics of the obtained Class 414 magnet were measured, as shown in Table 4.

これらの結果からり1らかなように、末完’Jlにより
得られる磁石は何れも酸素レベルが低く、成形体の緻密
度が向上していること、またIOCが高く、減磁曲線の
角型性も良好であるために(B)I) 自JXが高いな
ど良好な磁気特性を有することが解る。
It is clear from these results that all the magnets obtained by Suekan'Jl have low oxygen levels, improved compactness of the compact, high IOC, and a square demagnetization curve. It can be seen that it has good magnetic properties, such as (B)I) high self-JX.

Claims (3)

【特許請求の範囲】[Claims] (1)原料粉末を機械的合金法によって合金化すること
により希土類金属−遷移金属−半金属から成る希土類磁
石用合金粉末を製造するに際して、該希土類金属ないし
その合金を温度300〜1000℃で水素と反応させる
ことにより脆化させ、しかる後これを粉砕して前記原料
粉末と為すことを特徴とする希土類磁石用合金粉末の製
造方法。
(1) When producing an alloy powder for rare earth magnets consisting of rare earth metals, transition metals, and metalloids by alloying raw material powders by a mechanical alloying method, the rare earth metals or their alloys are hydrogenated at a temperature of 300 to 1000°C. 1. A method for producing an alloy powder for rare earth magnets, which comprises embrittling it by reacting with the powder and then pulverizing it to obtain the raw material powder.
(2)前記希土類金属を遷移金属との合金形態で温度3
00〜1000℃で水素と反応させて脆化させた後粉砕
し、得られた合金粉末を前記機械的合金法による合金化
のための原料粉末として用いることを特徴とする請求項
(1)に記載の希土類磁石用合金粉末の製造方法。
(2) The rare earth metal is in the form of an alloy with a transition metal at a temperature of 3
Claim (1) characterized in that the alloy powder is reacted with hydrogen at 00 to 1000°C to make it embrittle and then pulverized, and the obtained alloy powder is used as a raw material powder for alloying by the mechanical alloying method. The method for producing the alloy powder for rare earth magnets described above.
(3)前記水素化反応後の希土類金属ないしその合金粉
末を脱水素処理を経ずに前記機械的合金化処理を施し、
その後において脱水素処理を施すことを特徴とする希土
類磁石用合金粉末の製造方法。
(3) subjecting the rare earth metal or its alloy powder after the hydrogenation reaction to the mechanical alloying treatment without dehydrogenation treatment;
A method for producing alloy powder for rare earth magnets, which comprises subsequently performing dehydrogenation treatment.
JP1012118A 1989-01-20 1989-01-20 Manufacture of alloy powder for rare earth metal magnet Pending JPH02194108A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1012118A JPH02194108A (en) 1989-01-20 1989-01-20 Manufacture of alloy powder for rare earth metal magnet
CA 2008640 CA2008640C (en) 1989-01-20 1990-01-26 Electronic toothbrush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1012118A JPH02194108A (en) 1989-01-20 1989-01-20 Manufacture of alloy powder for rare earth metal magnet

Publications (1)

Publication Number Publication Date
JPH02194108A true JPH02194108A (en) 1990-07-31

Family

ID=11796640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1012118A Pending JPH02194108A (en) 1989-01-20 1989-01-20 Manufacture of alloy powder for rare earth metal magnet

Country Status (2)

Country Link
JP (1) JPH02194108A (en)
CA (1) CA2008640C (en)

Also Published As

Publication number Publication date
CA2008640C (en) 1994-02-08
CA2008640A1 (en) 1990-07-31

Similar Documents

Publication Publication Date Title
JP6481682B2 (en) Manufacturing method of RTB-based alloy powder and manufacturing method of RTB-based sintered magnet
JPS62202506A (en) Permanent magnet and manufacture thereof
EP0595477A1 (en) Method of manufacturing powder material for anisotropic magnets and method of manufacturing magnets using the powder material
CN111655891A (en) Permanent magnet
JP2904571B2 (en) Manufacturing method of rare earth anisotropic sintered permanent magnet
US6352597B1 (en) Method for producing a magnetic alloy powder
JPH06128610A (en) Production of anisotropic rare-earth alloy powder for permanent magnet
JPH09316565A (en) Green compact of hard magnetic alloy and its production
JPS60189901A (en) Manufacture of alloy powder for rare earth-boron-iron group magnetic anisotropic permanent magnet
CN111724958B (en) R-T-B permanent magnet
JPH02194108A (en) Manufacture of alloy powder for rare earth metal magnet
JPS6318602A (en) Manufacture of permanent magnet of rare earth-iron system
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JP2002025813A (en) Anisotropic rare earth magnet powder
JPS6386502A (en) Rare earth magnet and manufacture thereof
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH0562814A (en) Method of manufacturing rare-earth element-fe-b magnet
JPH0754003A (en) Production of anisotropy rare earth alloy powder for permanent magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH10154610A (en) Manufacturing method of anisotropic magnet powder, anisotropic magnet powder and anisotropic bond magnet
JP3529551B2 (en) Manufacturing method of rare earth sintered magnet
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPH04141502A (en) Manufacture of alloy powder for rare earth metal bond magnet
JPH04134806A (en) Manufacture of permanent magnet
JPS63216307A (en) Alloy powder for magnet