JPH0219385B2 - - Google Patents

Info

Publication number
JPH0219385B2
JPH0219385B2 JP59030236A JP3023684A JPH0219385B2 JP H0219385 B2 JPH0219385 B2 JP H0219385B2 JP 59030236 A JP59030236 A JP 59030236A JP 3023684 A JP3023684 A JP 3023684A JP H0219385 B2 JPH0219385 B2 JP H0219385B2
Authority
JP
Japan
Prior art keywords
solution
regenerator
absorption
evaporation
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59030236A
Other languages
English (en)
Other versions
JPS60175979A (ja
Inventor
Nobutaka Myoshi
Shigeo Sugimoto
Michihiko Aizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59030236A priority Critical patent/JPS60175979A/ja
Priority to US06/702,749 priority patent/US4551991A/en
Publication of JPS60175979A publication Critical patent/JPS60175979A/ja
Publication of JPH0219385B2 publication Critical patent/JPH0219385B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、再生器を2個以上備えた吸収式冷凍
機や冷温水機またはピートポンプ式吸収冷凍機な
どの多重効用吸収式冷凍機に関する。
〔発明の背景〕
従来、多重効用吸収式冷凍機において、蒸発・
吸収室をもつた直接接触形熱交換器を、吸収器と
再生器との間の溶液経路中に配置することは、た
とえば特公昭48−44427号公報に開示されている。
しかし、この先行技術においては、最終の蒸
発・吸収室で生成された稀薄溶液の全部が、高温
再生器に供給され、低温再生器へは、高温再生器
で濃縮された後の溶液が供給されるようになつて
いる。
そのため、低温再生器へ供給される溶液の濃度
は中間濃度(高温再生器に供給される溶液の濃度
と、低温再生器から出る溶液の濃度との中間)と
なる。
一方、低温再生器の溶液の濃度や器内圧力が高
くなればなるほど加熱源となる冷媒蒸気の飽和温
度が高くなり、また、二重効用では、低温再生器
の加熱源として高温再生器で発生した冷媒蒸気を
用いているので、低温再生器の溶液の濃度や器内
圧力が高くなれば、それに応じて高温再生器での
冷媒蒸気の飽和温度を高くしなければならない。
このように、従来は高温再生器の冷媒蒸気の飽
和温度が高くなるため次のような問題を有する。
高温出力の加熱源を必要とする。
高温再生器における溶液温度が高くなるの
で、溶液の腐食性が急激に高くなり、器壁を早
期に腐食させ、耐久性に乏しい。
〔発明の目的〕
本発明の目的は、腐食の発生がなく、耐久性に
富んだ多重効用吸収式冷凍機を提供することにあ
る。
〔発明の概要〕
本発明の主たる特徴は、吸収器から各再生器に
溶液を供給する供給経路中に順次連なる複数の吸
収室を、再生器から吸収器に溶液を戻す戻し経路
中に、順次連なる複数の自己蒸発室を、それぞれ
設け、各蒸発室とこれに対応する圧力レベルの吸
収室とを互に蒸気通路で連絡して、各蒸発室で溶
液から自己蒸発した冷媒蒸気を吸収室内の溶液に
吸収させ、これによつて、吸収器からの溶液を順
次稀薄にする蒸発−吸収工程を複数段繰り返すと
ともに、蒸発−吸収工程を経た後の溶液を各再生
器のすべてに、他の再生器を経由することなく供
給することにある。
上記のように、各蒸発室において再生器から吸
収器に向つて戻る溶液から自己蒸発した冷媒蒸気
が吸収室内の溶液(吸収器から再生器に向つて流
れる)に吸収されることによつて吸収室内の溶液
が稀薄になると同時に、冷媒蒸気は蒸発室で自己
蒸発したときの潜熱を吸収室で溶液に吸収された
ときに放出するすなわち、蒸発室の溶液から吸収
室の溶液へ熱移動があるので、吸収室の溶液は吸
収作用を繰返すたびに温度が上昇する。
〔発明の実施例〕
以下本発明の一実施例を第1図、第2図により
説明する。
同図に示した実施例は、3個の再生器を有する
三重効用吸収式冷凍機の場合を示し、冷媒として
水、吸収剤として臭化リチウム(LiBr)の水溶
液を用いている。また、この装置においては、蒸
発器から得られる冷水を利用すれば、冷房、吸収
器および/または凝縮器の冷却水(温水)を利用
すれば、暖房が可能である。
この装置は、大別して蒸発器1、吸収器2、凝
縮器3、第1再生器4、第2再生器5、第3再生
器6および直接接触型熱交換器9、冷媒ポンプ
7、溶液ポンプ8から構成されている。
蒸発器1は、被冷却媒体(水)が通る冷水管1
1、冷媒を冷水管11に、スプレーするスプレー
ヘツダ12を有し、凝縮器3から流入してくる冷
媒液を蒸発させ、蒸発の際の潜熱を冷水管11内
を通る水から奪つて冷水を生成する。
吸収器2は、冷却媒体(冷却水)が通る冷却水
管21、溶液を冷却水管21にスプレーするスプ
レーヘツダ22を有し、前記蒸発器1から流入し
てくる冷媒蒸気を各再生器4,5,6から戻つて
きた溶液に吸収させて、濃度の薄い(冷媒を多く
含んでいる溶液)稀溶液を生成する。凝縮器3は
冷却媒体(冷却水)が通る冷却水管31を有し、
前記第1〜第3の各再生器4,5,6を発生した
冷媒蒸気を冷却水によつて冷却して冷媒を液化さ
せる。
第1再生器4は、加熱器41たとえば、バーナ
や過熱蒸気用管路などを有し、吸収器2から送ら
れてくる稀溶液を加熱器41で加熱して冷媒蒸気
を発生させる。
第2発生器5は、第1再生器で発生した冷媒蒸
気が通る加熱管51を有し、第1再生器からの冷
媒蒸気によつて、吸収器2から送られてくる稀溶
液を加熱して冷媒蒸気を発生させる。
第3再生器6は、第2再生器5で発生した冷媒
蒸気が通る加熱管61を有し、第2再生器5から
の冷媒蒸気によつて、吸収器2から送られてくる
稀溶液を加熱して冷媒蒸気を発生させる。冷媒ポ
ンプ7は、蒸発器1のスプレーヘツダ12に設置
され、冷媒液をスプレーヘツダ12に圧送する。
溶液ポンプ8は、吸収器2の底部に連絡され、吸
収器2で生成された稀溶液を直接接触型熱交換器
9の吸収室に送り込む。また、溶液ポンプ8から
吐き出された溶液の一部は、吸収器2のスプレー
ヘツダ22に流れ、各再生器4,5,6からの溶
液とともに吸収器2の冷却水管21に向つてスプ
レーされる。
直接接触型熱交換器9は、3つの群に分かれた
9個の吸収室91A(91A1〜91A9)吸収
室91Aと同数で3つの群に分かれた、蒸発室9
2E(92E1〜92E9)、第1の吸収室91A
1と、第9(最終)の蒸発室92E9とを連絡し、
蒸発室92E9の冷媒蒸気のみを吸収室91A1
に流す蒸気通路93V1、同様に第2の吸収室9
1A2と第8の蒸発室92E8、第3の吸収室9
1A3と第7の蒸発室92E7、第4の吸収室9
1A4と第6の蒸発室92E6、第5の吸収室9
1A5と第5の蒸発室92E5、第6の吸収室9
1A6と第4の蒸発室92E4、第7の吸収室9
1A7と第3の蒸発室92E3、第8の吸収室9
1A8と第2の蒸発室92E2、第9(最終)の
吸収室91A9と第1の蒸発室92E1とを、そ
れぞれ連絡する蒸気通路93V2,93V3,9
3V4,93V5,93V6,93V7,93V
8,93V9、第1の吸収室91A1と第2の吸
収室91A2とを連絡し、第1の吸収室91A1
から第2の吸収室91A2に溶液を送り込む第1
溶液通路94S1、同様に、第2と第3の吸収室
91A2,91A3同士、第3と第4の吸収室9
1A3,91A4同士、第4と第5の吸収室91
A4,91A5同士、第5と第6の吸収室91A
5,91A6同士、第6と第7の吸収室91A
6,91A7同士、第7と第8の吸収室91A
7,91A8同士、第8と第9の吸収室91A
8,91A9同士をそれぞれ連絡する第2〜第8
溶液通路94S2,94S3,94S4,94S
5,94S6,94S7,94S8、第1の蒸発
室92E1と第2の蒸発室92E2とを連絡し、
第1の蒸発室92E1の溶液を第2の蒸発室92
E2に流す第1戻り溶液通路95S1、同様に第
2と第3の蒸発室95E2,92E3同士、第3
と第4の蒸発室92E3,92E4同士、第4と
第5の蒸発室92E4,92E5同士、第5と第
6の蒸発室92E5,92E6同士、第6と第7
の蒸発室92E6,92E7同士、第7と第8の
冷媒蒸気92E7,92E8同士、第8と第9の
蒸発室92E8,92E9同士をそれぞれ連絡す
る第2〜第8戻り溶液通路95S2,95S3,
95S4,95S5,95S6,95S7,95
S8、前記第1〜第8溶液通路94S1〜94S
8にそれぞれ介在されたポンプ96P1,96P
2,96P3,96P4,96P5,96P6,
95P7,95P8を備えている。このポンプ9
6P1〜96P9は、ポンプ部が1つの軸に結合
されたものを利用できる。そして、第1の吸収室
91A1は溶液ポンプ8の吐出した側に溶液通路
94S0を介して連絡され、第9の吸収室91A
9は、ポンプ96P9を有する溶液第1供給路9
7S1を介して第1再生器4に連絡され、第6の
溶液通路94S6は、第2再生器5と第2溶液供
給路97S2を介して連絡され、第3の溶液通路
94S3は、第3再生器6と第3溶液供給路97
S3を介して連絡され、第1の蒸発室92E1
は、第1再生器4と第1濃溶液戻り通路98S1
を介して連絡され、第4の蒸発室92E4は、第
2再生器5と第2濃溶液戻り通路98S2を介し
て連絡され、第7の蒸発室92E7は、第3再生
器6と第3濃溶液戻り通路98S3を介して連絡
され、第9(最終)の蒸発室92E9は吸収器2
のスプレーヘツダ22の配管に第9戻り溶液通路
95S7を介して、連絡されている。
またスプレーヘツダ22の配管と第9戻り溶液
通路95S9との合流部にはエゼクター10が配
置されている。
次に、動作を説明する。
加熱器41によつて、第1再生器4内の溶液を
加熱して、冷媒蒸気を発生させる。この冷媒蒸気
を加熱管51に導入し、第2再生器5内の溶液を
加熱して冷媒蒸気を発生させる。第2再生器5で
発生した冷媒蒸気を加熱管61に導入し、第3再
生器6内の溶液を加熱して冷媒蒸気を発生させ
る。第3再生器6で発生した冷媒蒸気、第2再生
器5を加熱した後されに第3再生器6内を経由し
て、第3再生器6内の溶液を加熱した後の冷媒お
よび第2再生器5で発生して第3再生器6内の溶
液を加熱した冷媒は、ともに凝縮器3に流入す
る。
凝縮器3に流入した冷媒(蒸気と液)は、冷却
水管31内の通る冷却水によつて冷却される。冷
却された冷媒液は、低圧の蒸発器1に流れ、蒸発
器1内で冷水管11内を通る水から蒸発潜熱を奪
つて蒸発する。蒸発の際奪われる蒸発潜熱によつ
て水は冷却され、冷水が生成される。蒸発した冷
媒蒸気は、液滴を取り除くためのエリミネータを
通つて吸収器2に流れ、ここで冷却水管21を通
る冷却水によつて冷却されつつスプレーヘツダ2
2からスプレーされる溶液に吸収される。これに
より、吸収器2内の溶液は比較的薄い溶液とな
る。
吸収器2内の溶液は溶液ポンプ8によつて、溶
液通路94S0を経て第1の吸収室91A1にス
プレーされ、第1の吸収室91A1の溶液はポン
プ96P1によつて溶液通路94S1を介して第
2の吸収室91A2に、スプレー以下同様に溶液
は、次段の吸収室に順次スプレーされ、第9(最
終)の吸収室91A9の溶液が、ポンプ96P9
によつて第1溶液供給路97S1を介して第1再
生器4に供給される。また、途中の第3の再生器
91A3の溶液が、ポンプ96P3によつて第3
溶液供給路97S3を介して第3再生器に、第6
の吸収室91A6の溶液が、ポンプ96P6によ
つて、第2溶液供給路97S2を介して第2再生
器5にそれぞれ送り込まれる。一方、第1再生器
4の濃溶液は、差圧によつて第1濃溶液戻り通路
98S1を介して第1の蒸発室92E1に流入
し、第1の蒸発室92E1の溶液は、差圧によつ
て、第1戻り通路95S1を介して第2の吸収室
92E2に流入し、以下同様に溶液は次段の蒸発
室へ流入し、第9(最終)の蒸発室91E9の溶
液が差圧によつて、第9戻り溶液通路95S9を
介してエゼクタ10に流入し、スプレーヘツダ2
2から吸収器2にスプレーされる。また、途中の
第4の蒸発室92E4には、第2濃溶液戻り通路
98S2を介して第2再生器5の濃溶液が、第7
の蒸発室92E7には、第3濃溶液戻り通路98
S3を介して第3再生器6の濃溶液がそれぞれ流
入する。各蒸発室92E1〜92E9は、再生器
から吸収器2へ向つて流れる溶液の戻り通路中に
配置され、再生器と吸収器2との間に圧力差があ
るから各蒸発室間には、差圧が形成される。その
ため、溶液が前段から次段の蒸発室に流入したと
きに、その都度溶液中の冷媒が自己蒸発し、溶液
は濃度が高くなるとともに、自己冷却して温度が
低くなる。
一方、吸収室91A1〜91A9には、それぞ
れ、蒸気通路93V1〜93V9を介して蒸発室
92E1〜92E9で自己蒸発した冷媒蒸気が流
入し、この冷媒蒸気は、溶液通路94S0〜94
S8からスプレーされる溶液に吸収されて溶液が
薄くなる。同時に冷媒蒸気が溶液に吸収されたと
き、吸収熱が発生し、この熱により溶液の温度が
上昇する。
このように、吸収器2から各再生器4,5,6
に供給される溶液は、順次次の吸収室91Aにス
プレーされる都度、これに連通している蒸発室9
2Eからの冷媒蒸気を吸収して、溶液濃度が薄く
なるとともに、温度が上昇していき、各再生器
4,5,6には吸収器2の出口よりもさらに薄く
なつた溶液が送られる。また、各再生器4,5,
6から吸収器2に戻る溶液は、順次、次の蒸発室
92Eに流れ込んだ(フラツシユした)都度、溶
液中の冷媒が自己蒸発して、溶液濃度が濃くなる
とともに温度が低下していき、溶液は各再生器
4.5,6を出たときよりもさらに濃くなつて吸
収器2に戻る。
上記の説明では、次の吸収室への溶液供給ポン
プで行う例を述べたが、第1の吸収室の位置を高
くし、第2次降の吸収室を階段状に配置し、次の
吸収室への溶液移送を落差によつて行つてもよ
い。
上記のように、本実施例によれば、自己蒸発と
吸収とを複数段階繰り返して行う直接接触形熱交
換器を備え、この熱交換器における最終段階およ
び途中段階の吸収室から各再生器に別々に他の再
生器を経由することなく、溶液供給するので、極
めて薄い溶液を各再生器に供給することができ
る。
多重効用吸収式冷凍機は、前段の再生器で発生
した冷媒蒸気を加熱源とするものなので、最げ高
温となる再生器(第1再生器)の加熱温度は、こ
の再生器内の溶液濃度とこの再生器で発生した冷
媒蒸気を加熱源とする再生器の飽和蒸気圧によつ
て定まる。従つて、この発明の実施例のように、
第2、第3の各再生器に、別々に他の再生器を経
由することなく、しかも、直接接触形熱交換器に
より得られた薄い溶液を供給するので、装置を動
作させるのに必要な第1再生器の加熱温度を低く
することができる。
この実施例によれば、装置を動作させるのに必
要な第1再生器の溶液温度は20〜30℃低くなり、
これに応じて同程度加熱源温度を低くできるとと
もに腐蝕の進行が激しくなる温度よりも溶液温度
を低く維持でき、再生器の腐蝕を軽減またはなく
することができる。
また、第2再生器には、第6の吸収室、第3再
生器には第3の吸収室からの溶液を供給してお
り、1箇所から各再生器に分岐して供給する場合
に比べて各再生器への溶液供給量の分配を容易に
行うことができる。吸収室間の溶液移送をポンプ
によつて行つているので、冷凍容量の変化によつ
て起こる第1再生器と吸収器間の差圧変動に対し
ても溶液の流動を安定させることができる。
〔発明の効果〕
以上詳細に述べたように本発明によれば、腐蝕
の発生がなく耐久性のある多重効用吸収式冷凍機
を提供することができる。
【図面の簡単な説明】
第1図は本発明の一実施例の系統図、第2図は
本発明の要部の詳細系統図である。 1…蒸発器、2…吸収器、9…凝縮器、4…第
1再生器、5…第2再生器、6…第3再生器、7
…冷媒ポンプ、8…溶液ポンプ、9…直接接触形
熱交換器、91A…吸収室、92E…蒸発室、9
3V…蒸気通路、94S…溶液通路、95S…戻
り溶液通路、96P…ポンプ、97S…溶液供給
路、98S…濃溶液戻り通路、10…エゼクタ。

Claims (1)

  1. 【特許請求の範囲】 1 蒸発器、吸収器、凝縮器、および少なくとも
    3個の再生器を備え、再生器で発生する冷媒蒸気
    を次の再生器の加熱源とし、各再生器で発生した
    冷媒を凝縮器で冷却液化し、この冷媒液を蒸発器
    に導いて蒸発させ、蒸発した冷媒蒸気を吸収器に
    導き、ここで再生器から戻つてきた溶液に吸収さ
    せ、この溶液を再生器に供給するように連絡され
    たものにおいて、溶液から冷媒蒸気を自己蒸発さ
    せる蒸発室と、この蒸発室と蒸気通路を介して連
    絡され、冷媒蒸気を吸収する吸収室とからなる蒸
    発・吸収室を複数組有し、各蒸発室の間には、溶
    液が直列に流れるように各蒸発室を連絡する溶液
    通路を有し、各吸収室の間には、溶液が直列に流
    れるように各吸収室を連絡する溶液通路を有し、
    蒸発・吸収室の吸収室は、吸収器から再生器への
    溶液供給経路中に配置され、蒸発・吸収室の蒸発
    室は、再生器から吸収器への溶液戻り経路中に配
    置されていることを特徴とする多重効用吸収式冷
    凍機。 2 特許請求の範囲第1項において、複数組の蒸
    発・吸収室は、3つのグループに区分され、第1
    グループの蒸発・吸収室の最終吸収室から取り出
    された溶液の一部が、第3の再生器に供給され、
    第2グループの蒸発・吸収室の最終吸収室から取
    出された溶液の一部が第2の再生器に供給され、
    第3グループの蒸発・吸収室の最終吸収室から取
    出された溶液が第1再生器に供給されるように、
    連絡する溶液通路を有し、第3再生器からの溶液
    を第1グループの蒸発・吸収室の最初の蒸発室に
    導入し、第2再生器からの溶液を第2グループの
    蒸発・吸収室の最初の吸収室に導入し、第1発生
    器からの溶液を第3グループの蒸発・吸収室の最
    初の吸収室に導入する溶液通路をそれぞれ有する
    ことを特徴とする多重効用吸収式冷凍機。 3 特許請求の範囲第1項または第2項におい
    て、複数組の蒸発・吸収室における各吸収室間を
    連絡する溶液通路中に各々ポンプを有することを
    特徴とする多重効用吸収式冷凍機。
JP59030236A 1984-02-22 1984-02-22 多重効用吸収式冷凍機 Granted JPS60175979A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59030236A JPS60175979A (ja) 1984-02-22 1984-02-22 多重効用吸収式冷凍機
US06/702,749 US4551991A (en) 1984-02-22 1985-02-19 Multi-effect absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59030236A JPS60175979A (ja) 1984-02-22 1984-02-22 多重効用吸収式冷凍機

Publications (2)

Publication Number Publication Date
JPS60175979A JPS60175979A (ja) 1985-09-10
JPH0219385B2 true JPH0219385B2 (ja) 1990-05-01

Family

ID=12298076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59030236A Granted JPS60175979A (ja) 1984-02-22 1984-02-22 多重効用吸収式冷凍機

Country Status (2)

Country Link
US (1) US4551991A (ja)
JP (1) JPS60175979A (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4646541A (en) * 1984-11-13 1987-03-03 Columbia Gas System Service Corporation Absorption refrigeration and heat pump system
US4748830A (en) * 1986-02-28 1988-06-07 Hitachi, Ltd. Air-cooled absorption heating and cooling system
EP0326881A1 (de) * 1988-02-03 1989-08-09 Aktiebolaget Electrolux Absorptionskälteaggregat
US4921515A (en) * 1988-10-20 1990-05-01 Kim Dao Advanced regenerative absorption refrigeration cycles
US5016444A (en) * 1989-12-11 1991-05-21 Erickson Donald C One-and-a-half effect absorption cycle
US5097676A (en) * 1990-10-24 1992-03-24 Erickson Donald C Vapor exchange duplex GAX absorption cycle
US5390509A (en) * 1991-11-27 1995-02-21 Rocky Research Triple effect absorption cycle apparatus
CZ128494A3 (en) * 1991-11-27 1994-12-15 Rocky Research Enhanced apparatus with triple effect of absorption cycle
USRE36045E (en) * 1991-11-27 1999-01-19 Rocky Research Triple effect absorption cycle apparatus
US5205136A (en) * 1992-03-11 1993-04-27 Martin Marietta Energy Systems, Inc. Triple-effect absorption refrigeration system with double-condenser coupling
US5467614A (en) * 1994-02-14 1995-11-21 Martin Marietta Energy Systems, Inc. Dual-circuit, multiple-effect refrigeration system and method
US5584193A (en) * 1994-04-26 1996-12-17 York International Corporation Absorption-type refrigeration systems and methods
US5600967A (en) * 1995-04-24 1997-02-11 Meckler; Milton Refrigerant enhancer-absorbent concentrator and turbo-charged absorption chiller
US5727397A (en) * 1996-11-04 1998-03-17 York International Corporation Triple effect absorption refrigeration system
FR2757256B1 (fr) * 1996-12-13 1999-03-05 Gaz De France Frigopompe a absorption multietagee operant sur un melange ternaire
US5946937A (en) * 1998-01-14 1999-09-07 Gas Research Institute Dual loop triple effect absorption chiller utilizing a common evaporator circuit
US6003331A (en) * 1998-03-02 1999-12-21 York International Corporation Recovery of flue gas energy in a triple-effect absorption refrigeration system
US5931007A (en) * 1998-03-24 1999-08-03 Carrier Corporation Asborption refrigeration system with condensate solution coupling
US5941094A (en) * 1998-05-18 1999-08-24 York International Corporation Triple-effect absorption refrigeration system having a combustion chamber cooled with a sub-ambient pressure solution stream
KR20000002974A (ko) * 1998-06-25 2000-01-15 김종해 셀형흡수냉각방식에의한공조시스템
AT409543B (de) * 1999-02-16 2002-09-25 Vaillant Gmbh Adsorptionswärmepumpe
KR100343129B1 (ko) 1998-12-26 2002-11-30 한국과학기술원 증기압축기를포함하는삼중효용흡수식냉방기
US6385993B1 (en) * 2000-08-03 2002-05-14 Rocky Research Multiple column generator for aqua-ammonia absorption system
JP5204965B2 (ja) * 2006-10-25 2013-06-05 日立アプライアンス株式会社 吸収式ヒートポンプ
CN101995112B (zh) * 2010-11-24 2012-07-18 浙江大学 一种高效gax吸收式制冷装置
US8695363B2 (en) * 2011-03-24 2014-04-15 General Electric Company Thermal energy management system and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3389572A (en) * 1967-05-31 1968-06-25 Carrier Corp Multiple-effect absorption refrigeration systems
US3389573A (en) * 1967-05-31 1968-06-25 Carrier Corp Refrigerant condensate circuit in multiple-effect absorption refrigeration systems
US3389570A (en) * 1967-05-31 1968-06-25 Carrier Corp Refrigerant condensate circuit in multiple-effect absorption refrigeration systems
US3831397A (en) * 1971-09-15 1974-08-27 G Mamiya Multi-stage absorption refrigeration system

Also Published As

Publication number Publication date
US4551991A (en) 1985-11-12
JPS60175979A (ja) 1985-09-10

Similar Documents

Publication Publication Date Title
JPH0219385B2 (ja)
US4337625A (en) Waste heat driven absorption refrigeration process and system
US4520634A (en) Multi-stage absorption refrigeration system
US3831397A (en) Multi-stage absorption refrigeration system
US3742728A (en) Multi-stage absorption refrigeration system
JPH06507965A (ja) 多段式呼吸器を備えた再生吸収サイクル
CN1082650C (zh) 多段式热水型溴化锂吸收式制冷装置
US3495420A (en) Two stage generator absorption unit with condensate heat exchanger
KR19990022970A (ko) 압축·흡수 하이브리드 히트펌프
JPS597862A (ja) 吸収式ヒ−トポンプシステム
US4470269A (en) Absorption refrigeration system utilizing low temperature heat source
US3292385A (en) Process and apparatus for simultaneous generation of hot and cold fluids in an absorption refrigeration system
JP7015671B2 (ja) 吸収式熱交換システム
US1134269A (en) Refrigerating apparatus.
US3396549A (en) Multiple-effect absorption refrigeration systems
US2357340A (en) Refrigeration
JPH10197092A (ja) 吸収冷凍機
US2357612A (en) Refrigeration
US4462222A (en) Dilute solution producing system of absorption refrigerating apparatus
JPH07198222A (ja) 逆精留部を有するヒートポンプ
JP2002243309A (ja) 吸収冷凍機
JPS5913667B2 (ja) 吸収式冷温水機
US3389572A (en) Multiple-effect absorption refrigeration systems
JP2787182B2 (ja) 一重二重吸収冷温水機
JPH06201210A (ja) 吸収式冷凍機