JP4765162B2 - Power storage type solar power generation system - Google Patents

Power storage type solar power generation system Download PDF

Info

Publication number
JP4765162B2
JP4765162B2 JP2000368828A JP2000368828A JP4765162B2 JP 4765162 B2 JP4765162 B2 JP 4765162B2 JP 2000368828 A JP2000368828 A JP 2000368828A JP 2000368828 A JP2000368828 A JP 2000368828A JP 4765162 B2 JP4765162 B2 JP 4765162B2
Authority
JP
Japan
Prior art keywords
power
solar cell
storage
solar
conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000368828A
Other languages
Japanese (ja)
Other versions
JP2002171674A (en
Inventor
統 末田
雅英 山口
晋也 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2000368828A priority Critical patent/JP4765162B2/en
Publication of JP2002171674A publication Critical patent/JP2002171674A/en
Application granted granted Critical
Publication of JP4765162B2 publication Critical patent/JP4765162B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電力貯蔵機能を内蔵した太陽光発電システムに関する。
【0002】
【従来の技術】
太陽光発電システムは、太陽電池の発電した直流電力をパワーコンディショナにて交流電力に変換し、一般的に系統と連系して電力を負荷に供給するシステムである。パワーコンディショナは系統と連系しているので、太陽電池の発電電力が負荷の消費電力より小さい場合は、発電電力はすべて負荷にて消費され、不足分が系統から供給されるが、発電電力が負荷の消費電力より大きい場合は余剰電力が発生し、通常は系統に逆潮流電力として供給される。
【0003】
一方、電力貯蔵システムは、夜間の余剰電力をパワーコンディショナを介して蓄電池等の電力貯蔵手段に蓄え、昼間にこれを利用することにより昼間の発電電力のピークを抑制し、夜間電力の有効利用を行うシステムである。このようなシステムの一例としては、電力貯蔵手段として従来から揚水発電が知られているが、最近では鉛電池などの蓄電池を利用したシステムの実用化が検討されている。これは、余剰電力の蓄積手段として蓄電池を使用することにより、システムの省スペース化が可能だからである。そしてシステムを需要家内に設置する事ができるなど、設置面での自由度がきわめて向上するからである。またその他、万一の停電時に蓄電池からの電力供給により、無停電化が可能になるなど、需要家にとってもメリットが大きいためである。
【0004】
上記の各システムでは、直流・交流間の電力変換を行うためにパワーコンディショナが必要である。そこで、太陽光発電システムに電力貯蔵システムを組み合わせることにより、パワーコンディショナを共用することができる。さらに、両者を組み合わせてパワーコンディショナを共用することで、長時間の停電が起こっても太陽電池から出力された電力で蓄電池を充電しながら同時にパワーコンディショナを自立運転させることが可能となるので、非常に安定した電力を利用することができるというメリットがある。このようなことから、上記各システムを組み合わせた電力貯蔵型太陽光発電システムの検討が進められている。
【0005】
図2は、このような従来の電力貯蔵型太陽光発電システムの構成例を示すブロック図である。1は太陽電池、2は蓄電池、3は逆流防止ダイオード、5は負荷、6は受電電力検出器、7は系統、そして8がパワーコンディショナ、81がインバータである。本構成例では、太陽電池1とパワーコンディショナ8とを逆流防止ダイオード3を介して接続し、前記パワーコンディショナ8に備えられているインバータ81の直流側に蓄電池2を接続している。また、パワーコンディショナ8の交流側には負荷5が接続され、受電電力検出器6を介して系統7に接続されている。
【0006】
上記構成例の動作は、基本的な運転として、夜間にパワーコンディショナ8を順変換運転して蓄電池2を充電し、昼間はパワーコンディショナ8を逆変換運転して、太陽電池1の発電電力と蓄電池2の放電電力をあわせて負荷5に供給するというものである。
【0007】
しかしながら、上記太陽電池1の発電電力と蓄電池2からの放電電力との和が負荷5の消費電力より大きい場合、余剰電力となって系統7に流出することになる。その際、前記余剰電力には蓄電池2からの放電電力も含まれており、わざわざ夜間に充電した蓄電池2の充電電力が無駄に放電してしまうことになる。
【0008】
そこで、従来のシステムでは、このような問題を防止するために受電電力検出器6を設けて受電電力を監視し、受電電力が一定レベル以下となればパワーコンディショナ8の変換電力を制限するように制御している。これはすなわち、上述のように蓄電池2からの放電電力が再び系統7に戻ることがエネルギーの効率的な利用の点で好ましくないという理由によるものである。
【0009】
【発明が解決しようとする課題】
ところが、上記従来の構成によれば、蓄電池から系統への電力流出を避けるためにパワーコンディショナの変換電力を制限するため、同時に太陽電池の発電電力まで制限されてしまうという問題があった。すなわち、太陽電池と蓄電池の電力をパワーコンディショナにて一括して変換しているため、蓄電池からの電力流出を避けるために変換電力を制限すると、同時に太陽電池からの発電電力まで制限されてしまう。従って、その時点で仮に太陽電池の発電電力が負荷の消費電力に対して大きくても、結局制限されてしまい、十分な余剰電力を系統へ逆潮流することができず、太陽電池の発電電力が無駄になるという問題があった。
【0010】
さらに、上記従来の構成では、太陽電池がダイオードを介して直接蓄電池に接続されるため、太陽電池の出力電圧を常時その最大出力電圧に維持することができず、発電電力を有効に取り出せないという問題があった。
【0011】
そこで、本発明の目的は、蓄電池から系統への電力流出を防止しつつ、太陽電池の余剰電力の逆潮流が可能な電力貯蔵型太陽光発電システムを提供すること、さらに蓄電池から系統への電力流出防止に加え、太陽電池からの発電電力をより効率的に出力し得る電力貯蔵型太陽光発電システムを提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するために、本発明の電力貯蔵型太陽光発電システムは、電力貯蔵手段と、太陽電池と系統との間に接続された、系統との連系運転を行う第1の電力変換手段と前記電力貯蔵手段の電力を変換して前記第1の電力変換手段に入力する第2の電力変換手段とを具備した太陽光発電用パワーコンディショナと、前記パワーコンディショナと系統とが接続される受電点に接続された、受電点の受電電力を検出する受電電力検出手段とを備えた電力貯蔵型太陽光発電システムであって、太陽電池の発電電力と電力貯蔵手段からの電力の両方の出力時に、受電電力検出手段によって検出された受電電力が所定の電力を下回らないように、第2の電力変換手段を制御する制御手段を備えたことを特徴とする。
【0013】
上記の電力貯蔵型太陽光発電システムによれば、太陽電池からの発電電力を制限することなく、電力貯蔵手段に蓄えられた電力が系統へ流出してしまうことを防ぐことができる。
【0014】
そして、さらに太陽電池からの発電電力をより効率的に出力し得るシステムとするために、上記電力貯蔵型太陽光発電システムにおいて、上記太陽電池と上記第1の電力変換手段との間に昇圧チョッパを備えることが好ましい。
【0015】
上記の昇圧チョッパを備えた電力貯蔵型太陽光発電システムによれば、電力貯蔵手段から系統への電力流出防止に加えて、昇圧チョッパにより太陽電池の発電電力が常に最大となるように最大電力追従制御を行うことができるので、太陽電池からの発電電力をより効率的に出力することが可能となる。
【0016】
【発明の実施の形態】
本発明の電力貯蔵型太陽光発電システムは、太陽電池と、太陽光発電用パワーコンディショナと、電力貯蔵手段と、受電電力検出手段とを備えてなり、系統と、消費電力の許容範囲内で任意の負荷とが接続されている。そして前記パワーコンディショナは、第1の電力変換手段と、第2の電力変換手段と、前記第2の電力変換手段を制御する制御手段とを備えている。
【0017】
これらの接続関係は次の通りである。すなわち、太陽電池と系統とが太陽光発電用パワーコンディショナを介して接続されている。前記パワーコンディショナと系統との間に負荷が接続され、受電点に、すなわち前記負荷の接続部と系統との間に受電電力検出手段が接続されている。パワーコンディショナの内部の第1の電力変換手段は太陽電池と系統との間に接続されており、前記第1の電力変換手段の太陽電池側と電力貯蔵手段とが第2の電力変換手段を介して接続されている。前記第2の電力変換手段には、前記受電電力検出手段の検出結果に基づいて電力の変換を制御することができるように制御手段が接続されている。なお、前記第2の電力変換手段は、制御機能を有していて、前記受電電力検出手段の検出結果に基づいて制御することができる構成であっても良い。
【0018】
上記太陽電池とパワーコンディショナとの間には、太陽電池からパワーコンディショナ方向のみに電流が流れるように、逆流防止のダイオードを配するのがよい。
【0019】
上記第1の電力変換手段は、直流側から入力された直流の電力を交流に変換して交流側に出力し、逆に交流側から入力された交流の電力を直流に変換して直流側に出力する電力変換手段である。これにより、太陽電池から発電されている場合には、太陽電池からの直流を負荷あるいは系統側への出力として交流に変換し、一方、夜間など電力貯蔵手段に電力を貯蔵する場合には、系統からの交流を直流に変換することができる。
【0020】
上記第2の電力変換手段は、上記第1の電力変換手段の直流側電圧を電力貯蔵手段にかかる電圧に変換する電力変換手段である。これにより、電力貯蔵手段にかかる電圧を任意に設定することができ、電力の貯蔵および出力を制御することができる。第2の電力変換手段としては、双方向チョッパを使用する。双方向チョッパによれば、電力貯蔵手段にかかる電圧が、太陽電池電圧にかかわらず調整可能であるため、電力の貯蔵から出力まで貯蔵電力を自由に制御することができる。
【0021】
上記電力貯蔵手段としては、フライホイールなどの物理電池や、鉛蓄電池、リチウムイオン電池などの蓄電池を用いることができる。
【0022】
さらに、上記太陽電池と上記第1の電力変換手段との間に昇圧チョッパを備えることが好ましい。
【0023】
次に上記電力貯蔵型太陽光発電システムの動作について説明する。
【0024】
夜間には、系統からの交流電力を、第1の電力変換手段を介して直流に変換し、さらに該直流電力を第2の電力変換手段を介して電力貯蔵手段に対して高電圧となるように変換して該電力貯蔵手段に貯蔵する。この際、逆流防止ダイオードを設けておけば太陽電池に電流が流れることはない。
【0025】
昼間には、太陽電池の発電電力と電力貯蔵手段からの出力電力との直流電力を第1の電力変換手段を介して交流電力に変換し、負荷に電力を供給することができる。この際、前記負荷の消費電力が、前記太陽電池の発電電力と電力貯蔵手段からの出力電力との合計電力より大きい場合は、さらに不足分の電力を系統からとりこむ。一方、負荷の消費電力が前記合計電力より小さい場合は、余剰電力を系統へ逆潮流する。このとき、受電点の電力を受電電力検出手段により監視しているので、受電電力が所定の電力を下回らないように、第2の電力変換手段の制御を行い、電力貯蔵手段からの電力の流出を制限することができる。電力貯蔵手段から電力が出力されている場合には、受電電力が所定の電力を下回らないように前記電力貯蔵手段を制御する。
【0026】
受電電力を監視して前記制御を行っているので、上記電力貯蔵手段からの電力の流出を制限しすぎて、前記合計電力が負荷の消費電力よりも大きくなって、上記電力貯蔵手段に電力が貯蔵されているにもかかわらず、系統からの電力供給が行われることがないようにすることができる。また、電力貯蔵手段のみを独立して制御しているので、太陽電池からの発電電力が制限されてしまうこともない。
【0027】
上記所定の電力とは、あらかじめ設定された最低受電電力であって、電力貯蔵手段から系統へ電力が流れなければよいので、原理的には0でよいが、検出手段などの誤差を考えて、契約電力の3〜5%程度の電力とするのがよい。この電力を下回ることがないように、上記第2の電力変換手段を制御し、電力貯蔵手段からの電力の流出を制限する。第2の電力変換手段として、双方向チョッパを用いる場合には、該双方向チョッパに前記の電力値を記憶させておくことができる。
【0028】
上述のように、本発明によれば、受電点の電力を監視し、前記第2の電力変換手段の電力を制御すれば、太陽電池の発電電力と独立して電力貯蔵手段の放電電力を制限することができるので、太陽電池の余剰電力を逆潮流しつつ前記電力貯蔵手段から系統への電力の流出を防止することが可能である。
【0029】
さらに、太陽電池と第1の電力変換手段との間に昇圧チョッパを備えることにより、太陽電池の電圧を昇圧し、同じくパワーコンディショナに内蔵した第1の電力変換手段に供給することができる。昇圧チョッパの入力電圧は該昇圧チョッパによって任意に設定できるので、太陽電池の電圧をその最大出力電圧に調整することが可能である。
【0030】
【実施例】
本発明を、実施例に基づき図面を参照しながら説明する。
【0031】
図1は本発明による電力貯蔵型太陽光発電システムの実施例である。4は本発明に係るパワーコンディショナである。パワーコンディショナ4における41は昇圧チョッパ、42は双方向チョッパ、43はインバータで、他は従来例と同様である。本発明ではパワーコンディショナ4に内蔵した昇圧チョッパ41と双方向チョッパ42により太陽電池1の発電電力と蓄電池2の充放電電力をそれぞれ個別に制御する。すなわち、インバータ43は双方向電力変換を行い直流電圧を系統7との連系運転に必要な一定電圧に維持する。太陽電池1の出力電圧は昇圧チョッパ41にてこの一定電圧に昇圧されるので、昇圧チョッパ41の変圧比を調整することにより、その入力電圧すなわち太陽電池1の出力電圧を太陽電池1の最大出力電圧にあわせることができる。通常、その動作としては、太陽電池1の出力電力を定期的に監視して、太陽電池1の出力電力が常に最大となるように昇圧チョッパ41の入力電圧を調整する最大電力追従制御を行うことが多い。
【0032】
一方、双方向チョッパ42では蓄電池2の充放電制御を行う。夜間には蓄電池2を充電するために、双方向チョッパ42の入力電圧すなわち蓄電池電圧を上昇させるように双方向チョッパ42の変圧比を調整する。蓄電池電圧を上昇させれば蓄電池2が充電されるので、蓄電池2の電流を監視し、適当な充電電流となるように双方向チョッパ42の変圧比を調整すればよい。また、昼間には、双方向チョッパ42の入力電圧すなわち蓄電池電圧を低下させて蓄電池2を放電させる。この場合も同様に蓄電池2の放電電力が適当な値となるように双方向チョッパ42の変圧比を調整すればよい。
【0033】
以上の動作によると、昼間にはインバータ43にて太陽電池1の最大電力と蓄電池2の適当な放電電力とを一括して交流電力に変換し、負荷5に供給することが可能である。しかしながら、負荷5の消費電力がこれらの合計電力より小さい場合は、余剰電力が発生し、系統7へ電力が流出する。この場合、本発明では、受電点の電力を受電電力検出器6により監視し、あらかじめ設定された最低受電電力を下回らないように双方向チョッパ42の変換電力のみを制限する。したがって、太陽電池1の発電電力は制限されないため、太陽電池1の発電電力は常に最大電力を維持したまま、負荷5の変化にあわせて蓄電池の放電電力のみが制御される。たとえば、太陽電池1のみの発電電力よりも負荷5の消費電力が小さい場合は、双方向チョッパ42の変換電力すなわち蓄電池2の放電電力は完全にゼロとなり、太陽電池1の発電電力から負荷5の消費電力を差し引いた余剰電力のみが系統7に供給される。
【0034】
【発明の効果】
本発明によれば、太陽電池の発電電力と電力貯蔵手段の出力する電力とを独立して制御することができるので、太陽電池の余剰電力を逆潮流しつつ、電力貯蔵手段からの系統への電力の流出を防止することができ、さらに、太陽電池からは最大出力電力を取り出すことも可能であり、電力貯蔵型太陽光発電システムの効率化が可能である。
【図面の簡単な説明】
【図1】本発明にかかる電力貯蔵型太陽光発電システムの一実施形態を示すブロック図。
【図2】従来の電力貯蔵型太陽光発電システムを示すブロック図。
【符号の説明】
1 太陽電池
2 蓄電池
3 逆流防止ダイオード
4 パワーコンディショナ
5 負荷
6 受電電力検出器
7 系統
41 昇圧チョッパ
42 双方向チョッパ
43 インバータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photovoltaic power generation system with a built-in power storage function.
[0002]
[Prior art]
A solar power generation system is a system that converts DC power generated by a solar cell into AC power using a power conditioner, and generally supplies the power to a load by connecting to a system. Since the inverter is connected to the grid, if the power generated by the solar cell is less than the power consumed by the load, all the generated power is consumed by the load and the shortage is supplied from the grid. Is larger than the power consumption of the load, surplus power is generated and is usually supplied to the grid as reverse power flow.
[0003]
On the other hand, the power storage system stores the nighttime surplus power in a power storage means such as a storage battery via a power conditioner, and uses it during the daytime to suppress the peak of the generated power during the daytime, thereby effectively using the nighttime power. It is a system that performs. As an example of such a system, pumped-storage power generation is conventionally known as a power storage means, but recently, practical application of a system using a storage battery such as a lead battery has been studied. This is because space can be saved in the system by using a storage battery as a means for storing surplus power. This is because the degree of freedom in installation is greatly improved, for example, the system can be installed in a consumer. In addition, in the unlikely event of a power failure, the power supply from the storage battery enables uninterruptible power, which is also advantageous for consumers.
[0004]
In each of the above systems, a power conditioner is required to perform power conversion between DC and AC. Therefore, a power conditioner can be shared by combining a photovoltaic power generation system with a power storage system. Furthermore, by combining the two and sharing the power conditioner, it becomes possible to operate the power conditioner independently at the same time while charging the storage battery with the power output from the solar cell even if a power outage occurs for a long time. There is a merit that very stable power can be used. For this reason, studies on a power storage solar power generation system in which the above systems are combined are underway.
[0005]
FIG. 2 is a block diagram showing a configuration example of such a conventional power storage type solar power generation system. 1 is a solar battery, 2 is a storage battery, 3 is a backflow prevention diode, 5 is a load, 6 is a received power detector, 7 is a system, 8 is a power conditioner, and 81 is an inverter. In the present configuration example, the solar cell 1 and the power conditioner 8 are connected via the backflow prevention diode 3, and the storage battery 2 is connected to the DC side of the inverter 81 provided in the power conditioner 8. Further, a load 5 is connected to the AC side of the power conditioner 8, and is connected to the system 7 via a received power detector 6.
[0006]
In the operation of the above configuration example, as a basic operation, the power conditioner 8 is forward-converted at night to charge the storage battery 2, and the power conditioner 8 is reverse-converted at daytime to generate electric power generated by the solar cell 1. The discharge power of the storage battery 2 is supplied to the load 5 together.
[0007]
However, when the sum of the generated power of the solar cell 1 and the discharged power from the storage battery 2 is larger than the power consumption of the load 5, it becomes surplus power and flows out to the grid 7. At that time, the surplus power also includes the discharge power from the storage battery 2, and the charge power of the storage battery 2 that is purposely charged at night is discharged wastefully.
[0008]
Therefore, in the conventional system, in order to prevent such a problem, the received power detector 6 is provided to monitor the received power, and if the received power falls below a certain level, the converted power of the power conditioner 8 is limited. Is controlling. This is because it is not preferable in terms of efficient use of energy that the discharged power from the storage battery 2 returns to the grid 7 again as described above.
[0009]
[Problems to be solved by the invention]
However, according to the above-described conventional configuration, the conversion power of the power conditioner is limited in order to avoid the outflow of power from the storage battery to the system, so that the power generated by the solar cell is also limited. That is, since the power of the solar battery and the storage battery is collectively converted by the power conditioner, if the conversion power is limited in order to avoid the outflow of power from the storage battery, the generated power from the solar battery is also limited at the same time. . Therefore, even if the generated power of the solar cell is larger than the power consumption of the load at that time, it is eventually limited, and sufficient surplus power cannot be reversely flowed to the system, and the generated power of the solar cell There was a problem of being wasted.
[0010]
Furthermore, in the conventional configuration, since the solar cell is directly connected to the storage battery via the diode, the output voltage of the solar cell cannot always be maintained at the maximum output voltage, and the generated power cannot be effectively extracted. There was a problem.
[0011]
Accordingly, an object of the present invention is to provide a power storage type solar power generation system capable of reverse power flow of surplus power of a solar battery while preventing the outflow of power from the storage battery to the system, and further to provide power from the storage battery to the system. An object of the present invention is to provide a power storage type solar power generation system capable of more efficiently outputting generated power from a solar cell in addition to prevention of outflow.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problems, a power storage type solar power generation system according to the present invention includes a first power conversion that performs an interconnection operation between a power storage unit and a system connected between a solar cell and the system. And a power conditioner for photovoltaic power generation comprising a second power conversion means for converting the power of the power storage means and inputting the power to the first power conversion means, and the power conditioner and the system are connected to each other A power storage type solar power generation system including a received power detection means for detecting received power at a power receiving point connected to a received power point, both of the generated power of the solar cell and the power from the power storage means And a control means for controlling the second power conversion means so that the received power detected by the received power detection means does not fall below a predetermined power.
[0013]
According to said electric power storage type solar power generation system, it can prevent that the electric power stored in the electric power storage means flows out to a system | strain, without restrict | limiting the electric power generated from a solar cell.
[0014]
Further, in order to obtain a system that can more efficiently output the power generated from the solar cell, in the power storage solar power generation system, a boost chopper is interposed between the solar cell and the first power conversion means. It is preferable to provide.
[0015]
According to the power storage type solar power generation system provided with the above boost chopper, in addition to preventing the outflow of power from the power storage means to the system, the boost chopper can follow the maximum power so that the generated power of the solar cell is always maximized. Since it can control, it becomes possible to output the electric power generated from a solar cell more efficiently.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The power storage type solar power generation system of the present invention comprises a solar cell, a power conditioner for solar power generation, a power storage means, and a received power detection means, and within the allowable range of the system and power consumption. An arbitrary load is connected. The power conditioner includes first power conversion means, second power conversion means, and control means for controlling the second power conversion means.
[0017]
These connection relationships are as follows. That is, the solar cell and the system are connected via the solar power generator. A load is connected between the power conditioner and the system, and a received power detection means is connected to a power reception point, that is, between the connection part of the load and the system. The first power conversion means inside the power conditioner is connected between the solar cell and the grid, and the solar cell side of the first power conversion means and the power storage means serve as the second power conversion means. Connected through. Control means is connected to the second power conversion means so that power conversion can be controlled based on the detection result of the received power detection means. The second power conversion unit may have a control function and can be controlled based on the detection result of the received power detection unit.
[0018]
Between the solar cell and the power conditioner, a backflow prevention diode is preferably arranged so that a current flows only from the solar cell in the direction of the power conditioner.
[0019]
The first power conversion means converts the DC power input from the DC side to AC and outputs it to the AC side, and conversely converts the AC power input from the AC side to DC and converts it to the DC side. It is the power conversion means to output. Thus, when power is generated from the solar cell, the direct current from the solar cell is converted into alternating current as an output to the load or system side, while when storing power in the power storage means such as at night, the system AC can be converted to DC.
[0020]
The second power conversion unit is a power conversion unit that converts a DC side voltage of the first power conversion unit into a voltage applied to the power storage unit. Thereby, the voltage concerning an electric power storage means can be set arbitrarily and electric power storage and an output can be controlled. As the second power conversion means, a bidirectional chopper is used. According to the bidirectional chopper, the voltage applied to the power storage means can be adjusted regardless of the solar cell voltage, so that the stored power can be freely controlled from the power storage to the output.
[0021]
As the power storage means, a physical battery such as a flywheel or a storage battery such as a lead storage battery or a lithium ion battery can be used.
[0022]
Furthermore, it is preferable to provide a step-up chopper between the solar cell and the first power conversion means.
[0023]
Next, the operation of the power storage solar power generation system will be described.
[0024]
At night, the AC power from the grid is converted to DC via the first power conversion means, and the DC power becomes a high voltage with respect to the power storage means via the second power conversion means. And stored in the power storage means. At this time, if a backflow prevention diode is provided, no current flows through the solar cell.
[0025]
In the daytime, it is possible to convert direct current power generated by the solar cell and output power from the power storage means into alternating current power through the first power conversion means, and supply power to the load. At this time, if the power consumption of the load is larger than the total power of the generated power of the solar cell and the output power from the power storage means, the power shortage is further taken from the system. On the other hand, when the power consumption of the load is smaller than the total power, the surplus power is reversely flowed to the system. At this time, since the power at the power receiving point is monitored by the received power detection means, the second power conversion means is controlled so that the received power does not fall below the predetermined power, and the outflow of power from the power storage means Can be limited. When power is output from the power storage means, the power storage means is controlled so that the received power does not fall below a predetermined power.
[0026]
Since the received power is monitored and the control is performed, the outflow of power from the power storage unit is excessively limited, and the total power becomes larger than the power consumption of the load. Despite being stored, it is possible to prevent power from being supplied from the grid. Moreover, since only the power storage means is controlled independently, the generated power from the solar cell is not limited.
[0027]
The predetermined power is a minimum received power set in advance, and power is not required to flow from the power storage means to the system. In principle, it may be 0, but considering errors such as detection means, The power should be about 3-5% of the contract power. The second power conversion means is controlled so as not to fall below this power, and the outflow of power from the power storage means is limited. When a bidirectional chopper is used as the second power conversion means, the power value can be stored in the bidirectional chopper.
[0028]
As described above, according to the present invention, if the power of the power receiving point is monitored and the power of the second power conversion unit is controlled, the discharge power of the power storage unit is limited independently of the generated power of the solar cell. Therefore, it is possible to prevent outflow of power from the power storage means to the system while reversely flowing excess power of the solar cell.
[0029]
Furthermore, by providing a step-up chopper between the solar cell and the first power conversion unit, the voltage of the solar cell can be boosted and supplied to the first power conversion unit built in the power conditioner. Since the input voltage of the boost chopper can be arbitrarily set by the boost chopper, the voltage of the solar cell can be adjusted to the maximum output voltage.
[0030]
【Example】
The present invention will be described based on examples with reference to the drawings.
[0031]
FIG. 1 shows an embodiment of a power storage solar power generation system according to the present invention. Reference numeral 4 denotes a power conditioner according to the present invention. In the power conditioner 4, reference numeral 41 is a step-up chopper, 42 is a bidirectional chopper, 43 is an inverter, and others are the same as in the conventional example. In the present invention, the generated power of the solar cell 1 and the charge / discharge power of the storage battery 2 are individually controlled by the step-up chopper 41 and the bidirectional chopper 42 incorporated in the power conditioner 4. That is, the inverter 43 performs bidirectional power conversion to maintain the DC voltage at a constant voltage necessary for the interconnection operation with the system 7. Since the output voltage of the solar cell 1 is boosted to this constant voltage by the boost chopper 41, the input voltage, that is, the output voltage of the solar cell 1 is adjusted to the maximum output of the solar cell 1 by adjusting the transformation ratio of the boost chopper 41. Can be adjusted to the voltage. Usually, as the operation, the maximum power follow-up control is performed in which the output power of the solar cell 1 is periodically monitored and the input voltage of the boost chopper 41 is adjusted so that the output power of the solar cell 1 is always maximized. There are many.
[0032]
On the other hand, the bidirectional chopper 42 performs charge / discharge control of the storage battery 2. In order to charge the storage battery 2 at night, the transformation ratio of the bidirectional chopper 42 is adjusted so as to increase the input voltage of the bidirectional chopper 42, that is, the storage battery voltage. If the storage battery voltage is increased, the storage battery 2 is charged. Therefore, the current of the storage battery 2 is monitored, and the transformation ratio of the bidirectional chopper 42 may be adjusted so as to obtain an appropriate charging current. Further, during the daytime, the input voltage of the bidirectional chopper 42, that is, the storage battery voltage is lowered to discharge the storage battery 2. In this case as well, the transformation ratio of the bidirectional chopper 42 may be adjusted so that the discharge power of the storage battery 2 becomes an appropriate value.
[0033]
According to the above operation, the inverter 43 can convert the maximum power of the solar battery 1 and the appropriate discharge power of the storage battery 2 into alternating current power and supply it to the load 5 during the daytime. However, when the power consumption of the load 5 is smaller than the total power, surplus power is generated and the power flows out to the grid 7. In this case, in the present invention, the power at the power reception point is monitored by the power reception power detector 6 and only the conversion power of the bidirectional chopper 42 is limited so as not to fall below the preset minimum power reception. Therefore, since the generated power of the solar cell 1 is not limited, only the discharge power of the storage battery is controlled in accordance with the change of the load 5 while the generated power of the solar cell 1 always maintains the maximum power. For example, when the power consumption of the load 5 is smaller than the generated power of only the solar battery 1, the converted power of the bidirectional chopper 42, that is, the discharged power of the storage battery 2 becomes completely zero. Only surplus power obtained by subtracting power consumption is supplied to the grid 7.
[0034]
【The invention's effect】
According to the present invention, the power generated by the solar cell and the power output from the power storage unit can be controlled independently, so that the surplus power of the solar cell is reversely flowed to the system from the power storage unit. The outflow of electric power can be prevented, and the maximum output power can be taken out from the solar cell, so that the efficiency of the power storage type solar power generation system can be improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of a power storage solar power generation system according to the present invention.
FIG. 2 is a block diagram showing a conventional power storage solar power generation system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar cell 2 Storage battery 3 Backflow prevention diode 4 Power conditioner 5 Load 6 Received power detector 7 System | strain 41 Boost chopper 42 Bidirectional chopper 43 Inverter

Claims (2)

電力貯蔵手段と、太陽電池と系統との間に接続された、系統との連系運転を行う第1の電力変換手段と前記電力貯蔵手段の電力を変換して前記第1の電力変換手段に入力する第2の電力変換手段とを具備した太陽光発電用パワーコンディショナと、前記パワーコンディショナと系統とが接続される受電点に接続された、受電点の受電電力を検出する受電電力検出手段とを備えた電力貯蔵型太陽光発電システムであって、太陽電池の発電電力と電力貯蔵手段からの電力の両方の出力時に、受電電力検出手段によって検出された受電電力が所定の電力を下回らないように、第2の電力変換手段を制御する制御手段を備えたことを特徴とする電力貯蔵型太陽光発電システム。A power storage means, a first power conversion means connected between the solar cell and the system for performing a grid-connected operation, and converting the power of the power storage means to the first power conversion means Received power detection for detecting received power at a power receiving point connected to a power conditioner for photovoltaic power generation having a second power conversion means for input and a power receiving point to which the power conditioner and the system are connected A received power detected by the received power detecting means is lower than a predetermined power when outputting both the generated power of the solar cell and the power stored in the power storage means. An electric power storage type solar power generation system comprising control means for controlling the second electric power conversion means so as not to exist. 上記太陽電池と上記第1の電力変換手段との間に昇圧チョッパを備えることを特徴とする請求項1に記載の電力貯蔵型太陽光発電システム。  The power storage solar photovoltaic system according to claim 1, further comprising a step-up chopper between the solar cell and the first power conversion means.
JP2000368828A 2000-12-04 2000-12-04 Power storage type solar power generation system Expired - Lifetime JP4765162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368828A JP4765162B2 (en) 2000-12-04 2000-12-04 Power storage type solar power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368828A JP4765162B2 (en) 2000-12-04 2000-12-04 Power storage type solar power generation system

Publications (2)

Publication Number Publication Date
JP2002171674A JP2002171674A (en) 2002-06-14
JP4765162B2 true JP4765162B2 (en) 2011-09-07

Family

ID=18838974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368828A Expired - Lifetime JP4765162B2 (en) 2000-12-04 2000-12-04 Power storage type solar power generation system

Country Status (1)

Country Link
JP (1) JP4765162B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130467A (en) * 2010-01-19 2011-07-20 通用电气公司 Open circuit voltage protection system and method
JP2016116404A (en) * 2014-12-17 2016-06-23 株式会社高砂製作所 Output power control method for ac power supply device, and ac power supply device
KR20190054368A (en) * 2017-11-13 2019-05-22 한국전자통신연구원 Method and apparatus for sharing power converter
US11929621B2 (en) 2019-04-26 2024-03-12 Gs Yuasa International Ltd. Power control apparatus, control method for power control apparatus, and distributed power generating system

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619298B2 (en) * 2006-02-02 2011-01-26 シャープ株式会社 Power converter
JP5208374B2 (en) * 2006-04-18 2013-06-12 シャープ株式会社 Grid interconnection power conditioner and grid interconnection power system
JP5258324B2 (en) * 2008-02-26 2013-08-07 河村電器産業株式会社 Hybrid grid interconnection system
WO2009157342A1 (en) 2008-06-27 2009-12-30 シャープ株式会社 Power control system for distributing power to power demanding facilities
KR101128994B1 (en) * 2009-04-30 2012-03-23 (주) 이이시스 Inverter system for charging/discharging grid connected using high density secondary cell and operation method therefor
DE102009044258A1 (en) * 2009-10-15 2011-05-05 Krones Ag Plant and process for the production, filling, packaging and / or transport of beverages
EP2325970A3 (en) * 2009-11-19 2015-01-21 Samsung SDI Co., Ltd. Energy management system and grid-connected energy storage system including the energy management system
KR101084214B1 (en) * 2009-12-03 2011-11-18 삼성에스디아이 주식회사 Grid-connected energy storage system and method for controlling grid-connected energy storage system
KR101097259B1 (en) 2009-12-11 2011-12-21 삼성에스디아이 주식회사 An apparatus and a controlling method for storing power
EP2515412A1 (en) * 2009-12-14 2012-10-24 Sanyo Electric Co., Ltd. Charge/discharge system
KR101097261B1 (en) 2009-12-17 2011-12-22 삼성에스디아이 주식회사 Energy storage system and controlling method thereof
KR101156533B1 (en) * 2009-12-23 2012-07-03 삼성에스디아이 주식회사 Energy storage system and method for controlling thereof
JP5672087B2 (en) * 2010-04-02 2015-02-18 オムロン株式会社 Control apparatus and control method
JP2012044733A (en) * 2010-08-12 2012-03-01 Daiwa House Industry Co Ltd Storage battery system using photovoltaic power generation
JP2012222908A (en) * 2011-04-06 2012-11-12 Kyocera Corp Power conditioner, power control system, and power control method
JP2012249476A (en) * 2011-05-30 2012-12-13 Panasonic Corp Power supply system
JP6082565B2 (en) * 2012-10-18 2017-02-15 株式会社アイケイエス Distributed power system
JP2014090563A (en) * 2012-10-30 2014-05-15 Diamond Electric Mfg Co Ltd Power conditioner
JP6195206B2 (en) 2012-11-26 2017-09-13 パナソニックIpマネジメント株式会社 Power supply system, power converter, measuring point switching device
WO2014122691A1 (en) * 2013-02-07 2014-08-14 三洋電機株式会社 Power storage system
JP2014165952A (en) * 2013-02-21 2014-09-08 Daiwa House Industry Co Ltd Power supply system
JP5953519B2 (en) * 2013-02-21 2016-07-20 大和ハウス工業株式会社 Power supply system
JP6144616B2 (en) * 2013-12-24 2017-06-07 京セラ株式会社 Power control apparatus, power control system, and power control method
JP5963326B2 (en) * 2014-09-08 2016-08-03 東芝エレベータ株式会社 Storage battery device and storage battery control system
JP6591230B2 (en) * 2015-08-12 2019-10-16 株式会社Nttファシリティーズ Photovoltaic power generation system control device, solar power generation system, and control program
JP6566355B2 (en) * 2015-09-11 2019-08-28 パナソニックIpマネジメント株式会社 Power converter
JP2017221082A (en) * 2016-06-10 2017-12-14 住友電気工業株式会社 Power storage system
ES2874544T3 (en) 2016-10-14 2021-11-05 Toshiba Mitsubishi Elec Ind Power conversion system, power supply system, and power conversion apparatus
JP6710626B2 (en) * 2016-12-14 2020-06-17 新電元工業株式会社 Power storage system and solar power generation system
CN109804519A (en) 2017-08-14 2019-05-24 戴纳动力有限责任公司 Method and apparatus for ovonic memory and renewable power converter
JP6432099B2 (en) * 2017-09-22 2018-12-05 大和ハウス工業株式会社 Power supply system
JP6993300B2 (en) * 2018-07-18 2022-02-04 ニチコン株式会社 Power storage system
CN110571845A (en) * 2019-07-31 2019-12-13 成都三六八建设工程有限公司 Photovoltaic grid-connected power generation system
JP7404751B2 (en) * 2019-10-08 2023-12-26 株式会社Gsユアサ Energy management device, energy management method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3292489B2 (en) * 1991-12-10 2002-06-17 株式会社東芝 Power supply control system for consumers
JPH07143688A (en) * 1993-11-16 1995-06-02 Fuji Electric Co Ltd Reverse power flow suppressing circuit for electric power storage type emergency power unit
JPH1023671A (en) * 1996-07-03 1998-01-23 Omron Corp Power conditioner and dispersed power supplying system
JPH1031525A (en) * 1996-07-15 1998-02-03 Fuji Electric Co Ltd Photovoltaic power generation system
JPH10201129A (en) * 1996-12-27 1998-07-31 Japan Storage Battery Co Ltd Power generation installation making use of solar energy
JPH11346445A (en) * 1998-06-02 1999-12-14 Hitachi Ltd Solar light power generation system
JP2000209778A (en) * 1999-01-13 2000-07-28 Hitachi Ltd Household electricity storing device
JP2002010495A (en) * 2000-06-15 2002-01-11 Sekisui Chem Co Ltd Power supply system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102130467A (en) * 2010-01-19 2011-07-20 通用电气公司 Open circuit voltage protection system and method
CN102130467B (en) * 2010-01-19 2014-06-25 通用电气公司 Open circuit voltage protection system and method
JP2016116404A (en) * 2014-12-17 2016-06-23 株式会社高砂製作所 Output power control method for ac power supply device, and ac power supply device
KR20190054368A (en) * 2017-11-13 2019-05-22 한국전자통신연구원 Method and apparatus for sharing power converter
KR102487859B1 (en) 2017-11-13 2023-01-12 한국전자통신연구원 Method and apparatus for sharing power converter
US11929621B2 (en) 2019-04-26 2024-03-12 Gs Yuasa International Ltd. Power control apparatus, control method for power control apparatus, and distributed power generating system

Also Published As

Publication number Publication date
JP2002171674A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
JP4765162B2 (en) Power storage type solar power generation system
US9099893B2 (en) Power control device for a power grid, comprising a control unit for controlling an energy flow between the power generation unit, the energy storage unit, the consumer unit and/or the power grid
EP2793345B1 (en) Electric power supply system
KR101277185B1 (en) Dc microgrid system and ac/dc hybrid microgrid system using it
EP2587623B1 (en) Dc power distribution system
KR101174891B1 (en) Energy storage system and controlling method of the same
JP5903622B2 (en) Power supply system and charge / discharge power conditioner
KR102048047B1 (en) Solar-based autonomous stand-alone micro grid system and its operation method
JP4253598B2 (en) Solar power generation system with power storage function
CN110176788B (en) Power storage system and power storage device
KR101793579B1 (en) Dc-ac common bus type hybrid power system
JP2021158914A (en) Power conversion system
JP2017121171A (en) Storage battery charge-discharge system, and interconnection system
JP2007300792A (en) Power source system
JPH0946924A (en) Uninterruptible power supply with solar battery
JP2004222341A (en) Power supply system
JP4430292B2 (en) Power control device, power generation system, and control method of power control device
JP6225672B2 (en) Power supply equipment and operation method thereof
CN210074859U (en) Light storage and charging integrated system with power grid feedback function
US20190103756A1 (en) Power storage system, apparatus and method for controlling charge and discharge, and program
JPH10243575A (en) Solar battery power unit and its operating method
JP3688744B2 (en) Solar power plant
JP4630433B2 (en) High efficiency uninterruptible power supply
JPWO2020137348A1 (en) DC power supply and DC power system
JP7026419B1 (en) Power supply system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Ref document number: 4765162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term