JPH0340062Y2 - - Google Patents

Info

Publication number
JPH0340062Y2
JPH0340062Y2 JP13962885U JP13962885U JPH0340062Y2 JP H0340062 Y2 JPH0340062 Y2 JP H0340062Y2 JP 13962885 U JP13962885 U JP 13962885U JP 13962885 U JP13962885 U JP 13962885U JP H0340062 Y2 JPH0340062 Y2 JP H0340062Y2
Authority
JP
Japan
Prior art keywords
storage battery
cell
batteries
storage
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13962885U
Other languages
Japanese (ja)
Other versions
JPS6248135U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13962885U priority Critical patent/JPH0340062Y2/ja
Publication of JPS6248135U publication Critical patent/JPS6248135U/ja
Application granted granted Critical
Publication of JPH0340062Y2 publication Critical patent/JPH0340062Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、人工衛星の電源装置に関するもの
である。
[Detailed description of the invention] [Field of industrial application] This invention relates to a power supply device for an artificial satellite.

〔従来の技術〕[Conventional technology]

人工衛星では、一般に主電力源には太陽電池が
使用され、また、蓄電池としては、ニツケルカド
ミウム(NiCd)蓄電池のような2次電池が使用
されている。
In artificial satellites, solar cells are generally used as the main power source, and secondary batteries such as nickel cadmium (NiCd) storage batteries are used as storage batteries.

日照時には太陽電池から電力供給と蓄電池への
充電が行われ、日陰時には蓄電池から放電するこ
とにより電力供給が行われる。通信衛星のように
日照時、日陰時に拘らず、ほぼ同じ電力が使用さ
れる人工衛星においては、蓄電池1台当たりの容
量に限度があるため、一般に複数台の蓄電池を並
列使用して要求電力をまかなつている。また、衛
星負荷が大電力の場合、効率・重量などの有利さ
から、コンバータやレギユレータを介さずに直接
蓄電池の放電電力を電源バスラインに供給する方
式が多くとられている。
During sunshine, power is supplied from the solar cell and the storage battery is charged, and during shade, power is supplied by discharging from the storage battery. In artificial satellites such as communication satellites, which use almost the same amount of power regardless of whether it is sunny or in the shade, there is a limit to the capacity of each storage battery, so multiple storage batteries are generally used in parallel to meet the required power. It's covered. Furthermore, when the satellite load is a large amount of power, a method is often adopted in which the discharged power of the storage battery is directly supplied to the power bus line without going through a converter or regulator due to advantages such as efficiency and weight.

従来のこの種の人工衛星の電源装置の構成例を
第2図に示す。説明の便宜上、蓄電池を2台使用
する例を示している。
An example of the configuration of a conventional power supply device for this type of satellite is shown in FIG. For convenience of explanation, an example in which two storage batteries are used is shown.

図において、1は日照中、太陽光エネルギーを
電気エネルギーに変換して電力の発生を行う太陽
電池、2は電力の供給を行う電源バスライン、3
は衛星負荷、4はリターンライン、5は、上記電
源バスラインの電圧(バス電圧)の上限リミツタ
であり、かつ、日照時のバス電圧を安定化させる
シヤントレギユレータである。6と7は、例えば
NiCd蓄電池のような2次電池の蓄電池である。
8と9は、セル(素電池)であり、上記蓄電池6
と7は、通常、同じ種類の同数の複数個のセル8
とセル9を直列接続して構成されている。10と
11は、それぞれ上記蓄電池6と蓄電池7の放電
経路に接続された逆流防止用のダイオードであ
る。12は蓄電池6と蓄電池7に充電電流を供給
する充電制御回路である。
In the figure, 1 is a solar cell that generates electricity by converting solar energy into electrical energy during sunlight, 2 is a power bus line that supplies electricity, and 3
4 is a satellite load, 4 is a return line, and 5 is an upper limiter for the voltage of the power bus line (bus voltage), and is a shunt regulator that stabilizes the bus voltage during sunshine. 6 and 7 are for example
It is a secondary battery storage battery such as a NiCd storage battery.
8 and 9 are cells (unit batteries), and the storage battery 6 is
and 7 are usually the same number of cells 8 of the same type.
and a cell 9 are connected in series. Reference numerals 10 and 11 indicate backflow prevention diodes connected to the discharge paths of the storage battery 6 and storage battery 7, respectively. 12 is a charging control circuit that supplies charging current to the storage battery 6 and the storage battery 7.

従来の方式の人工衛星の電源装置は上記のよう
に構成されており、日照中は、太陽電池1から衛
星負荷3に電力供給が行われ、その時の電源バス
ライン2のバス電圧は、シヤントレギユレータ5
によつて安定化される。また、蓄電池6と蓄電池
7には、太陽電池1で発生する電力の一部を充電
制御回路11で所要の充電電流に制御して充電さ
れる。日陰に入ると太陽電池1からの電力供給が
行われなくなり、代わつて、蓄電池6と蓄電池7
からの放電電流がダイオード10とダイオード1
1を通つて電源バスライン2に出力し、その放電
電力が衛星負荷3に電力供給される。日陰中の電
源バスライン2のバス電圧は、蓄電池6と蓄電池
7の放電時の蓄電池電圧に従つている。蓄電池電
圧は、平均セル電圧と直列セル段数の積であるの
で、通常、日照中に蓄電池を十分な充電状態にし
ておくため、充電時の蓄電池電圧が充電制御回路
11の出力電圧の上限値を越えないようにセル8
とセル9の直列段数が決められている。
The conventional satellite power supply device is configured as described above, and during sunshine, power is supplied from the solar cell 1 to the satellite load 3, and the bus voltage of the power bus line 2 at that time is equal to Guilulator 5
stabilized by Further, the storage battery 6 and the storage battery 7 are charged by controlling a part of the electric power generated by the solar cell 1 to a required charging current by a charging control circuit 11. When the sun enters the shade, power is no longer supplied from the solar cell 1, and instead, power is supplied from the storage battery 6 and the storage battery 7.
The discharge current from diode 10 and diode 1
1 to the power supply bus line 2, and the discharged power is supplied to the satellite load 3. The bus voltage of the power supply bus line 2 in the shade follows the storage battery voltage when the storage batteries 6 and 7 are discharged. Since the storage battery voltage is the product of the average cell voltage and the number of series cells, normally, in order to keep the storage battery in a sufficiently charged state during sunshine, the storage battery voltage during charging should exceed the upper limit of the output voltage of the charging control circuit 11. cell 8 so as not to exceed
The number of series stages of cells 9 is determined.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

一般に人工衛星に使用される2次電池の蓄電池
は、NiCd蓄電池のように寿命劣化を生じる。特
に蓄電池の放電容量は寿命を左右する大きな要因
となつている。例えば、NiCd蓄電池の放電深度
(定格容量に対する放電した容量の百分率)と寿
命の関係は第3図に示すように、放電深度が大き
くなると寿命が短くなることが広く知られてい
る。従つて、一般には人工衛星の設計寿命に応じ
て、許容放電深度が決められ、許容放電深度を越
さないように蓄電池の運用を行う。そのため、複
数台の蓄電池を並列使用する場合は、特定の蓄電
池に負荷が集中して寿命劣化を早目ないように各
蓄電池の放電電流をほぼ同じになるようにバラン
スをとることが重要である。
Generally, secondary batteries used in artificial satellites have a lifespan that deteriorates like NiCd batteries. In particular, the discharge capacity of a storage battery is a major factor that affects its lifespan. For example, the relationship between the depth of discharge (percentage of the discharged capacity relative to the rated capacity) and the lifespan of NiCd storage batteries is shown in FIG. 3, and it is widely known that the longer the depth of discharge becomes, the shorter the lifespan becomes. Therefore, in general, the allowable depth of discharge is determined according to the design life of the artificial satellite, and storage batteries are operated so as not to exceed the allowable depth of discharge. Therefore, when using multiple storage batteries in parallel, it is important to balance the discharge current of each storage battery so that it is approximately the same so that the load does not concentrate on a specific storage battery and prematurely deteriorate its life. .

しかるに、第2図に示すような従来の構成で
は、蓄電池6と蓄電池7が正常なときには両方の
蓄電池からほぼ等しい放電電流が流れてバランス
がとれているが、一方の蓄電池のセルが短絡故障
を起こすと放電電流に大きなアンバランスを生じ
る欠点があつた。これは、例えば、蓄電池6の1
セルが短絡故障を生じたとすると、蓄電池6の端
子電圧は、蓄電池7の端子電圧よりも1セル分相
当の電圧が低くなるため、電源バスライン2のバ
ス電圧は正常時よりも下がり、バス電圧と蓄電池
7との電位差は正常時よりも大きくなり、蓄電池
7からの放電電流は過大に増加し、一方、1セル
短絡している蓄電池6からの放電電流は減少する
ために放電電流のアンバランスを生じる。この放
電電流のアンバランスは、1セルの電圧差
(NiCdセルで約1.0〜1.4V)でも大きな放電電流
の差を生じる。第4図は、20セル直列構成の2台
のNiCd蓄電池を第2図に示すような従来方式の
構成にして、一方の蓄電池の1セルが短絡故障を
生じさせたときの放電電流特性データの一例を示
したものである。正常時の放電電流の比がほぼ1
対1であるのに対して、第4図の例では正常な蓄
電池と1セル短絡故障を生じている蓄電池の放電
電流の比が平均して約9対2まで広がつており、
また、この結果、放電深度も正常時55%に対して
正常な蓄電池では85%、1セル短絡している蓄電
池では23%となり、2つの蓄電池間で大きなアン
バランスが生じていることがわかる。
However, in the conventional configuration shown in FIG. 2, when the storage batteries 6 and 7 are normal, almost equal discharge currents flow from both storage batteries and the balance is maintained, but when a cell of one storage battery suffers a short-circuit failure. This had the disadvantage of causing a large imbalance in the discharge current. This is, for example, 1 of the storage battery 6.
If a short-circuit failure occurs in a cell, the terminal voltage of the storage battery 6 will be lower than the terminal voltage of the storage battery 7 by one cell equivalent, so the bus voltage of the power supply bus line 2 will be lower than normal, and the bus voltage will decrease. The potential difference between the storage battery 7 and the storage battery 7 becomes larger than normal, and the discharge current from the storage battery 7 increases excessively.On the other hand, the discharge current from the storage battery 6, which is short-circuited by one cell, decreases, resulting in an unbalanced discharge current. occurs. This unbalance of discharge current causes a large difference in discharge current even if there is a voltage difference between one cell (approximately 1.0 to 1.4 V for a NiCd cell). Figure 4 shows discharge current characteristic data when two 20-cell series NiCd storage batteries are configured in the conventional manner as shown in Figure 2, and one cell of one of the batteries suffers a short-circuit failure. This is an example. The ratio of discharge current during normal operation is approximately 1
On the other hand, in the example shown in Figure 4, the ratio of the discharge currents of a normal storage battery and a storage battery with a one-cell short-circuit failure has increased to about 9:2 on average.
Additionally, the results show that the depth of discharge is 55% in normal conditions, 85% in a normal storage battery, and 23% in a storage battery with one cell short-circuited, indicating a large imbalance between the two storage batteries.

このように従来の構成では、一方の蓄電池でセ
ル故絡故障を起こした場合、そのまま並列使用を
続けると正常な蓄電池から大きな放電電流が流れ
て、許容以上の放電が行われ、また、温度上昇も
伴うため、正常な蓄電池は性能劣化を生じて寿命
を縮める恐れがあつた。このため、セルの短絡故
障を生じた場合には、蓄電池を許容の放電深度内
で使用するためにミツシヨン機器の一部をオフに
して運用を一部停止せざる得ないような欠点があ
つた。また、日陰中のミツシヨン運用の一部停止
ができない人工衛星においては、最初から蓄電池
を余分に搭載しておき、セルの短絡故障を生じて
も、残りの正常な蓄電池で許容放電深度内で並列
運用できるようにしているが、蓄電池の台数増加
により重量が重くなるという欠点があつた。
In this way, in conventional configurations, if a cell failure occurs in one storage battery, if parallel use continues, a large discharge current will flow from the normal storage battery, resulting in more discharge than permissible, and a rise in temperature. As a result, there was a risk that a normal storage battery would suffer performance deterioration and shorten its lifespan. For this reason, in the event of a short-circuit failure in a cell, there was a drawback that part of the mission equipment had to be turned off and part of the operation had to be halted in order to use the storage battery within the permissible depth of discharge. . In addition, for artificial satellites that cannot partially suspend mission operations in the shade, extra storage batteries are installed from the beginning, so that even if a cell short-circuit failure occurs, the remaining normal storage batteries can be used in parallel within the allowable depth of discharge. Although it has been made operational, the drawback is that the weight increases due to the increased number of storage batteries.

この考案はかかる欠点を改善する目的でなされ
たもので、セルの短絡故障が発生しても、蓄電池
間の放電電流に大きなアンバランスを生じさせな
いようにした人工衛星の電源装置を得ることを目
的とする。
This invention was made with the purpose of improving such drawbacks, and the purpose is to obtain a power supply device for an artificial satellite that does not cause a large imbalance in discharge current between storage batteries even if a cell short-circuit failure occurs. shall be.

〔問題点を解決するための手段〕[Means for solving problems]

この考案に係る人工衛星の電源装置は、各蓄電
池のセルのうち必要数のセルにリレー・スイツチ
を並列接続させて設けるようにしたものである。
The power supply device for an artificial satellite according to this invention is provided with relay switches connected in parallel to the required number of cells of each storage battery.

〔作用〕[Effect]

この考案においては、一方の蓄電池のセルが短
絡故障を起こしたとしても、他方の蓄電池に設け
られたリレー・スイツチを閉じることによつて、
セル短絡故障によつて生じる蓄電池間の電圧差を
相殺して、放電電流に大きなアンバランスを生じ
させないようにする。
In this invention, even if a short-circuit failure occurs in one storage battery cell, the relay switch installed in the other storage battery is closed.
To cancel a voltage difference between storage batteries caused by a cell short-circuit failure to prevent a large imbalance in discharge current from occurring.

〔実施例〕〔Example〕

第1図は、この考案の一実施例を示す構成の説
明図である。1〜12は上記従来装置と全く同一
のものである。13は、蓄電池6の端セル8−N
に並列接続されたリレー・スイツチ、14は、同
じく蓄電池7の負極側端セル9−Nに並列接続さ
れたリレー・スイツチである。リレー・スイツチ
13と14は、コマンドによつて“開”、“閉”さ
れる。
FIG. 1 is an explanatory diagram of a configuration showing an embodiment of this invention. 1 to 12 are exactly the same as the above-mentioned conventional device. 13 is an end cell 8-N of the storage battery 6
The relay switch 14 connected in parallel to the battery 7 is also a relay switch connected in parallel to the negative end cell 9-N of the storage battery 7. Relay switches 13 and 14 are "opened" and "closed" by commands.

上記のように構成された人工衛星の電源装置に
おいては、正常のときはリレー・スイツチ13と
14は“開”状態にあり、従来装置の動作と変わ
ることない。従来装置の欠点であつた一方の蓄電
池のセルの短絡故障が発生した場合の動作の説明
をする。例えば、蓄電池6のセル8−1〜8−N
の1つが短絡故障を起こしたとすると、蓄電池7
のリレー・スイツチ14を放電終了時コマンドに
より閉じる。その結果、蓄電池6の電圧は、セル
短絡故障により、1セル分の電圧が下がるが、蓄
電池7の電圧もリレー・スイツチ14を閉じるこ
とによりセル9−Nが短絡状態になるので1セル
分の電圧が下がり、両方の蓄電池電圧はほぼ等し
くなる。従つて、セル短絡故障が生じても大きな
放電電流のアンバランスを防ぐことができる。ま
た、逆に蓄電池7の1セルが短絡故障を起こした
場合には、蓄電池6のリレー・スイツチ13を閉
じて同様な効果を得る。
In the satellite power supply system configured as described above, the relay switches 13 and 14 are in the "open" state during normal operation, which is the same as in the conventional system. The operation when a cell short-circuit failure occurs in one of the storage batteries, which is a drawback of the conventional device, will be explained. For example, cells 8-1 to 8-N of storage battery 6
If one of the batteries causes a short-circuit failure, then the storage battery 7
The relay switch 14 is closed by a command at the end of discharge. As a result, the voltage of the storage battery 6 decreases by one cell due to the cell short-circuit failure, but the voltage of the storage battery 7 also decreases by one cell because the relay switch 14 is closed and the cell 9-N is short-circuited. The voltage will drop and both battery voltages will be approximately equal. Therefore, even if a cell short-circuit failure occurs, a large unbalance of discharge current can be prevented. Conversely, if one cell of the storage battery 7 suffers from a short-circuit failure, the relay switch 13 of the storage battery 6 is closed to obtain the same effect.

なお、上記説明では、2台の蓄電池の並列使用
について述べたが、3台以上の蓄電池の並列使用
についても適用できることはいうまでもない。ま
た、上記説明では、1セルの短絡故障を前提にし
て実施例を示したが、それ以上のセルの短絡故障
に対しても必要な個数のセルにリレー・スイツチ
を並列接続すれば同様に適用できる。
In addition, although the above description described the parallel use of two storage batteries, it goes without saying that it can also be applied to the parallel use of three or more storage batteries. In addition, in the above explanation, the embodiment was shown assuming a short-circuit failure of one cell, but it can be similarly applied to a short-circuit failure of more cells by connecting relays and switches to the necessary number of cells in parallel. can.

〔考案の効果〕[Effect of idea]

以上のようにこの考案によれば、並列使用して
いる蓄電池のセルにリレー・スイツチを並列接続
させるという簡単な構成により、蓄電池の並列使
用時のセル短絡故障に対して放電電流のアンバラ
ンスを有効に抑制できる効果がある。
As described above, according to this invention, by using a simple configuration in which a relay/switch is connected in parallel to the cells of storage batteries that are used in parallel, the unbalance of discharge current can be prevented in the event of a cell short-circuit failure when storage batteries are used in parallel. It has the effect of effectively suppressing it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例による人工衛星の
電源装置の構成説明図、第2図は従来の人工衛星
の電源装置の典型的な構成説明図、第3図は
NiCd蓄電池の放電深度と寿命の関係の一例を示
す図、第4図は正常なNiCd蓄電池と1セル短絡
したNiCd蓄電池を並列使用したときの放電電特
性データの一例を示す図である。 図中、1は太陽電池、2は電源バスライン、3
は衛星負荷、4はリターンライン、5はシヤント
レギユレータ、6は蓄電池、7は蓄電池、8はセ
ル、9はセル、10はダイオード、11はダイオ
ード、12は充電制御回路、13はリレー・スイ
ツチ、14はリレー・スイツチである。なお、図
中、同一符号は同一、又は相当部分を示す。
FIG. 1 is an explanatory diagram of the configuration of a power supply device for an artificial satellite according to an embodiment of this invention, FIG. 2 is an explanatory diagram of a typical configuration of a power supply device for a conventional satellite, and FIG.
FIG. 4 is a diagram showing an example of the relationship between the depth of discharge and the life of a NiCd storage battery. FIG. 4 is a diagram showing an example of discharge characteristic data when a normal NiCd storage battery and a NiCd storage battery with one cell shorted are used in parallel. In the figure, 1 is a solar cell, 2 is a power bus line, and 3
is a satellite load, 4 is a return line, 5 is a shunt regulator, 6 is a storage battery, 7 is a storage battery, 8 is a cell, 9 is a cell, 10 is a diode, 11 is a diode, 12 is a charging control circuit, 13 is a relay - Switch 14 is a relay switch. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数台の蓄電池を並列に使用して共通の電源バ
スラインに電力供給する人工衛星の電源装置にお
いて、上記蓄電池の各々が、蓄電池を構成してい
るセル(素電池)に並列接続したリレー・スイツ
チを具備していることを特徴とする人工衛星の電
源装置。
In a satellite power supply device that uses multiple storage batteries in parallel to supply power to a common power bus line, each of the storage batteries is connected in parallel to the cells (unit cells) that make up the storage battery. An artificial satellite power supply device comprising:
JP13962885U 1985-09-12 1985-09-12 Expired JPH0340062Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13962885U JPH0340062Y2 (en) 1985-09-12 1985-09-12

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13962885U JPH0340062Y2 (en) 1985-09-12 1985-09-12

Publications (2)

Publication Number Publication Date
JPS6248135U JPS6248135U (en) 1987-03-25
JPH0340062Y2 true JPH0340062Y2 (en) 1991-08-22

Family

ID=31045712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13962885U Expired JPH0340062Y2 (en) 1985-09-12 1985-09-12

Country Status (1)

Country Link
JP (1) JPH0340062Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633478B2 (en) * 2011-06-27 2014-12-03 株式会社デンソー Storage battery

Also Published As

Publication number Publication date
JPS6248135U (en) 1987-03-25

Similar Documents

Publication Publication Date Title
US5747887A (en) Multi-function electric power conversion system
US5160851A (en) Rechargeable back-up battery system including a number of battery cells having float voltage exceeding maximum load voltage
US5621300A (en) Charging control method and apparatus for power generation system
JPH1031525A (en) Photovoltaic power generation system
JPS6123757B2 (en)
JPH11127546A (en) Photovoltaic power generating system
US20120228943A1 (en) Electric power supply system
US5754384A (en) Overcurrent protection circuitry for non-isolated battery discharge controller
JP3469678B2 (en) DC power supply system
JPH06133472A (en) Sunlight power generating system
JP2002058170A (en) Uninterruptible power supply
JPH10201129A (en) Power generation installation making use of solar energy
JPH0951638A (en) Distributed power supply
JPH0946924A (en) Uninterruptible power supply with solar battery
JPH0340062Y2 (en)
JPH0965582A (en) Power supply system utilizing solar cell
JP4977805B1 (en) Stand-alone power supply
JP3147724B2 (en) Distributed power supply
JPH10174312A (en) System interconnection operating method for hybrid power supply system involving photovoltaic power generation and wind power generation
US10826320B2 (en) Solar power system
KR20220008793A (en) ESS, UPS conversion solar power generation system
US11233403B2 (en) Grid interconnection system
Todd Controls for small wind/solar/battery systems
CN220139245U (en) A and off-grid auto-change over device for energy storage system
CN218124321U (en) Power supply circuit of energy storage converter