JPH10243575A - Solar battery power unit and its operating method - Google Patents

Solar battery power unit and its operating method

Info

Publication number
JPH10243575A
JPH10243575A JP9037896A JP3789697A JPH10243575A JP H10243575 A JPH10243575 A JP H10243575A JP 9037896 A JP9037896 A JP 9037896A JP 3789697 A JP3789697 A JP 3789697A JP H10243575 A JPH10243575 A JP H10243575A
Authority
JP
Japan
Prior art keywords
power supply
power
storage battery
solar cell
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9037896A
Other languages
Japanese (ja)
Inventor
Takayuki Ohashi
孝之 大橋
Ten Konuki
天 小貫
Masami Kurosawa
正美 黒沢
Eiji Nakamura
英士 中村
Akira Ishida
晶 石田
Yoshinori Mitani
義則 三谷
Masaaki Yoshida
雅朗 吉田
Yukio Toyama
幸男 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIEIKOSU KK
Kyocera Corp
Waseda University
Japan Storage Battery Co Ltd
Kandenko Co Ltd
Sumitomo Electric Industries Ltd
Toyokuni Electric Cable Co Ltd
Sumitomo Densetsu Co Ltd
Original Assignee
JIEIKOSU KK
Kyocera Corp
Waseda University
Japan Storage Battery Co Ltd
Kandenko Co Ltd
Sumitomo Electric Industries Ltd
Toyokuni Electric Cable Co Ltd
Sumitomo Densetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIEIKOSU KK, Kyocera Corp, Waseda University, Japan Storage Battery Co Ltd, Kandenko Co Ltd, Sumitomo Electric Industries Ltd, Toyokuni Electric Cable Co Ltd, Sumitomo Densetsu Co Ltd filed Critical JIEIKOSU KK
Priority to JP9037896A priority Critical patent/JPH10243575A/en
Publication of JPH10243575A publication Critical patent/JPH10243575A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a solar battery power unit to exhaustively utilize the insolation energy. SOLUTION: A first power source 10 constituted by combining a solar battery 11 with a battery 12 and a power source which is formed by rectifying the electric power from a commercial AC power source 20 by means of a controlled rectifier circuit 21 are connected in parallel with a load 30 and the charging of the battery 12 from the AC power source 20 side is inhibited by means of a diode 14. The charged quantity of the battery 12 is measured by means of a charged quantity measuring circuit 15 and the circuit 21 sets the higher the power supply ratio from the AC power source 20 the smaller the charged quantity of the battery 12 is. Therefore, the insolation energy of the next day can be exhaustively stored in the battery 12, because the battery 12 is not charged form the AC power source side 20 and is maintained at a safe discharged depth.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池を備えた
電源装置及びその運転方法に係わり、特に、太陽電池の
利用効率の向上を図ったものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device having a solar cell and a method of operating the same, and more particularly to a power supply device having improved utilization efficiency of a solar cell.

【0002】[0002]

【従来の技術】例えば、商用交流電源と太陽電池とを組
み合わせた電源装置では、図6に示すように、太陽電池
1からの電力によって蓄電池2を充電すると共に負荷3
に電力を供給するようになっている。蓄電池2は商用交
流電源4の停電に備えて充電量が例えば60%を下回ら
ないように維持される設定であり、そのために充電制御
回路5によって端子電圧が常時監視され、これが所定値
を下回ると充電装置6が運転され、これにて商用交流電
源4からの電力によって蓄電池2の充電が開始されるよ
うになっている。
2. Description of the Related Art For example, in a power supply device combining a commercial AC power supply and a solar cell, as shown in FIG.
To supply power. The storage battery 2 is set so that the charge amount is maintained so as not to fall below, for example, 60% in preparation for a power failure of the commercial AC power supply 4. For this reason, the terminal voltage is constantly monitored by the charge control circuit 5, and if the terminal voltage falls below a predetermined value. The charging device 6 is operated, whereby the charging of the storage battery 2 is started by the electric power from the commercial AC power supply 4.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記構成で
は、例えば日中の日射量が少なかったり、夜間の消費電
力が予定よりも多かったりした場合には、蓄電池2の充
電量が60%まで低下した時点で充電装置6が自動的に
充電状態に入ることになる。このため、朝になって太陽
電池1が発電を開始し、その電力によっても蓄電池2が
充電されるようになると、ついには蓄電池2が満充電状
態になり、充電装置6が停止されると共に、蓄電池2の
過充電を避けるために継電器7を開いて太陽電池1を蓄
電池2から切り離すことになる。その後、負荷3には蓄
電池2から電力が供給されることになるから、その充電
量が次第に低下し、所定量まで低下したところで再び継
電器7を閉じて太陽電池1が負荷3に接続されることに
なる。太陽電池1が切り離されている間、負荷3には蓄
電池2から電力が供給され続けるから電力供給の面から
は問題はないが、その間の日射エネルギーは全く利用さ
れていないことになるから無駄である。特に、上述のよ
うな現象は日射強度が強い時期ほど起こり易いから、従
来より、日射エネルギーを余さず利用できる運転方法の
出現が期待されていた。
However, in the above configuration, for example, when the amount of solar radiation during the day is small or the power consumption at night is larger than expected, the charged amount of the storage battery 2 is reduced to 60%. At this point, the charging device 6 automatically enters the charging state. Therefore, in the morning, when the solar cell 1 starts to generate power and the storage battery 2 is charged by the power, the storage battery 2 eventually becomes fully charged, the charging device 6 is stopped, and In order to avoid overcharging of the storage battery 2, the relay 7 is opened to disconnect the solar cell 1 from the storage battery 2. Thereafter, since the power is supplied from the storage battery 2 to the load 3, the charge amount gradually decreases, and when the charge amount has decreased to the predetermined amount, the relay 7 is closed again and the solar cell 1 is connected to the load 3. become. While the solar cell 1 is disconnected, power is continuously supplied to the load 3 from the storage battery 2, so there is no problem in terms of power supply. However, the solar energy during that time is not used at all, so it is wasteful. is there. In particular, since the above-described phenomena are more likely to occur at a time when the solar radiation intensity is high, it has been expected that a driving method that can utilize the solar radiation energy without exhaustion has appeared.

【0004】なお、上述のように、日射を受けている太
陽電池1をシステムから切り離さざるを得なくなるよう
な事態を避けるためには、充電装置6が作動する蓄電池
2の最低充電量を低く設定しておくことも考えられる。
しかし、蓄電池2にとって放電深度を大きく設定するこ
とはその寿命の問題から好ましくないし、また、停電時
の電力確保の面からも問題を生ずる。
As described above, in order to avoid a situation in which the solar cell 1 receiving solar radiation must be separated from the system, the minimum charge amount of the storage battery 2 operated by the charging device 6 is set low. It is also conceivable to keep it.
However, it is not preferable for the storage battery 2 to set the depth of discharge to be large because of the problem of its life, and also causes a problem of securing power at the time of power failure.

【0005】本発明は上記事情に鑑みてなされたもの
で、従って、蓄電池の放電深度を大きく設定しなくと
も、日射エネルギーの有効利用を図ることができる太陽
電池を備えた電源装置及びその運転方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and therefore, a power supply apparatus having a solar cell and an operating method thereof that can effectively utilize solar radiation energy without setting a large discharge depth of a storage battery. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は、太陽電池及び
その発電電力を蓄える蓄電池を備えた第一電源と、定常
的に電力を供給し得る第二電源とを、負荷に対して並列
に接続してなる電源装置を運転する方法であって、第二
電源から蓄電池への充電を阻止した状態で、蓄電池の充
電量が少ないほど第二電源からの電力供給比率を高くす
るところに特徴を有する(請求項4の発明)。
According to the present invention, a first power supply having a solar cell and a storage battery for storing the power generated by the solar cell and a second power supply capable of constantly supplying power are provided in parallel with a load. A method of operating a connected power supply device, characterized in that in a state in which charging of a storage battery from a second power supply is prevented, the smaller the amount of charge of the storage battery, the higher the power supply ratio from the second power supply. (The invention of claim 4).

【0007】また、上記運転方法において、さらに、予
測される翌日の日射量が少ないほど第二電源からの電力
供給比率を高くすることが好ましい(請求項5の発
明)。
In the above operating method, it is preferable that the smaller the predicted amount of solar radiation on the next day, the higher the power supply ratio from the second power source (the invention of claim 5).

【0008】上記運転方法を実施するに際しては、太陽
電池及びその発電電力を蓄える蓄電池を備えた第一電源
と、定常的に電力を供給し得る第二電源とを、負荷に対
して並列に接続してなる電源装置において、蓄電池の充
電量を測定する充電量測定手段と、第二電源からの供給
電力を制御可能な供給電力調整手段と、第二電源から蓄
電池への充電電流を阻止する逆流阻止手段とを設け、供
給電力調整手段を、充電量測定手段により測定された蓄
電池の充電量が少ないほど第二電源からの電力供給比率
を高くする構成とすることができる(請求項1の発
明)。
In carrying out the operation method, a first power supply having a solar cell and a storage battery for storing the generated power and a second power supply capable of constantly supplying power are connected in parallel to a load. In the power supply device, the charge amount measuring means for measuring the charge amount of the storage battery, the supply power adjusting means capable of controlling the supply power from the second power supply, and the reverse flow for preventing the charging current from the second power supply to the storage battery The power supply adjusting means may be configured to increase the power supply ratio from the second power supply as the charge amount of the storage battery measured by the charge amount measuring means decreases. ).

【0009】また、請求項1の発明において供給電力調
整手段を、さらに、翌日の予測される日射量が多いほど
第二電源からの電力供給比率を低くする構成としてもよ
い(請求項2の発明)。
[0009] In the first aspect of the present invention, the power supply adjusting means may be configured to further reduce the power supply ratio from the second power supply as the predicted solar radiation of the next day is larger (the second aspect of the present invention). ).

【0010】また、供給電力調整手段が、第二電源の出
力電力を負荷電力を越えないようにすることにより第二
電源から蓄電池への充電電流を阻止する逆流阻止手段と
して機能するようにしてもよい(請求項3の発明)。
Further, the supply power adjusting means may function as a backflow preventing means for preventing the charging current from the second power supply to the storage battery by preventing the output power of the second power supply from exceeding the load power. Good (the invention of claim 3).

【0011】[0011]

【発明の作用及び効果】請求項4の発明に係る運転方法
によれば、太陽電池が発電状態にあるとき、その電力は
負荷に供給されるとともに、蓄電池に充電される。蓄電
池の充電量が大きくなれば、第二電源からの電力供給が
抑えられるから、主として太陽電池側から負荷に電力が
供給されるようになる。そして、例えば夕暮れになって
太陽電池の発電量が低下すると、蓄電池から負荷に電力
が供給され始めることになり、その充電量は次第に低下
することになる。すると、第二電源からの電力供給比率
が大きくされるから、蓄電池の放電深度が過剰に大きく
なることを防止でき、停電時の電力確保や蓄電池保護の
面で問題を生ずることはない。
According to the operation method of the fourth aspect of the present invention, when the solar cell is in the power generation state, the power is supplied to the load and the storage battery is charged. If the amount of charge of the storage battery increases, the power supply from the second power supply is suppressed, so that power is mainly supplied to the load from the solar cell side. Then, for example, when the power generation amount of the solar cell decreases at dusk, power is started to be supplied from the storage battery to the load, and the charge amount gradually decreases. Then, since the power supply ratio from the second power supply is increased, the depth of discharge of the storage battery can be prevented from becoming excessively large, and there is no problem in securing power during a power failure or protecting the storage battery.

【0012】また、第二電源から蓄電池への逆流が阻止
されているから、第二電源によって負荷に電力が供給さ
れている場合でも蓄電池が充電されてしまうことがな
く、ある程度放電した安全な放電深度の状態に維持して
おくことができる。このため、夜明けとともに太陽電池
が発電を開始するようになると、その発電電力は蓄電池
の充電に利用され、その充電量が高まると第二電源から
の電力供給比率が減少して太陽電池から負荷への流入電
力が増大し、ついには負荷だけに供給されるようにな
る。従って、太陽電池の発電電力は余すことなく蓄電池
の充電又は負荷への供給に利用することができることに
なり、日射エネルギーの利用効率が大きく向上する。
Further, since the backflow from the second power supply to the storage battery is prevented, the storage battery is not charged even when power is supplied to the load by the second power supply. Depth can be maintained. For this reason, when the solar cell starts to generate power at dawn, the generated power is used to charge the storage battery, and when the amount of charge increases, the power supply ratio from the second power supply decreases, and the power supply from the solar cell to the load And the inflowing power of the power increases, and eventually the power is supplied only to the load. Therefore, the power generated by the solar cell can be used for charging the storage battery or supplying it to the load without leaving any excess, and the efficiency of using solar radiation energy is greatly improved.

【0013】請求項5の運転方法によれば、予測される
翌日の日射量が少ないほど第二電源からの電力供給比率
を高くするから、翌日の発電電力量が少ないことが予想
される場合には、蓄電池の充電量は比較的多い状態に維
持される。このことは、翌日に負荷が要求する電力はよ
り多くの割合で蓄電池が分担することを意味するから、
日射エネルギーの利用効率が一層高くなる。また、予測
される翌日の日射量が多いと第二電源からの電力供給比
率が低くなって蓄電池の充電量が比較的低い状態に維持
されるから、翌日の日射エネルギーをより多く蓄電池に
蓄えることができ、この面からも日射エネルギーの利用
効率が高くなる。
According to the driving method of the fifth aspect, since the power supply ratio from the second power source is increased as the predicted solar radiation of the next day is smaller, the power generation amount of the next day is expected to be smaller. In this case, the state of charge of the storage battery is maintained in a relatively large state. This means that the storage battery will share a greater percentage of the power demanded by the load the next day,
The efficiency of using solar energy is further improved. In addition, if the predicted amount of solar radiation on the next day is large, the power supply ratio from the second power source is reduced, and the state of charge of the storage battery is maintained at a relatively low state. From this aspect, the efficiency of solar energy utilization can be improved.

【0014】また、請求項1の電源装置では請求項4の
運転方法が次のようにして実施される。すなわち、充電
量測定手段によって第一電源の蓄電池の充電量が測定さ
れ、第二電源からの負荷への電力供給比率は供給電力調
整手段によって調整される。この供給電力調整手段は、
充電量測定手段により測定された蓄電池の充電量が少な
いほど第二電源からの電力供給比率を高くする構成とな
っており、従って、この発明でも請求項4の運転方法と
同様な作用効果が得られる。
In the power supply device according to the first aspect, the operating method according to the fourth aspect is performed as follows. That is, the charge amount of the storage battery of the first power supply is measured by the charge amount measurement means, and the power supply ratio from the second power supply to the load is adjusted by the supply power adjustment means. This supply power adjusting means includes:
The configuration is such that the smaller the charge amount of the storage battery measured by the charge amount measuring means, the higher the power supply ratio from the second power supply. Therefore, in this invention, the same operation and effect as the operation method of claim 4 can be obtained. Can be

【0015】さらに、請求項2の電源装置では、供給電
力調整手段が翌日の予測日射量が少ないほど第二電源か
らの電力供給比率を高くするから、請求項5の発明に係
る運転方法と同様な作用効果が得られる。
Further, in the power supply device according to the second aspect, the supply power adjusting means increases the power supply ratio from the second power source as the predicted amount of solar radiation on the next day is smaller. Various effects can be obtained.

【0016】また、請求項3の電源装置では、供給電力
調整手段は、第二電源の出力電力を負荷電力にほぼ等し
くすることにより第二電源から蓄電池への充電電流を阻
止する逆流阻止手段を兼ねることができる。従って、例
えば充電電流の阻止のためのダイオード等が不要にな
り、その分の電圧降下がなくなるから、設計上の自由度
が高まる等の利点が得られる。
Further, in the power supply device according to the third aspect, the supply power adjusting means includes a backflow prevention means for preventing the charging current from the second power supply to the storage battery by making the output power of the second power supply substantially equal to the load power. Can double. Therefore, for example, a diode or the like for preventing a charging current is not required, and a voltage drop corresponding to the diode is eliminated, so that advantages such as an increase in design freedom are obtained.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<第1実施形態>以下、本発明の第1実施形態について
図1ないし図3を参照して説明する。この実施形態で
は、小電力の無線局用の例えば12V1A程度の直流電
源装置に適用した例を示している。第一電源10は、太
陽電池11とその発電電力を蓄える蓄電池12の組合わ
せが利用され、定常的な電力を供給しうる第二電源とし
て商用交流20が利用される。
<First Embodiment> A first embodiment of the present invention will be described below with reference to FIGS. This embodiment shows an example in which the present invention is applied to a DC power supply of, for example, about 12V1A for a low-power radio station. As the first power supply 10, a combination of a solar cell 11 and a storage battery 12 for storing the generated power is used, and a commercial AC 20 is used as a second power supply capable of supplying steady power.

【0018】図1に示すように、太陽電池11の出力は
過充電防止装置13を介して蓄電池12に接続されると
共に、逆流阻止手段に相当するダイオード14を介して
負荷30に接続されている。また、蓄電池12には、例
えば端子電圧に基づいてその充電量を測定する充電量測
定回路15が接続されている。
As shown in FIG. 1, the output of the solar cell 11 is connected to a storage battery 12 via an overcharge prevention device 13 and to a load 30 via a diode 14 corresponding to a backflow prevention means. . The storage battery 12 is connected to a charge amount measurement circuit 15 that measures the charge amount based on, for example, a terminal voltage.

【0019】一方、商用交流20は制御整流回路21に
よって定電圧・定電流の直流に変換され、その出力が負
荷30に接続されて前記第一電源10とは並列の関係と
なっている。この制御整流回路21は、例えば同図に示
すように商用交流20を降圧して整流し、これを定電圧
・定電流化回路22によるトランジスタのベース電流制
御によって出力電圧及び出力電流を制御する例えば充電
器等において周知の構成であり、その出力特性は例えば
図2に示すように定電圧・定電流特性を有する。そし
て、その最大電流値Imax を同図の二点鎖線に示すよう
に0〜100%の範囲内で変化させることができ、これ
にて商用交流電源20(第二電源)側からの供給電力を
調整する供給電力供給手段として機能させるようになっ
ている。
On the other hand, the commercial AC 20 is converted into a DC having a constant voltage and a constant current by the control rectifier circuit 21, and its output is connected to the load 30, so that the commercial AC 20 is in parallel with the first power supply 10. The control rectifier circuit 21 steps down and rectifies the commercial AC 20, for example, as shown in the figure, and controls the output voltage and output current by controlling the base current of the transistor by the constant voltage / constant current circuit 22. This is a well-known configuration in a charger or the like, and its output characteristic has, for example, a constant voltage / constant current characteristic as shown in FIG. Then, the maximum current value Imax can be changed within a range of 0 to 100% as shown by a two-dot chain line in FIG. 3, whereby the power supplied from the commercial AC power supply 20 (second power supply) side is reduced. It is designed to function as supply power supply means for adjustment.

【0020】そして、上記制御整流回路21の定電圧・
定電圧化回路22には充電量測定回路15からの信号が
与えられ、充電量測定回路15で測定された蓄電池12
の充電量が少ないほど制御整流回路21における最大電
流値Imax 、すなわち商用交流電源20側からの供給電
力を大きくするようになっている。
The constant voltage of the control rectifier circuit 21
A signal from the charge amount measurement circuit 15 is given to the constant voltage conversion circuit 22, and the storage battery 12 measured by the charge amount measurement circuit 15 is
Is smaller, the maximum current value Imax in the control rectifier circuit 21, that is, the power supplied from the commercial AC power supply 20 side is increased.

【0021】本実施形態の構成は上述のようであり、次
にその動作を図3も参照して説明する。日射量が多く太
陽電池11から十分な出力がある場合には、太陽電池1
1からの電力は負荷30に供給されつつ、蓄電池12が
充電される。いま、日中の日射量が十分にあって蓄電池
12が満充電状態になっているとすると、制御整流回路
21における最大電流値Imax は0に設定され、従って
負荷30に供給される電力は、商用交流電源20側では
なく、太陽電池11が発電している第一電源10側によ
って100%分担される。
The configuration of this embodiment is as described above, and the operation will be described next with reference to FIG. When the solar radiation is large and the solar cell 11 has a sufficient output, the solar cell 1
The storage battery 12 is charged while the power from 1 is supplied to the load 30. Now, assuming that the amount of insolation during the day is sufficient and the storage battery 12 is fully charged, the maximum current value Imax in the control rectifier circuit 21 is set to 0, and the power supplied to the load 30 is The power is shared 100% by the first power supply 10 that is generating power from the solar cell 11 instead of the commercial AC power supply 20.

【0022】夕暮れになって太陽電池11の発電量が低
下すると、当初は蓄電池12に蓄えられた電力のみが負
荷30に供給されるが、その結果、蓄電池12の充電量
が徐々に低下するため、これに伴い制御整流回路21に
おける最大電流値Imax が徐々に大きくされ、商用交流
電源20側からの電力供給量が徐々に増大する。この実
施形態では、図3に示すように、例えば蓄電池12の充
電量が90%に低下したところで商用交流電源20が2
5%(蓄電池12側が75%)を分担し、充電量が80
%となったところで商用交流電源20が50%(蓄電池
12側が50%)を分担するようになっており、充電率
が60%まで低下すると、全ての電力を商用交流電源2
0が分担する。従って、夜間の消費電力が多い場合で
も、蓄電池12は充電量60%までの放電で留まること
になる。このように蓄電池12の充電量を60%以下に
下げない理由は、商用交流電源20の停電に備えるため
である。
When the amount of power generated by the solar cell 11 decreases at dusk, only the power stored in the storage battery 12 is initially supplied to the load 30, but as a result, the charge amount of the storage battery 12 gradually decreases. Accordingly, the maximum current value Imax in the control rectifier circuit 21 is gradually increased, and the amount of power supplied from the commercial AC power supply 20 is gradually increased. In this embodiment, as shown in FIG. 3, when the charged amount of the storage battery 12 is reduced to 90%, the commercial AC power
5% (75% on the storage battery 12 side)
%, The commercial AC power supply 20 shares 50% (50% on the storage battery 12 side). When the charging rate decreases to 60%, all the electric power is supplied to the commercial AC power supply 2.
0 shares. Therefore, even when the nighttime power consumption is large, the storage battery 12 remains discharged up to the charged amount of 60%. The reason why the charged amount of the storage battery 12 is not reduced to 60% or less is to prepare for a power failure of the commercial AC power supply 20.

【0023】なお、このように蓄電池12の充電量が6
0%に抑えられ、かつ、制御整流回路21から電力が供
給されている状態にあっても、蓄電池12の後段にはダ
イオード14が設けられているから、蓄電池12が商用
交流電源20側から充電されてしまうことはなく、蓄電
池12の充電量が60%から上昇することはない。
As described above, the charge amount of the storage battery 12 is 6
Even when the power is supplied from the control rectifier circuit 21 and the power is supplied from the control rectifier circuit 21, since the diode 14 is provided at the subsequent stage of the storage battery 12, the storage battery 12 is charged from the commercial AC power supply 20 side. The charging amount of the storage battery 12 does not increase from 60%.

【0024】さて、夜明けになると徐々に太陽電池11
が発電を開始するから、その発生電力によって蓄電池1
2の充電と負荷30への電力供給とが同時的に行われ
る。蓄電池12の充電量は、ほとんどの場合、夜間のう
ちに最低基準の60%まで低下しているから、太陽電池
11の発電電力は蓄電池12に余すことなく貯えられ、
蓄電池12が満充電に至ったときには商用交流電源20
の電力供給比率が0に抑えられるから、負荷電力は全て
太陽電池11により賄われることになる。
Now, at dawn, the solar cell 11
Starts power generation, and the generated power causes storage battery 1
2 and the power supply to the load 30 are performed simultaneously. In most cases, the amount of charge of the storage battery 12 is reduced to 60% of the minimum reference during the night, so that the power generated by the solar cell 11 is fully stored in the storage battery 12,
When the storage battery 12 is fully charged, the commercial AC power supply 20
Since the power supply ratio is controlled to 0, all the load power is supplied by the solar cell 11.

【0025】このように本実施形態によれば、夜明けと
ともに太陽電池11が発電を開始するようになった時点
では、蓄電池12の充電率は常に低く抑えられた状態に
あるから、太陽電池11の発生電力を蓄電池12の充電
に余すことなく利用することができ、結局、従来に比べ
て日射エネルギーの利用効率が大きく向上する。しか
も、蓄電池12の最低充電量は従来と同様に設定してお
けばよいから、停電時の電力確保や蓄電池保護等の面に
おいて問題を生ずることもない。
As described above, according to the present embodiment, at the time when the solar battery 11 starts to generate power at dawn, the charging rate of the storage battery 12 is always kept low. The generated power can be fully used for charging the storage battery 12, and as a result, the use efficiency of the solar energy is greatly improved as compared with the related art. Moreover, since the minimum charge amount of the storage battery 12 may be set in the same manner as in the related art, there is no problem in securing power at the time of a power failure or protecting the storage battery.

【0026】<第2実施形態>この実施形態は、翌日の
日射量を予測し、これを考慮して制御整流回路21から
の電力供給比率を定めるようにしたものであり、図4に
示すように日射量データ入力回路40を設けてここから
の信号によっても定電圧・定電流化回路22が制御され
るようにしたところが前記第1実施形態と相違する。そ
の他の点は第1実施形態と同様であるから、同一部分に
は同一符号を付して重複説明を省略し、異なるところの
みを説明する。
<Second Embodiment> In this embodiment, the amount of insolation is predicted on the next day, and the power supply ratio from the control rectifier circuit 21 is determined in consideration of this, as shown in FIG. The second embodiment differs from the first embodiment in that a solar radiation data input circuit 40 is provided to control the constant voltage / constant current conversion circuit 22 by a signal from the circuit. The other points are the same as those of the first embodiment. Therefore, the same portions are denoted by the same reference numerals, and the description thereof will not be repeated. Only different points will be described.

【0027】予測された日射量に関するデータは、例え
ばH,M,Lの3段階で日射量データ入力回路40にお
いて入力できるようになっており、この入力値と、充電
量測定回路15において測定された蓄電池12の充電量
との2つの要素に基づき定電圧・定電流化回路22が制
御される。この実施形態では、翌日の日射量が中間的な
量であると予測されて「M」が入力された場合には、蓄
電池12の充電量と制御整流回路22の出力との関係
は、次表に示すように、前記第1実施形態と同様に設定
されるが、翌日の日射量が大と予測されて「H」が入力
された場合と、「L」が入力された場合には、第1実施
形態とは異なる関係に設定される。 蓄電池12の充電量 商用交流電源の供給比率(%) H M L 100% 0 0 0 90% 15 25 25 80% 25 50 100 60% 100 100 100 40% 100 100 100 0% 100 100 100 すなわち、翌日の日射量が大と予測されている場合
(「H」)には、商用交流電源20からの電力供給比率
が小さくされて第一電源10による分担比率が大きくな
る。この結果、蓄電池12の充電量は日射量が平均的な
場合に比べて少なくなる傾向を呈するが、翌日に十分な
発電量が確保されるから、充電量は早期に回復する。ま
た、翌日の日射量が少ないと予測されている場合
(「L」)には、商用交流電源20からの電力供給比率
が大きくされ、充電量が80%にまで低下したところで
商用交流電源20が100%の電力を分担する。この結
果、蓄電池12に多量の電力を貯えたままに維持してお
くことができ、翌日の太陽電池11からの発電電力の不
足傾向を補うことができる。
The data relating to the predicted amount of solar radiation can be input in the solar radiation data input circuit 40 in, for example, three stages of H, M and L. The constant voltage / constant current circuit 22 is controlled based on the two factors, that is, the amount of charge of the storage battery 12. In this embodiment, when the amount of solar radiation on the next day is predicted to be an intermediate amount and “M” is input, the relationship between the charge amount of the storage battery 12 and the output of the control rectifier circuit 22 is as shown in the following table. As shown in FIG. 7, the setting is performed in the same manner as in the first embodiment. However, when the amount of insolation is predicted to be large on the next day and “H” is input, and when “L” is input, the second The relationship is set to be different from that of the first embodiment. Charge amount of storage battery 12 Supply ratio of commercial AC power supply (%) HML 100% 0000 90% 15 25 25 80% 25 50 100 60% 100 100 100 40% 100 100 100 0% 100 100 100 That is, the next day Is predicted to be large ("H"), the power supply ratio from the commercial AC power supply 20 is reduced, and the sharing ratio of the first power supply 10 is increased. As a result, the amount of charge of the storage battery 12 tends to be smaller than that in the case where the amount of solar radiation is average, but a sufficient amount of power generation is secured the next day, so that the amount of charge recovers early. When the amount of solar radiation on the next day is predicted to be small (“L”), the power supply ratio from the commercial AC power supply 20 is increased, and when the charged amount is reduced to 80%, the commercial AC power supply 20 is switched off. Shares 100% power. As a result, a large amount of electric power can be kept stored in the storage battery 12, and the shortage of power generated from the solar cell 11 on the next day can be compensated.

【0028】<第3実施形態>この実施形態は、図5に
示すように、ダイオード14を省略し、その代わりに制
御整流回路21の最大出力電流Imax が負荷30の負荷
電流を越えないように設定したところが第2実施形態と
相違する。その他の点は第2実施形態と同様であるか
ら、同一部分に同一符号を付して重複説明を省略する。
<Third Embodiment> In this embodiment, as shown in FIG. 5, the diode 14 is omitted, and instead, the maximum output current Imax of the control rectifier circuit 21 does not exceed the load current of the load 30. The setting is different from the second embodiment. The other points are the same as those of the second embodiment.

【0029】制御整流回路21の最大出力電流Imax が
負荷電流を越えないように設定したことにより、ダイオ
ード14を省略しても蓄電池12に充電電流が流れ込む
ことがなくなる。従って、ダイオード14による電圧降
下がなくなるから、設計上の自由度が高くなるという利
点が得られる。
By setting the maximum output current Imax of the control rectifier circuit 21 not to exceed the load current, the charging current does not flow into the storage battery 12 even if the diode 14 is omitted. Accordingly, since the voltage drop due to the diode 14 is eliminated, the advantage that the degree of freedom in design is increased is obtained.

【0030】<他の実施形態>本発明は上記記述及び図
面によって説明した実施の形態に限定されるものではな
く、例えば次のような実施の形態も本発明の技術的範囲
に含まれ、さらに、下記以外にも要旨を逸脱しない範囲
内で種々変更して実施することができる。
<Other Embodiments> The present invention is not limited to the embodiments described above with reference to the drawings and drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the following, various changes can be made without departing from the scope of the invention.

【0031】(1)上記各実施形態では小電力の無線局
用の電源装置に適用した例を示したが、本発明は負荷電
力の大小を問わないから、より大規模な電源設備にも適
用することができる。電力容量が大きな供給電力調整手
段を構成するには、例えばサイリスタを利用した制御整
流回路を採用し、そのサイリスタの通電角を制御するこ
とで第二電源からの供給電力を調整することができる。
(1) In each of the above embodiments, an example is shown in which the present invention is applied to a power supply device for a low power radio station. However, the present invention is applicable to a larger power supply equipment since the load power does not matter. can do. In order to configure the power supply adjusting means having a large power capacity, for example, a control rectifier circuit using a thyristor is employed, and the power supplied from the second power supply can be adjusted by controlling the conduction angle of the thyristor.

【0032】(2)第二電源としては、商用交流電源に
限らず、例えばディーゼル発電機、燃料電池等の定常的
に電力を供給して太陽電池の日射依存性を補い得るもの
であればよい。
(2) The second power supply is not limited to a commercial AC power supply, but may be any power supply such as a diesel generator or a fuel cell that can constantly supply power to compensate for the solar radiation dependence of the solar cell. .

【0033】(3)上記各実施形態では直流負荷を例示
したが、交流負荷であってもよいことは勿論である。交
流負荷とした場合には、各実施形態における負荷30を
インバータ装置に置き換えればよい。
(3) In each of the above embodiments, a DC load has been exemplified. However, an AC load may be used. When an AC load is used, the load 30 in each embodiment may be replaced with an inverter device.

【0034】(4)第2及び第3実施形態において、日
射量に関するデータは、H,M,Lの3段階で日射量デ
ータ入力回路40に逐一入力するようにしたが、これに
限らず翌日の日射量を自動的に予測する日射量予測回路
を構成し、その出力を制御整流回路22に与えるように
してもよい。日射量予測回路は、例えば圧力センサにて
検出した気圧変動や、風向計にて検出した風向き等に基
づきCPUが翌日の天候や日射量を予測するように構成
することができる。また、予測センターにて予測した日
射量データを有線或いは無線で各地の電源設備に送信す
る構成とすることもできる。
(4) In the second and third embodiments, the data relating to the amount of solar radiation is input to the solar radiation data input circuit 40 in three stages of H, M and L, but the present invention is not limited to this. May be configured to automatically predict the amount of solar radiation, and the output thereof may be provided to the control rectifier circuit 22. The solar radiation amount predicting circuit can be configured so that the CPU predicts the next day's weather and solar radiation amount based on, for example, atmospheric pressure fluctuation detected by a pressure sensor, wind direction detected by an anemometer, and the like. In addition, the solar radiation amount data predicted by the prediction center may be transmitted to power supply facilities in various places by wire or wirelessly.

【0035】(5)充電量測定手段としては、蓄電池の
端子電圧を測定するものに限らず、充放電電流を測定し
て充電量を算出する構成であってもよい。また、端子電
圧のみならず、温度や充放電電流も測定し、これらに基
づき充電量を測定するものであってもよい。
(5) The charge amount measuring means is not limited to the one which measures the terminal voltage of the storage battery, but may be a structure which measures the charge / discharge current to calculate the charge amount. Further, not only the terminal voltage but also the temperature and the charging / discharging current may be measured, and the charged amount may be measured based on the measured values.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態を示すブロック図FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】制御整流回路の電圧・電流特性図FIG. 2 is a diagram showing voltage / current characteristics of a control rectifier circuit.

【図3】蓄電池の充電量と各電源の電力分担率の変化を
示すグラフ
FIG. 3 is a graph showing a change in a charge amount of a storage battery and a power sharing ratio of each power supply.

【図4】第2実施形態を示すブロック図FIG. 4 is a block diagram showing a second embodiment.

【図5】第3実施形態を示すブロック図FIG. 5 is a block diagram showing a third embodiment.

【図6】従来の太陽電池電源システムの一例を示すブロ
ック図
FIG. 6 is a block diagram showing an example of a conventional solar cell power supply system.

【符号の説明】[Explanation of symbols]

10…第一電源 11…太陽電池 12…蓄電池 14…ダイオード(逆流阻止手段) 15…充電量測定回路(充電量測定手段) 20…商用交流電源(第二電源) 21…制御整流回路(供給電力調整手段) 30…負荷 40…日射量データ入力回路 DESCRIPTION OF SYMBOLS 10 ... 1st power supply 11 ... Solar cell 12 ... Storage battery 14 ... Diode (backflow prevention means) 15 ... Charge amount measurement circuit (charge amount measurement means) 20 ... Commercial AC power supply (2nd power supply) 21 ... Control rectifier circuit (supply electric power) Adjustment means) 30: load 40: solar radiation data input circuit

───────────────────────────────────────────────────── フロントページの続き (71)出願人 000183392 住友電設株式会社 大阪府大阪市西区阿波座2丁目1番4号 (71)出願人 000002130 住友電気工業株式会社 大阪府大阪市中央区北浜四丁目5番33号 (71)出願人 000141060 株式会社関電工 東京都港区芝浦4丁目8番33号 (71)出願人 000110309 トヨクニ電線株式会社 東京都豊島区南池袋2−30−11 (71)出願人 000245139 株式会社ジェイコス 東京都目黒区目黒1丁目1番6号 (72)発明者 大橋 孝之 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 (72)発明者 小貫 天 千葉県船橋市前原西1丁目25番17号 (72)発明者 黒沢 正美 千葉県佐倉市大作1丁目4番3号 京セラ 株式会社千葉佐倉工場内 (72)発明者 中村 英士 大阪府大阪市西区阿波座2丁目1番4号 住友電設株式会社内 (72)発明者 石田 晶 神奈川県横浜市栄区田谷町1番地 住友電 気工業株式会社横浜製作所内 (72)発明者 三谷 義則 東京都港区芝浦4丁目8番33号 株式会社 関電工内 (72)発明者 吉田 雅朗 埼玉県行田市埼玉4125番地 トヨクニ電線 株式会社内 (72)発明者 外山 幸男 東京都目黒区目黒1丁目1番6号 株式会 社ジェイコス内 ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 000183392 Sumitomo Electric Co., Ltd. 2-4-1 Awaza, Nishi-ku, Osaka-shi, Osaka (71) Applicant 000002130 Sumitomo Electric Industries, Ltd. 4-5-Kitahama, Chuo-ku, Osaka-shi, Osaka No. 33 (71) Applicant 000141060 Kandenko Co., Ltd. 4-83-3 Shibaura, Minato-ku, Tokyo (71) Applicant 000110309 Toyokuni Electric Wire Co., Ltd. 2-30-11 Minamiikebukuro, Toshima-ku, Tokyo (71) Applicant 000245139 Jaccos Co., Ltd. 1-6-1, Meguro, Meguro-ku, Tokyo (72) Inventor Takayuki Ohashi 1-in-1 Inosinabacho, Nishinosho, Kyoto-shi, Minami-ku, Japan Inside Nippon Battery Co., Ltd. (72) Inventor Ama Konuki Chiba 1-25-25 Maehara Nishi, Funabashi City (72) Inventor Masami Kurosawa 1-4-3 Daisaku, Sakura City, Chiba Prefecture Kyocera Corporation Chiba Sakura Plant (72) Person Eiji Nakamura 2-1-1, Awaza, Nishi-ku, Osaka-shi, Osaka Sumitomo Electric Construction Co., Ltd. (72) Inventor Akira Ishida 1-chome, Taya-cho, Sakae-ku, Yokohama, Kanagawa Prefecture Sumitomo Electric Industries, Ltd. Yoshinori Mitani 4-8-33 Shibaura, Minato-ku, Tokyo Kandenko Co., Ltd. (72) Inventor Masaro Yoshida 4125 Saitama, Gyoda-shi, Saitama Toyokuni Electric Wire Co., Ltd. (72) Inventor Yukio Toyama 1 Meguro, Meguro-ku, Tokyo 1-6, Jacobs Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池及びその発電電力を蓄える蓄電
池を備えた第一電源と、定常的に電力を供給し得る第二
電源とを、負荷に対して並列に接続してなる電源装置で
あって、前記蓄電池の充電量を測定する充電量測定手段
と、前記第二電源からの供給電力を制御可能な供給電力
調整手段と、前記第二電源から前記蓄電池への充電電流
を阻止する逆流阻止手段とを備え、前記供給電力調整手
段は、前記充電量測定手段により測定された蓄電池の充
電量が少ないほど前記第二電源からの電力供給比率を高
くする構成であることを特徴とする太陽電池電源装置。
1. A power supply device comprising: a first power supply provided with a solar cell and a storage battery for storing the generated power; and a second power supply capable of constantly supplying power, connected in parallel to a load. A charge amount measuring means for measuring a charge amount of the storage battery, a supply power adjusting means capable of controlling a supply power from the second power supply, and a backflow prevention for blocking a charging current from the second power supply to the storage battery. Means for supplying electric power from the second power supply as the charge amount of the storage battery measured by the charge amount measuring means decreases. Power supply.
【請求項2】 供給電力調整手段は、さらに、翌日の予
測される日射量が高いほど前記第二電源からの電力供給
比率を低くする構成であることを特徴とする請求項1記
載の太陽電池電源装置。
2. The solar cell according to claim 1, wherein the power supply adjusting unit further has a configuration in which the higher the predicted solar radiation amount of the next day, the lower the power supply ratio from the second power supply. Power supply.
【請求項3】 前記供給電力調整手段は、第二電源の出
力電力を負荷電力を越えないようにすることにより第二
電源から前記蓄電池への充電電流を阻止する逆流阻止手
段を兼ねていることを特徴とする請求項1又は請求項2
に記載の太陽電池電源装置。
3. The supply power adjusting means also serves as a backflow prevention means for preventing a charging current from the second power supply to the storage battery by preventing the output power of the second power supply from exceeding the load power. The method according to claim 1 or 2, wherein
A solar cell power supply device according to item 1.
【請求項4】 太陽電池及びその電力を蓄える蓄電池を
備えた第一電源と、定常的に電力を供給し得る第二電源
とを、負荷に対して並列に接続してなる電源装置を運転
する方法であって、前記第二電源から前記蓄電池への充
電を阻止した状態で、前記蓄電池の充電量が少ないほど
前記第二電源からの電力供給比率を高くすることを特徴
とする太陽電池電源装置の運転方法。
4. A power supply device comprising a first power supply having a solar cell and a storage battery for storing the power, and a second power supply capable of constantly supplying power is connected in parallel to a load. A method, wherein in a state in which charging of the storage battery from the second power supply is blocked, the smaller the charge amount of the storage battery, the higher the power supply ratio from the second power supply. Driving method.
【請求項5】 請求項4の運転方法において、さらに、
予測される翌日の日射量が少ないほど第二電源からの電
力供給比率を高くすることを特徴とする太陽電池電源装
置の運転方法。
5. The driving method according to claim 4, further comprising:
A method for operating a solar cell power supply, wherein the power supply ratio from the second power supply is increased as the predicted next day's solar radiation is smaller.
JP9037896A 1997-02-21 1997-02-21 Solar battery power unit and its operating method Pending JPH10243575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9037896A JPH10243575A (en) 1997-02-21 1997-02-21 Solar battery power unit and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9037896A JPH10243575A (en) 1997-02-21 1997-02-21 Solar battery power unit and its operating method

Publications (1)

Publication Number Publication Date
JPH10243575A true JPH10243575A (en) 1998-09-11

Family

ID=12510314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9037896A Pending JPH10243575A (en) 1997-02-21 1997-02-21 Solar battery power unit and its operating method

Country Status (1)

Country Link
JP (1) JPH10243575A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057116A (en) * 2005-08-22 2007-03-08 Sharp Corp Indoor ventilation system, and its method
JP3149024U (en) * 2008-10-01 2009-03-12 實 村野 Commercial power injection type solar cell DC interconnection system
JP2010220352A (en) * 2009-03-16 2010-09-30 Tokyo Electric Power Co Inc:The Reproducible power charging system and charging method
KR101010952B1 (en) 2010-12-06 2011-01-25 에스엘이 (주) Flasher apparatus for minimizing electricity consumption
WO2011148908A1 (en) * 2010-05-27 2011-12-01 三洋電機株式会社 Solar cell system
JP2013074781A (en) * 2011-09-29 2013-04-22 Mitsubishi Heavy Industries Parking Co Ltd Mechanical parking device and power supply method therefor
JP2014079062A (en) * 2012-10-09 2014-05-01 Komatsu Ltd Power supply system
WO2014068735A1 (en) * 2012-10-31 2014-05-08 Jfeエンジニアリング株式会社 Quick charger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057116A (en) * 2005-08-22 2007-03-08 Sharp Corp Indoor ventilation system, and its method
JP2011058799A (en) * 2005-08-22 2011-03-24 Sharp Corp Indoor ventilation system and method for the same
JP4723952B2 (en) * 2005-08-22 2011-07-13 シャープ株式会社 Indoor ventilation system
JP3149024U (en) * 2008-10-01 2009-03-12 實 村野 Commercial power injection type solar cell DC interconnection system
JP2010220352A (en) * 2009-03-16 2010-09-30 Tokyo Electric Power Co Inc:The Reproducible power charging system and charging method
WO2011148908A1 (en) * 2010-05-27 2011-12-01 三洋電機株式会社 Solar cell system
JP2011250608A (en) * 2010-05-27 2011-12-08 Sanyo Electric Co Ltd Solar cell system
CN102918745A (en) * 2010-05-27 2013-02-06 三洋电机株式会社 Solar cell system
KR101010952B1 (en) 2010-12-06 2011-01-25 에스엘이 (주) Flasher apparatus for minimizing electricity consumption
JP2013074781A (en) * 2011-09-29 2013-04-22 Mitsubishi Heavy Industries Parking Co Ltd Mechanical parking device and power supply method therefor
JP2014079062A (en) * 2012-10-09 2014-05-01 Komatsu Ltd Power supply system
WO2014068735A1 (en) * 2012-10-31 2014-05-08 Jfeエンジニアリング株式会社 Quick charger

Similar Documents

Publication Publication Date Title
JP4765162B2 (en) Power storage type solar power generation system
AU2003218669B2 (en) Separate network and method for operating a separate network
US7439635B2 (en) Output suppressing method of a plurality of dispersed power sources and dispersed power source managing system
JP2007166818A (en) Power supply system and control method thereof
JP2004064814A (en) Method and system for power supply
JP2002218654A (en) Photovoltaic power generation system
JP6225672B2 (en) Power supply equipment and operation method thereof
JPH10243575A (en) Solar battery power unit and its operating method
JP2002058174A (en) Independent solar generation system and its control method
JPH10201129A (en) Power generation installation making use of solar energy
JP2003153448A (en) Power generation system
JPH1146458A (en) Solar power generating system
JPH0946924A (en) Uninterruptible power supply with solar battery
JP2002078205A (en) Power leveling device for generating device utilizing natural energy
JP2004064855A (en) Power supply device using photoelectric cell
JP2000278866A (en) Power storage uninterruptive power supply
JP2002010495A (en) Power supply system
JPH05252671A (en) Control system for photovoltaic power generation
JP2003092831A (en) Power supply system and its operation method
JP2002058175A (en) Independent power supply system
JP3216969B2 (en) Uninterruptible solar power generation system
JP3688744B2 (en) Solar power plant
JP2000166124A (en) Auxiliary power unit
JPH04372537A (en) Composite input station
JPH11155242A (en) Operating method of sunlight power generation device

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20041213

Free format text: JAPANESE INTERMEDIATE CODE: A523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050316

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090325

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20090325

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100325

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100325

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20110325

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20120325

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130325

Year of fee payment: 8