JPH02193539A - Power source device - Google Patents

Power source device

Info

Publication number
JPH02193539A
JPH02193539A JP1011705A JP1170589A JPH02193539A JP H02193539 A JPH02193539 A JP H02193539A JP 1011705 A JP1011705 A JP 1011705A JP 1170589 A JP1170589 A JP 1170589A JP H02193539 A JPH02193539 A JP H02193539A
Authority
JP
Japan
Prior art keywords
load
current monitor
power supply
storage battery
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1011705A
Other languages
Japanese (ja)
Inventor
Yukihiro Honda
幸弘 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1011705A priority Critical patent/JPH02193539A/en
Publication of JPH02193539A publication Critical patent/JPH02193539A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

PURPOSE:To prevent the overdischarge of a storage battery by a method wherein it is decided that a solar cell is shaded from the sun and a load is limited when a value, detected by a solar array current monitor, is smaller than a threshold value and another value, detected by a discharging current monitor, is larger than the threshold value. CONSTITUTION:The output current of a solar cell 1 is supplied to a load 8 through a solar array current monitor 9 and charges a storage battery 2 by a charger 6 when the output capacity has surplus power. When the output is short, electric power is supplied to the load 8 from the storage battery 2 through a discharging current monitor. A shade decider 11 is provided with an internal reference power source 12 and outputs a threshold value. When the output current is compared with the telemetry signal of the current monitor 9 in a comparator 13 and a significant level reducing signal is outputted to an exclusive logical adder 15 when the output current is lower than the threshold value. On the other hand, the output current is compared with the telemetry signal of a current monitor 10 in another comparator 14 and a significant level increasing signal is outputted to the exclusive logical adder 15 when the value of the current is higher than the threshold value. Simultaneously with the input of the significant signal, a load lightening command is outputted. According to this method, the overdischarge of the battery can be prevented automatically.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,例えば日照時に太陽電池より負荷に電力を
供給するとともに蓄電池に電力を充電し。
[Detailed Description of the Invention] [Industrial Application Field] The present invention supplies power to a load from a solar cell during sunshine, and also charges a storage battery with power.

日陰時に蓄電池の放電により負荷に電力を供給する人工
衛星等の電源装置において,日陰になると自動的に不用
な負荷を切り離して蓄電池の負担を軽減し,日照になる
と自動的に切り離した負荷を再接続するための信号を出
力する日陰判定手段を有する電源装置に関するものであ
る。
In a power supply device for an artificial satellite, etc. that supplies power to a load by discharging a storage battery in the shade, it automatically disconnects unnecessary loads in the shade to reduce the burden on the storage battery, and automatically restarts the disconnected load when the sun comes out. The present invention relates to a power supply device having shade determination means that outputs a signal for connection.

〔従来の技術〕[Conventional technology]

第2図は負荷を接続した従来の人工衛星等の電源装置の
構成図であシ,(l)は太陽電池,(2)は蓄電池,(
3)はアノードが上記太陽電池+11の出力端に接続さ
れた第1のダイオードであシ,そのカソードは電源バス
を構成している。(41はカソードが上記第1のダイオ
ード(3)のカソードに接続された第2のダイオード、
(51は上記第1のダイオード(3)のアノードとリタ
ーンライン(以下RTNという)間に上記太陽電池(1
)と並列に接続され、上記太陽電池+11で発生した余
剰電力を消費するシャント装置。
Figure 2 is a configuration diagram of a conventional power supply device for an artificial satellite, etc., with loads connected. (l) is a solar battery, (2) is a storage battery, (
3) is a first diode whose anode is connected to the output terminal of the solar cell +11, and whose cathode constitutes a power supply bus. (41 is a second diode whose cathode is connected to the cathode of the first diode (3),
(51 is between the anode of the first diode (3) and the return line (hereinafter referred to as RTN)
) is connected in parallel with the shunt device that consumes the surplus power generated by the solar cell +11.

(61は上記電源バスと上記蓄電池(2)間に接続され
て日照時に上記蓄電池(2)を充電するための充電器。
(61 is a charger connected between the power supply bus and the storage battery (2) to charge the storage battery (2) during sunshine hours.

(7)は上記電源バスとRTN間に接続されたキャパシ
タバンク、(8)は負荷で、その負荷量は地上局よシコ
マンドで設定される。
(7) is a capacitor bank connected between the power supply bus and the RTN, and (8) is a load, the amount of which is set by a command from the ground station.

(9)は上記第1のダイオード(3)よシミ源バスに流
入する電流レベルを検出し、テレメトリ信号に変換して
送出するソーラアレイ電流モニタ、αGは上記第2のダ
イオード(4)と上記蓄電池(2)間に接続され、蓄電
池(2)より第2のダイオード(4)を介して電源バス
に流出する放電々流しベルを検出し、テレメトリ信号に
変換して送出する放電々流モニタである。以下、従来の
電源装置の動作について詳細に述べる。
(9) is a solar array current monitor that detects the current level flowing into the stain source bus through the first diode (3), converts it into a telemetry signal, and sends it out; αG represents the second diode (4) and the storage battery. (2) is a discharge current monitor that is connected between the storage battery (2) and the second diode (4) and detects the discharge current flowing out from the storage battery (2) to the power supply bus, converts it into a telemetry signal, and sends it out. . The operation of the conventional power supply device will be described in detail below.

日照時、上記太陽電池(11で発生した電力は、上記第
1のダイオード(3)を介して上記負荷(8)に供給さ
れる。負荷(8)での消費電力を上回る上記太陽電池f
ilで発生した余剰電力は、一部が上記充電器(61で
変換されて上記蓄電池(2)の充電々力となり、残シは
上記シャント装置(5)で消費される。この時上記キャ
パシタバンク(7)の電圧(以下パス電圧という)はシ
ャント電圧vSHNTに安定化する。
During sunshine, the power generated by the solar cell (11) is supplied to the load (8) via the first diode (3).
A part of the surplus power generated by the il is converted by the charger (61) and becomes charging power for the storage battery (2), and the remaining power is consumed by the shunt device (5). The voltage (7) (hereinafter referred to as pass voltage) is stabilized to the shunt voltage vSHNT.

上記負荷(8)は、地上局からの負荷軽減コマンドC8
によシ、上記太陽電池(1)で発生する電力を上回らな
い範囲で軌道上サービスに必要な電力を消費チるのが通
常であるが、まれに上記負荷(8)での消費電力が上記
太陽電池(1)の発生電力を越える場合があシ、この場
合上記蓄電池(2)の放電によシ負荷(8)の消費電力
を補充する。
The above load (8) is the load reduction command C8 from the ground station.
Normally, the power required for in-orbit services is consumed within a range that does not exceed the power generated by the solar cell (1), but in rare cases the power consumption by the load (8) exceeds the power consumption above. In some cases, the power generated by the solar cell (1) may be exceeded, and in this case, the power consumed by the load (8) is supplemented by discharging the storage battery (2).

日陰時、上記太陽電池(1)での発生電力は停止するの
で、上記負荷(8)への電力供給は全て上記第2のダイ
オード(41を介して上記蓄電池(21の放電でまかな
われる。
In the shade, the power generated by the solar cell (1) stops, so the power supply to the load (8) is entirely provided by the discharge of the storage battery (21) via the second diode (41).

上記蓄電池(2)の許容放電量の制限による負荷量の軽
減を目的として、上記負荷(8)のうち日陰時に軌道上
サービスを行わない不用な負荷は、負荷軽減コマンドC
Eによシ上記電源バスから切り離される。
For the purpose of reducing the load amount by limiting the allowable discharge amount of the storage battery (2), the unnecessary loads that do not perform on-orbit service in the shade of the load (8) are subject to load reduction command C.
E is disconnected from the above power supply bus.

日照2日1虐に限ることなく、上記ソーラアレイ電流モ
ニタ(9)は上記負荷(8)で消費される電流と上記充
電器(61で変換されて上記蓄電池(2)の充電々力と
なるに必要な電流の和電流を検出し、テレメトリ信号工
。ATLMに変換して地上局に送出し、上記放電々流モ
ニタα・は、上記蓄電池(2)から上記第2のダイオー
ド(4)を介して上記電源バスに流出する電流を検出し
、テレメトリ信号I DCHTLMに変換して地上局に
送出する。
The solar array current monitor (9) converts the current consumed by the load (8) into the charger (61) and becomes the charging power for the storage battery (2). The sum of the necessary currents is detected, converted to telemetry signal equipment, ATLM, and sent to the ground station, and the discharge current monitor α. detects the current flowing into the power supply bus, converts it into a telemetry signal IDCHTLM, and sends it to the ground station.

上述した電源系の動作よ’) #  I SATLMと
I DCHTLMについて次の関係式が成立する。
Regarding the operation of the power supply system described above, the following relational expression holds true for #ISATLM and IDCHTLM.

日照時 ISATLM > 0          (11日陰
時 ISATLM  ”  OかつIDCHTLM  > 
 O(21〔発明が解決しようとする課題〕 上記負荷(8)のうち日陰時に不用な負荷を切り離す際
、従来は上記ソーラアレイ電流モニタ(9)のテレメト
リ信号工。A’TLMと上記放電々流モニタαυのテレ
メトリ信号よりCHTLMを地上局で観測し、テレメト
リ信号ISATLMによシ上記太陽雷池(11で発生す
る常流が十分小さくなりかつテレメトリ信号IDCHT
LMによシ上記蓄電池(2)が放電していることを人間
が判断し2日陰状態へ移行したことを人間が認識し2人
間が上記負荷(8)に不用な負荷切シ離しのための負荷
軽減コマンドCつを地上局よシ送信していた。
ISATLM in sunlight > 0 (11 ISATLM in shade ” O and IDCHTLM >
O (21 [Problem to be Solved by the Invention] When disconnecting the load (8) that is unnecessary in the shade, conventionally the telemetry signal of the solar array current monitor (9) is connected to the A'TLM and the discharge current. From the telemetry signal of monitor αυ, CHTLM is observed at the ground station, and according to the telemetry signal ISATLM, the normal current generated at the solar lightning pond (11) becomes sufficiently small and the telemetry signal IDCHT is detected.
A human determines that the storage battery (2) is discharging due to the LM.2 A human recognizes that the storage battery (2) has shifted to a shaded state, and a human determines that the load (8) is disconnected from the unnecessary load. C load reduction commands were being sent to the ground station.

しかし、この方法は静止衛星のように地上局から衛星と
常に交信できることが前提であシ1周回衛星のような低
軌道衛星では、地上局と交信できない時間が多く1日陰
中の蓄電池の許容放電量の制限のため1日照中の太陽電
池で発生する電力を有効に使用できないなどの課題があ
った。
However, this method requires that the ground station can always communicate with the satellite, such as with a geostationary satellite.For low-orbit satellites, such as single-orbit satellites, there are many times when it is not possible to communicate with the ground station, and the allowable discharge of the storage battery in the shade is Due to capacity limitations, there were issues such as the inability to effectively use the electricity generated by solar cells during a single day of sunshine.

この発明は、上記課題を解消するためになされたもので
、自動的に日陰状態であることを判定して負荷に負荷軽
減信号を送出する電源装置の構成を目的とする。
The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to provide a configuration of a power supply device that automatically determines a shaded state and sends a load reduction signal to a load.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る電源装置は、ソーラアレイ電流モニタの
テレメトリ信号と放電々流モニタのテレメトリ信号とを
入力信号とし、内部基準電源と。
The power supply device according to the present invention uses a telemetry signal of a solar array current monitor and a telemetry signal of a discharge current monitor as input signals, and serves as an internal reference power supply.

内部基準電源の出力信号と各テレメ) IJ傷信号のレ
ベルを比較する2つの比較器と、2つの比較器から有意
信号を受けて初めて負荷軽減信号を出力する排他的論理
和算器とから構成される日陰判定器を従来の電源装置に
付加したものである。
Consists of two comparators that compare the levels of the internal reference power supply output signal and the IJ flaw signal (each telemeter), and an exclusive OR adder that outputs a load reduction signal only after receiving significant signals from the two comparators. This is a device that adds a shade determination device to the conventional power supply device.

〔作用〕[Effect]

この発明における電源装置は、ソーラアレイ電流モニタ
のテレメトリ信号が内部基準電源で作られる閾値より小
さくなυ、かつ放電々流モニタのテレメトリ信号が内部
基準電源で作られる閾値よシ大きくなると2日陰状態で
あると判定して負荷に負、荷軽減信号を出力する。
The power supply device according to the present invention operates in a shaded state when the telemetry signal of the solar array current monitor is smaller than the threshold value generated by the internal reference power source, and when the telemetry signal of the discharge current monitor is larger than the threshold value generated by the internal reference power source. It determines that there is a load on the load and outputs a load reduction signal.

〔実施例〕〔Example〕

第1図は、この発明の実施例を示す負荷を接続した電源
装置の構成図でるfi、+11〜αGは従来の構成品と
全く同一のものである。
FIG. 1 is a block diagram of a power supply device connected to a load showing an embodiment of the present invention. fi, +11 to αG are completely the same as the conventional components.

■は日陰判定器、azは内部基準電源、住3は第1の比
較器、 (141は第2の比較器、αりは排他的論理和
算器である。
(2) is a shade determination device, az is an internal reference power supply, 3 is a first comparator, (141 is a second comparator, and α is an exclusive OR adder.

以下この発明の実施例について詳細に述べる。Examples of the present invention will be described in detail below.

第1の比較器α3は、上記ソーラアレイモニタ(9)の
テレメトリ出力端子と上記内部基準電源a’aの出力端
子に接続され、上記ソーラアレイ電流モニタ(9)のテ
レメトリ出力ISATLMと上記内部基準電源t12の
出力vREFを比較して ISATLM < vREF のとき、上記第1の比較器fi3は上記排他的論理和算
器αタヘ有意なレベル低下信号を送出する。
The first comparator α3 is connected to the telemetry output terminal of the solar array monitor (9) and the output terminal of the internal reference power supply a'a, and is connected to the telemetry output ISATLM of the solar array current monitor (9) and the internal reference power supply When the output vREF of t12 is compared and ISATLM<vREF, the first comparator fi3 sends a significant level reduction signal to the exclusive OR adder αta.

第2の比較器α4は、上記放電々流モニタαGのテレメ
トリ出力端子と上記内部基準電源fi3の出力端子に接
続され、上記放電々流モニタαGのテレメトリ出力I 
DCHTLMと上記内部基準電源a’aの出力vREF
を比較して I DCHTLM > VREF のとき、上記第2の比較器σ4は上記排他的論理和算器
α9へ有意なレベル上昇信号を送出する。
The second comparator α4 is connected to the telemetry output terminal of the discharge stream monitor αG and the output terminal of the internal reference power supply fi3, and is connected to the telemetry output terminal of the discharge stream monitor αG.
DCHTLM and the output vREF of the above internal reference power supply a'a
When IDCHTLM>VREF, the second comparator σ4 sends a significant level increase signal to the exclusive OR circuit α9.

上記排他的論理和算器fisは、上記第1の比較器03
の出力端と上記第2の比較器α楊の出力端に接続され、
上記第1の比較器a3からのレベル低下信号と上記第2
の比較器αIからのレベル上昇信号との2つの有意な信
号を同時に受けて初めて、上記排他的論理和算器αSは
上記負荷(8)へ負荷軽減信号を出力する。
The exclusive OR adder fis is connected to the first comparator 03.
and the output terminal of the second comparator α,
The level reduction signal from the first comparator a3 and the second
The exclusive OR adder αS outputs a load reduction signal to the load (8) only after simultaneously receiving two significant signals including the level increase signal from the comparator αI.

日照時において、上記負荷(8)の電力が上記太陽電池
(1)の発生電力よυ小さい場合は、上記放電々流モニ
タaυの出力より。HTLMは零となるため、(4)式
を満足しない。日照時において上記負荷(8)の電力が
上記太陽電池filの発生電力よシ大きい場合は。
During sunshine, if the power of the load (8) is smaller than the power generated by the solar cell (1), then the output of the discharge current monitor aυ. Since HTLM is zero, equation (4) is not satisfied. When the power of the load (8) is larger than the power generated by the solar cell fil during sunshine.

上記蓄電池(2)よシ放電があるため、上記放電々流モ
ニタ+11の出力より。HTLMは正の値となシ(4)
式を満足することがある。しかし、この場合上記太陽電
池(1)で発生する電流は全て上記負荷+81へ流れ込
むため、上記ソーラアレイ電流モニタ(9)の出力IS
ATLMは相当大きい正の値となシ、上記内部基準電源
aZの出力■REF t”小さく選ぶことによシ(3)
式を満足することはない。
Since there is a discharge from the storage battery (2), from the output of the discharge current monitor +11. HTLM must be a positive value (4)
The formula may be satisfied. However, in this case, all the current generated in the solar cell (1) flows into the load +81, so the output IS of the solar array current monitor (9)
ATLM must be a fairly large positive value, and the output of the internal reference power supply aZ can be selected to be small (3).
It never satisfies the formula.

従って日照時(31式と(41式を同時に満足すること
はないので、上記日陰判定器αVから負荷軽減信号が上
記負荷(8)へ出力されることはない。
Therefore, since Equation 31 and Equation 41 are never satisfied at the same time during sunshine, the load reduction signal is not output from the shade determiner αV to the load (8).

日陰時は、上記太陽電池+11の出力が零となるので上
記ソーラアレイ電流モニタ(9)の出力ISATLMも
また零となシ(3)式を満足する。この時上記負荷(8
)へ上記蓄電池(2)が放電して電力供給を行っている
ので、上記放電々流モニタ+11の出力I DCHTL
Mは相当大きな正の値となυ、上記内部基準電源α2の
出力VREFを小さく選ぶことによシ(4)式を満足す
る。更にvREFを零とおけは、(3)式と(4)式の
同時成立は(2)式に他ならない。
In the shade, the output of the solar cell +11 is zero, so the output ISATLM of the solar array current monitor (9) is also zero, satisfying equation (3). At this time, the above load (8
), the storage battery (2) is discharging and supplying power, so the output of the discharge current monitor +11 is I DCHTL.
M takes a fairly large positive value υ, and formula (4) is satisfied by selecting the output VREF of the internal reference power supply α2 to be small. Furthermore, if vREF is set to zero, the simultaneous establishment of equations (3) and (4) is nothing but equation (2).

従って、上記内部基準電源(1zの出力”REF t”
適当な小さな値に設定すれば、(3)式と(4)式を同
時に満足するのは日陰時でちゃ1日陰の判定が可能とな
ると同時に負荷量の制御ができる。
Therefore, the output "REF t" of the internal reference power supply (1z)
If it is set to an appropriately small value, equations (3) and (4) can only be satisfied at the same time when it is in the shade.It is possible to determine whether it is in the shade or not, and at the same time, the amount of load can be controlled.

なお、上記実施例では1日陰時に人工衛星等電源系の負
荷を軽減する場合について説明したが。
In the above embodiment, the case where the load on the power supply system of an artificial satellite, etc. is reduced during one day in the shade has been described.

ヒータ等日陰時に使用される負荷の自動起動機能であっ
てもよく、上記実施例と同様の効果を奏する。
An automatic activation function of a load such as a heater used in the shade may be used, and the same effect as the above embodiment can be achieved.

〔発明の効果〕〔Effect of the invention〕

この発明による電源装置は2以上説明したとおシ、ソー
ラアレイ電流モニタの出力信号と放電々流モニタの出力
信号を入力する端子を有し、ソーラアレイ電流モニタの
出力信号レベルが成る閾値よす小さく、かつ放電々流モ
ニタの出力信号レベルが成る閾値レベルよりも大きいこ
とを判定して。
As described above, the power supply device according to the present invention has a terminal for inputting the output signal of the solar array current monitor and the output signal of the discharge current monitor, and has a terminal that is smaller than the threshold value at which the output signal level of the solar array current monitor becomes. determining that the output signal level of the discharge stream monitor is greater than a threshold level;

負荷に負荷軽減信号を出力する日陰判定器を追加したの
で9日照中は太陽電池で発生する電力を有効に活用でき
1日陰になると日陰になったことを判定して自動的に不
用な負荷を切シ離して蓄電池の放電量を制限できるとい
う利点がある。
A shade detector that outputs a load reduction signal to the load has been added, so the power generated by the solar cells can be effectively used during sunshine.When it is in the shade, it is determined that it is in the shade and the unnecessary load is automatically removed. It has the advantage that it can be disconnected to limit the amount of discharge from the storage battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す負荷を接続した電源
装置の構成図、第2図は従来の負荷を接続した電源装置
の構成図である。 図において、(1)は太陽電池、(2)は蓄電池、 +
31 (41はダイオード、(5)はシャント装置、(
6)は充電器。 (7)はキャパシタバンク、(8)は負荷、(9)はソ
ーラアレイ電流モニタ、aυは放電々流モニタ、αBは
日陰判定器、 +13は内部基準電源、α3(141は
比較器、 aSは排他的論理和算器である。 なお2図中同一符号は同一 または相当部分を示す。
FIG. 1 is a configuration diagram of a power supply device connected to a load showing an embodiment of the present invention, and FIG. 2 is a configuration diagram of a conventional power supply device connected to a load. In the figure, (1) is a solar cell, (2) is a storage battery, +
31 (41 is a diode, (5) is a shunt device, (
6) is a charger. (7) is the capacitor bank, (8) is the load, (9) is the solar array current monitor, aυ is the discharge current monitor, αB is the shade judge, +13 is the internal reference power supply, α3 (141 is the comparator, aS is exclusive) It is a logical summator. Note that the same symbols in the two figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims]  太陽電池と、この太陽電池の出力端子とリターンライ
ン間に接続されたシャント装置と、上記太陽電池の出力
端子にアノードが接続された第1のダイオードと、この
第1のダイオードのカソードに直列に接続されて出力端
が電源バスを構成するソーラアレイ電流モニタと、電源
バスとリターンライン間に直列接続された充電器と蓄電
池と、電源バスにカソードが接続された第2のダイオー
ドと、上記充電器と上記蓄電池の接続点と上記第2のダ
イオードのアノード間に接続された放電々流モニタと、
電源バスとリターンライン間に接続されたキャパシタバ
ンクとから構成される電源装置とその負荷とによる電源
系において、上記ソーラアレイ電流モニタと上記放電々
流モニタの検出信号を入力し、上記ソーラアレイ電流モ
ニタの検出信号が或る閾値よりも小さく、かつ上記放電
々流モニタの検出信号が或る閾値よりも大きい時に日陰
と判定するとともに、電源系の負荷を制御すべく負荷軽
減信号を上記負荷へ送出する日陰判定器を設けたことを
特徴とする電源装置。
a solar cell, a shunt device connected between the output terminal of the solar cell and a return line, a first diode having an anode connected to the output terminal of the solar cell, and a shunt device connected in series with the cathode of the first diode. a solar array current monitor that is connected and whose output end constitutes a power bus; a charger and a storage battery that are connected in series between the power bus and the return line; a second diode whose cathode is connected to the power bus; and the charger. and a discharge current monitor connected between the connection point of the storage battery and the anode of the second diode,
In a power supply system consisting of a power supply device and its load, which is composed of a power supply bus and a capacitor bank connected between a power supply bus and a return line, the detection signals of the solar array current monitor and the discharge current monitor are input, and the detection signals of the solar array current monitor are inputted. When the detection signal is smaller than a certain threshold and the detection signal of the discharge current monitor is larger than a certain threshold, it is determined that the area is in the shade, and a load reduction signal is sent to the load to control the load on the power supply system. A power supply device characterized by being provided with a shade determination device.
JP1011705A 1989-01-20 1989-01-20 Power source device Pending JPH02193539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011705A JPH02193539A (en) 1989-01-20 1989-01-20 Power source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011705A JPH02193539A (en) 1989-01-20 1989-01-20 Power source device

Publications (1)

Publication Number Publication Date
JPH02193539A true JPH02193539A (en) 1990-07-31

Family

ID=11785459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011705A Pending JPH02193539A (en) 1989-01-20 1989-01-20 Power source device

Country Status (1)

Country Link
JP (1) JPH02193539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033283A1 (en) * 1994-06-01 1995-12-07 Markus Real Process and device for protecting solar cells against hot spots

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995033283A1 (en) * 1994-06-01 1995-12-07 Markus Real Process and device for protecting solar cells against hot spots

Similar Documents

Publication Publication Date Title
US7439635B2 (en) Output suppressing method of a plurality of dispersed power sources and dispersed power source managing system
US4238721A (en) System and method for charging electrochemical cells in series
US7557539B2 (en) Charging device
JPH03265013A (en) Power supply system for solar battery
EP1058367A2 (en) Battery accumulating apparatus
CN105140984A (en) Autonomous management system of satellite lithium-ion battery pack power supply subsystem
JPS605740A (en) Automatic load isolating control system for satellite power source system
EP2618456A1 (en) Electric power supply system
JP3529660B2 (en) Independent photovoltaic power generation system and power generation method
CN109256839B (en) Non-attitude stable spacecraft system energy acquisition method
EP2477305A1 (en) Preference circuit and electric power supply system
JPH10201129A (en) Power generation installation making use of solar energy
JP2002058174A (en) Independent solar generation system and its control method
CN101895141B (en) Primary power supply system
RU2289179C1 (en) Method for servicing nickel-hydrogen storage battery in off-line power supply system
JP2008067484A (en) Private power generation system obtained by combining storage battery facility and privately-owned electrical power facility and control method for output of privately-owned electrical power facility in the system
JP2639026B2 (en) Power supply
JPH02193539A (en) Power source device
EP4075627A1 (en) Direct current distribution-based charging/discharging system for battery activation
JPH10243575A (en) Solar battery power unit and its operating method
JP2789778B2 (en) Power supply
JPH09154241A (en) Power supply unit for solar cell
JPH07231578A (en) Solar battery power supply system
RU2706762C1 (en) Control method of autonomous power supply system of spacecraft
JPH0340062Y2 (en)