JP2008067484A - Private power generation system obtained by combining storage battery facility and privately-owned electrical power facility and control method for output of privately-owned electrical power facility in the system - Google Patents

Private power generation system obtained by combining storage battery facility and privately-owned electrical power facility and control method for output of privately-owned electrical power facility in the system Download PDF

Info

Publication number
JP2008067484A
JP2008067484A JP2006242289A JP2006242289A JP2008067484A JP 2008067484 A JP2008067484 A JP 2008067484A JP 2006242289 A JP2006242289 A JP 2006242289A JP 2006242289 A JP2006242289 A JP 2006242289A JP 2008067484 A JP2008067484 A JP 2008067484A
Authority
JP
Japan
Prior art keywords
facility
storage battery
power generation
output
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006242289A
Other languages
Japanese (ja)
Other versions
JP4993972B2 (en
Inventor
Takao Ogata
隆雄 緒方
Tatsuya Tsukada
龍也 塚田
Toshiyuki Ito
俊之 伊藤
Takanori Watanabe
崇範 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2006242289A priority Critical patent/JP4993972B2/en
Publication of JP2008067484A publication Critical patent/JP2008067484A/en
Application granted granted Critical
Publication of JP4993972B2 publication Critical patent/JP4993972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Abstract

<P>PROBLEM TO BE SOLVED: To provide a utility-connected private power generation system wherein a storage battery facility and a privately-owned electrical power facility can be controlled, in an integrated manner and a control method for the output of the privately-owned electrical power facility in this system. <P>SOLUTION: The private power generation system 1 connected to a system power supply 3 includes a privately-owned electrical power facility 11 whose output is controllable; a storage battery facility 12 constructed of a storage battery 121 that can be charged/discharged and an output controlling means 122 for controlling charging/discharging current; an interconnection line load flow detection unit 16 that detects a load flow in an interconnection line 31; a storage battery facility output detection unit 17 that detects the charging/discharging power of the storage battery facility 12; and a privately-owned electrical power facility output control means. The storage battery facility 12 controls the output of a storage battery so that the interconnection line load flow becomes equal to a set value of interconnection line load flow, based on fluctuation in interconnection line load flow. The privately-owned electrical power facility controls the output of a privately-owned electrical power facility so that the sum of the interconnection line load flow and the output of the storage battery becomes equals the set value of interconnection line load flow. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力系統に系統連系された自家発電設備と蓄電池設備とを組み合わせた自家発電システムおよび該システムにおける自家発電設備の出力制御方法に関する。   The present invention relates to a private power generation system that combines a private power generation facility and a storage battery facility that are grid-connected to a power system, and an output control method for the private power generation facility in the system.

図5に示すような出力制御が可能な自家発電設備11を電力系統3に系統連系するシステムにおいては、構内の負荷13−1から3−nの変動などに対して逆潮流を防止するなどのために、連系点の電力潮流(連系線潮流)を一定の値に(範囲)に維持する「受電電力一定制御」が行われており、自家発電設備11は、その機能を有している。この受電電力一定制御は、目標となる連系線31の潮流設定値を決め、連系線潮流検出手段16により連系線潮流を計測し、電流信号などに変換され自家発電設備11に送られ、その信号を元に自家発電設備11の出力を制御して、結果として、連系線潮流を前記連系線潮流設定値に近づける制御である。   In a system in which the private power generation equipment 11 capable of output control as shown in FIG. 5 is connected to the power grid 3, a reverse power flow is prevented against fluctuations in the loads 13-1 to 3-n on the premises, etc. For this reason, “power reception constant control” is performed to maintain the power flow (interconnection line flow) at the interconnection point at a constant value (range), and the private power generation facility 11 has the function. ing. In this received power constant control, the tidal current set value of the target interconnecting line 31 is determined, the interconnecting line power detecting means 16 measures the interconnecting line power flow, is converted into a current signal, etc., and sent to the private power generation facility 11. Then, based on the signal, the output of the private power generation facility 11 is controlled, and as a result, the interconnection current flows close to the interconnection current setting value.

一方近年、太陽光発電設備や風力発電設備などの導入が進んでいるが、これらの発電設備は、気象条件により出力が変動するため、大幅に導入量が進んだ場合には、その変動を補完する必要があるとされている。変動を補完する設備としては、充放電機能を有する蓄電池設備や出力制御が可能な自家発電設備が考えられている。このうち、充放電機能を有する蓄電池設備は高速な応答(変動補完)が可能である反面、充放電によるロスを生じたり、充放電量が有限であるという欠点を持つ。出力制御が可能な自家発電設備は、応答速度は低いが、燃料供給が継続する限り出力制御が可能という特徴を持つ。   On the other hand, in recent years, the introduction of solar power generation facilities and wind power generation facilities has progressed. However, the output of these power generation facilities fluctuates depending on weather conditions. It is said that it is necessary to do. As equipment for complementing fluctuations, storage battery equipment having a charge / discharge function and private power generation equipment capable of output control are considered. Among these, a storage battery facility having a charge / discharge function can have a high-speed response (variation compensation), but has a disadvantage that a loss due to charge / discharge occurs or a charge / discharge amount is finite. The private power generation facility capable of output control has a characteristic that output control is possible as long as fuel supply continues, although the response speed is low.

従って、図3のように両者を組合せ、それぞれの特色を生かした自家発電システムが有効である。この自家発電システムにおいては、連系線31の潮流(連系線潮流)を連系線潮流検出手段16で監視し、太陽光発電設備14や風力発電設備15などの自然変動電源の出力変動や負荷13−1〜13−nの変動によって、連系線31の連系線潮流(電力)が予め設定された設定電力を超えると、蓄電池設備12と自家発電設備11との両方が、超過した電力を補完するように動作する。このとき、蓄電池設備12は負荷変動に迅速に応答することができ、連系線潮流を設定電力に抑えるように動作するので、連系線潮流は設定電力に戻される。しかしながら、自家発電設備11は、負荷変動に対して緩慢に応答するので、負荷変動に対応するまでに蓄電池設備12による補完によって連系線潮流が設定電力に戻ってしまい、結果として連系線潮流の変動に対応することができない。その結果、蓄電池設備11は放電を継続することとなり、最終的には蓄電池121に充電された電力が尽きるという問題を生じる。   Therefore, an in-house power generation system that combines both of these features as shown in FIG. 3 is effective. In this private power generation system, the power flow of the connection line 31 (connection line power flow) is monitored by the connection line power flow detection means 16, and output fluctuations of natural power sources such as the solar power generation equipment 14 and the wind power generation equipment 15 are detected. When the interconnection current (electric power) of the interconnection line 31 exceeds a preset set power due to fluctuations in the loads 13-1 to 13-n, both the storage battery facility 12 and the private power generation facility 11 have exceeded. Operates to supplement power. At this time, the storage battery facility 12 can quickly respond to the load fluctuation and operates to suppress the interconnection current to the set power, so that the interconnection current is returned to the set power. However, since the private power generation facility 11 responds slowly to the load fluctuation, the interconnection power flow returns to the set power by complementation by the storage battery equipment 12 until the load fluctuation is dealt with. As a result, the interconnection power flow Can not cope with the fluctuations of As a result, the storage battery facility 11 continues to be discharged, resulting in a problem that the power charged in the storage battery 121 is eventually exhausted.

このような問題を解決するためには、図4に示すように、自家発電システム1と電力系統3とを連系線31を介して連系した系統連系自家発電システムに統合制御装置5を設けることが考えられる。自家発電システム1は、コージェネなどの出力制御が可能な自家発電設備11と、蓄電池121と充放電量を制御可能な双方向コンバータ122を備えた蓄電池設備12と、太陽光発電設備14および風力発電設備15等を電力線19で接続して構成され、多くの負荷13‐1〜13−nが接続される。連系線潮流検出手段16は、連系線潮流を検出し統合制御装置5に接続される。このような系統連系自家発電システムは、統合制御装置5が連系線潮流検出手段16により連系線潮流を監視して、負荷変動に対する蓄電池設備12と自家発電設備11の応答速度、蓄電池設備の充放電状態、自家発電設備の出力状態等を勘案しながらそれぞれの設備の出力分担を制御して連系線潮流が一定になるように統括的に制御する。   In order to solve such a problem, as shown in FIG. 4, the integrated control device 5 is connected to the grid-connected private power generation system in which the private power generation system 1 and the power system 3 are interconnected via the interconnection line 31. It is conceivable to provide it. The in-house power generation system 1 includes an in-house power generation facility 11 capable of output control such as cogeneration, a storage battery facility 12 including a storage battery 121 and a bidirectional converter 122 capable of controlling charge / discharge amount, a solar power generation facility 14 and wind power generation. The facility 15 is connected by a power line 19, and many loads 13-1 to 13-n are connected. The interconnecting line power flow detecting means 16 detects the interconnecting line power flow and is connected to the integrated control device 5. In such a grid interconnection private power generation system, the integrated control device 5 monitors the interconnection line flow with the interconnection line flow detection means 16, and the response speed of the storage battery facility 12 and the private power generation facility 11 with respect to load fluctuations, the storage battery facility. Controlling the output sharing of each facility while taking into account the charging / discharging state of the power generation, the output state of the private power generation facility, etc., and overall control so that the interconnection power flow becomes constant.

このような統合制御装置5は、高度な制御化が可能である反面、以下のような問題があり、一般に高価である。統合制御装置と自家発電設備、蓄電設備間の通信が必要であるが、通それぞれの装置・設備間で信方式が異なる場合は、信号変換装置が必要となり、システムが複雑となる。自家発電設備が既存の設備である場合、自家発電設備が統合制御システムに対応可能にされていない限り、統合制御システムから出力指令を受けて自家発電設備の出力を制御することが困難である。蓄電設備12や自家発電設備11が行うローカルな制御の外側に制御ループを組むため、計測や通信を含む制御全体に時間がかかり、不要な充電または放電が増加する。その結果、蓄電設備の容量が大型となる、また、充放電が多い分そのロスも多くなる。   Such an integrated control device 5 can be highly controlled, but has the following problems and is generally expensive. Communication between the integrated control device, the private power generation facility, and the power storage facility is required. However, if the communication method is different between the respective devices and facilities, a signal conversion device is required, and the system becomes complicated. When the private power generation facility is an existing facility, it is difficult to control the output of the private power generation facility in response to an output command from the integrated control system unless the private power generation facility is compatible with the integrated control system. Since a control loop is built outside the local control performed by the power storage facility 12 or the private power generation facility 11, the entire control including measurement and communication takes time, and unnecessary charging or discharging increases. As a result, the capacity of the power storage facility becomes large, and the loss increases as the charge / discharge increases.

また、電力系統に連系された自家発電システムであって、自家発電設備と蓄電池設備とを組み合わせ、ゼロ潮流制御を行うシステムが、提案されている。このシステムは、商用電源と発電機とが連系し、電源供給ラインを通じて付加に交流電源を供給するシステムに利用される電源装置であって、電源供給ラインに接続されるアクティブフィルタ回路と、アクティブフィルタ回路の後段に接続される蓄電池と、アクティブフィルタ回路の動作および蓄電池の充放電動作を制御する制御回路とを備え、制御回路による蓄電池の充放電制御により、アクティブフィルタ回路を介した連系のゼロ潮流制御を行うシステムである(例えば、特許文献1参照)。   In addition, there has been proposed a self-power generation system linked to a power system, in which a self-power generation facility and a storage battery facility are combined to perform zero flow control. This system is a power supply device that is used in a system in which a commercial power supply and a generator are linked to supply additional AC power through a power supply line, and an active filter circuit connected to the power supply line and an active power supply A storage battery connected to the subsequent stage of the filter circuit, and a control circuit for controlling the operation of the active filter circuit and the charging / discharging operation of the storage battery. A system that performs zero power flow control (see, for example, Patent Document 1).

この自家発電システムは、アクティブフィルタ回路の動作および蓄電池の充放電動作を制御する制御回路を備えており、負荷変動時の発電機の緩慢応答による応答遅れを蓄電池で補完する制御回路であり、前述の統合制御装置に相当する。   This private power generation system includes a control circuit that controls the operation of the active filter circuit and the charge / discharge operation of the storage battery, and is a control circuit that complements the response delay due to the slow response of the generator at the time of load fluctuation with the storage battery. It corresponds to the integrated control device.

また、受電電力一定制御を行うコージェネシステムであって、コージェネの追従遅れから受電潮流が一定にならないシステムにおいて、電力系統に接続された瞬時受電電力制御システムとして、キャパシタ蓄電装置を電力の受電系統に接続し受電電力の制御を行う瞬時受電電力制御システムであって、複数のキャパシタからなり該キャパシタのそれぞれに並列に接続して充電電圧の検出およびバイパス制御を行う並列モニタを有するキャパシタ蓄電装置と、電力受電系統に接続されて交流と直流との変換を行いキャパシタ蓄電装置の充放電を行う交直変換装置と、電力受電系統を監視して交直変換装置の制御を行う系統監視電力制御装置とを備えることが提案されている(例えば、特許文献2参照)。   In addition, in a cogeneration system that performs constant control of received power, where the received power flow is not constant due to the cogeneration follow-up delay, the capacitor power storage device is used as the power receiving system as an instantaneous received power control system connected to the power system. A capacitor power storage device having a parallel monitor that includes a plurality of capacitors and is connected in parallel to each of the capacitors to perform detection of a charging voltage and bypass control, and an instantaneous received power control system that connects and controls received power. An AC / DC converter connected to the power receiving system to convert between AC and DC to charge / discharge the capacitor power storage device, and a system monitoring power control apparatus to monitor the power receiving system and control the AC / DC converter (For example, refer to Patent Document 2).

この瞬時受電電力制御システムは、キャパシタにより受電潮流を一定にすることを目的としているが、系統監視電力制御装置という統合制御装置に相当する装置を必要としている。
特開2003−70165号公報 特開2001−211549号公報
This instantaneous received power control system is intended to make the received power flow constant by the capacitor, but requires a device corresponding to an integrated control device called a system monitoring power control device.
JP 2003-70165 A JP 2001-2111549 A

本発明は、統合制御装置を持たずに、蓄電池設備と自家発電設備を統合して制御することを可能とする系統連系された自家発電システムおよびこのシステムにおける自家発電設備の出力制御方法を提供することを目的とする。   The present invention provides a grid-connected private power generation system capable of integrating and controlling storage battery equipment and private power generation equipment without having an integrated control device, and an output control method for the private power generation equipment in this system The purpose is to do.

さらに、本発明は、制御ループが単純で高速な制御を可能とする系統連系された自家発電システムを提供することを目的とする。   Furthermore, an object of the present invention is to provide a grid-connected private power generation system that enables a high-speed control with a simple control loop.

上記課題を解決するために、本発明は、電力系統に連系される自家発電システムにおける自家発電設備の出力制御方法において、前記自家発電システムは、蓄電池設備と自家発電設備を備えており、前記蓄電池設備は連系線潮流の変動に基づいて連系線潮流が連系線潮流設定値となるように蓄電池出力を制御し、前記自家発電設備は連系線潮流と蓄電池出力の和の値が連系線潮流が連系線潮流設定値となるように自家発電設備の出力を制御する。   In order to solve the above problems, the present invention provides an output control method of a private power generation facility in a private power generation system linked to a power system, wherein the private power generation system includes a storage battery facility and a private power generation facility, The storage battery equipment controls the storage battery output based on the fluctuation of the connection power flow so that the connection power flow becomes the connection power flow setting value, and the private power generation equipment has a sum of the connection power flow and the storage battery output. The output of the in-house power generation equipment is controlled so that the interconnected power flow becomes the interconnected power flow set value.

さらに、本発明は、上記自家発電設備の出力制御方法において、前記自家発電システムは、発電量を制御可能な自家発電設備と、充放電可能な蓄電池および充放電電流を制御する出力制御手段からなる蓄電池設備と、連系線の潮流を検出する連系線潮流検出部と、蓄電池設備の充放電電力を検出する蓄電池設備出力検出部と、自家発電設備出力制御手段を有している。   Furthermore, the present invention provides the output control method for an in-house power generation facility, wherein the in-house power generation system includes an in-house power generation facility capable of controlling a power generation amount, a chargeable / dischargeable storage battery, and an output control means for controlling a charge / discharge current. It has a storage battery facility, a connection line power flow detection unit for detecting a power flow of the connection line, a storage battery facility output detection unit for detecting charge / discharge power of the storage battery facility, and a private power generation facility output control means.

また、本発明は、電力系統に連系される自家発電システムにおいて、前記自家発電システムが、発電量を制御可能な自家発電設備と、充放電可能な蓄電池および充放電電流を制御する出力制御手段からなる蓄電池設備と、連系線の潮流を検出する連系線潮流検出部と、蓄電池設備の充放電電力を検出する蓄電池設備出力検出部と、自家発電設備出力制御手段を有しており、前記蓄電池設備は連系線潮流の変動に基づいて連系線潮流が連系線潮流設定値となるように蓄電池出力を制御し、前記自家発電設備は連系線潮流と蓄電池出力の和の値が連系線潮流設定値となるように自家発電設備の出力を制御する。   Further, the present invention provides an in-house power generation system linked to an electric power system, wherein the in-house power generation system controls an in-house power generation facility capable of controlling the amount of power generation, a chargeable / dischargeable storage battery, and a charge / discharge current. A storage battery facility comprising: an interconnection line power flow detection unit for detecting the flow of the interconnection line; a storage battery facility output detection unit for detecting charge / discharge power of the storage battery facility; and a private power generation facility output control means. The storage battery equipment controls the storage battery output based on the fluctuation of the interconnection power flow so that the interconnection power flow becomes the connection power flow setting value, and the private power generation equipment is the sum of the interconnection power flow and the storage battery output. Controls the output of the private power generation facility so that becomes the interconnected power flow set value.

上記構成を有することにより、本発明に係る、系統連系される自家発電システムは、連系線潮流が設定電力を超えたときに蓄電池設備は連系線潮流に基づいて設定電力になるように補完し、自家発電設備が連系線潮流と蓄電池設備出力との和の値が設定電力となるように補完するので、蓄電池設備や自家発電設備が従来から有するローカルな制御によるので、統合制御装置を持たずに蓄電池設備と自家発電設備を統合して制御することが可能となる。さらに、本発明の系統連系された自家発電システムは、制御ループが簡単であり、安価でかつ高速な制御が可能となる。   By having the above-described configuration, the in-house power generation system connected to the grid according to the present invention is configured so that the storage battery facility becomes set power based on the grid power flow when the grid power flow exceeds the set power. Complementary, since the private power generation equipment complements the sum of the grid power flow and the storage battery equipment output to be the set power, the integrated control device It is possible to integrate and control the storage battery facility and the private power generation facility without having the power. Further, the grid-connected private power generation system of the present invention has a simple control loop, and can be controlled at low cost and at high speed.

本発明は、系統連系される自家発電システムにおいて、連系線潮流を監視して蓄電池設備の出力を制御し、連系線潮流信号と蓄電池出力信号を用いて自家発電設備を制御することを特徴とする。すなわち、本発明においては、自家発電設備に入力される信号は連系線潮流に蓄電池設備からの出力を加えた値であり、実際の潮流の超過分よりも蓄電池設備の出力分大きな値となる。したがって、連系線潮流が予め設定された許容される連系線潮流値(以下、連系線潮流設定値ということがある)を超過した場合に、蓄電池設備が連系線潮流を補完している場合にも自家発電設備は連系線潮流を補完するように電力を出力する。蓄電池設備は自家発電設備に出力の増加にともなってその出力を減少させ、最終的に自家発電設備の出力によって連系線潮流の超過分を補完することになる。   The present invention relates to a grid-connected private power generation system that monitors the interconnection power flow and controls the output of the storage battery equipment, and controls the private power generation equipment using the interconnection power flow signal and the storage battery output signal. Features. In other words, in the present invention, the signal input to the private power generation facility is a value obtained by adding the output from the storage battery facility to the interconnected power flow, and is a value larger by the output of the storage battery facility than the excess of the actual power flow. . Therefore, when the interconnection power flow exceeds a preset allowable interconnection flow value (hereinafter sometimes referred to as the interconnection flow setting value), the storage battery equipment supplements the interconnection flow. The private power generation facility outputs power so as to complement the interconnected power flow. The storage battery facility reduces the output of the private power generation facility as the output increases, and finally, the output of the private power generation facility supplements the excess of the interconnection power flow.

以下、本発明に係る系統連系された自家発電システムの構成を、図1を用いて説明する。本発明に係る系統連系された自家発電システムは、自家発電システム1と電力系統3とを連系線31を介して連系して構成される。自家発電システム1は、コージェネなどの出力制御が可能な自家発電設備11と、蓄電池121と充電電流および放電電流を制御可能な双方向コンバータ122を備えた蓄電池設備12と、太陽光発電設備14および風力発電設備15等の自然変動電源を電力線19で接続して構成され、さらに、連系線潮流検出手段16と、蓄電池設備出力検出手段17と、加算器18とを有して構成され、多くの負荷13−1〜13−nが接続される。   Hereinafter, the configuration of the grid-connected private power generation system according to the present invention will be described with reference to FIG. The grid-connected private power generation system according to the present invention is configured by interconnecting the private power generation system 1 and the power system 3 via a connection line 31. The private power generation system 1 includes a private power generation facility 11 capable of controlling output such as cogeneration, a storage battery 121, a storage battery facility 12 including a bidirectional converter 122 capable of controlling a charging current and a discharging current, a solar power generation facility 14, and It is configured by connecting a naturally fluctuating power source such as a wind power generation facility 15 with a power line 19, and further includes an interconnection line power flow detection means 16, a storage battery facility output detection means 17, and an adder 18. Loads 13-1 to 13-n are connected.

自家発電設備11は、コージェネなどの出力制御が可能な自家発電設備であり、図示を省略した出力制御部を有している。自家発電設備11の出力制御部は、連系線潮流に蓄電池設備出力を加算した値を見かけの連系線潮流信号として用いて連系線潮流設定値を上回る値の制御目標値を得て、この制御目標値によって自家発電設備11の出力を制御する。   The private power generation facility 11 is a private power generation facility capable of output control such as cogeneration, and has an output control unit (not shown). The output control unit of the private power generation facility 11 uses a value obtained by adding the storage battery facility output to the connection line flow as an apparent connection line flow signal to obtain a control target value that exceeds the set value of the connection line flow. The output of the private power generation facility 11 is controlled by this control target value.

蓄電池設備12は、鉛電池などの蓄電池121と、この蓄電池121の充放電方向および充電電流ならびに放電電流を制御する双方向コンバータ122とを有して構成される。蓄電池設備12は、連系線潮流により独自に連系線潮流を連系線潮流設定値に維持する制御する機能(ローカル制御)を有している。双方向コンバータ122は、連系線潮流検出手段16からの潮流信号が入力され、連系線潮流設定値と比較され、連系線潮流が連系線潮流設定値を超えている場合には、超過した潮流の値を補完するように蓄電池121からの出力電流が制御される。また、双方向コンバータ122は、連系線潮流が連系線潮流設定値を下回る状態では、潮流の余剰分で蓄電池121を充電するように制御される。双方向コンバータ122の構成は周知であり、その構成および動作についての説明を省略する。   The storage battery facility 12 includes a storage battery 121 such as a lead battery, and a bidirectional converter 122 that controls the charge / discharge direction, the charge current, and the discharge current of the storage battery 121. The storage battery facility 12 has a function (local control) for controlling to maintain the interconnection line flow at the interconnection line flow set value by the interconnection line flow. The bidirectional converter 122 receives the tidal current signal from the interconnection power flow detection means 16 and compares it with the interconnection power flow setting value. When the interconnection power flow exceeds the interconnection power flow setting value, The output current from the storage battery 121 is controlled so as to complement the excess power flow value. Further, the bidirectional converter 122 is controlled so as to charge the storage battery 121 with a surplus of the tidal current in a state in which the telecommunication current flows below the interconnecting power flow set value. The configuration of bidirectional converter 122 is well known, and a description of the configuration and operation is omitted.

負荷13−1〜13−nは、電力線19にオン/オフが行われる負荷であり、それぞれの負荷のオン/オフにより、負荷変動を生じる。   The loads 13-1 to 13-n are loads that are turned on / off to the power line 19, and load fluctuations are caused by the on / off of the respective loads.

太陽光発電設備14は、日照の有無や大小によってその出力が変動する自然変動発電設備であり、その出力の変動によって連系線潮流に変動を生じる要因となる。さらに、風力発電設備15は、風の有無や風量によってその出力が変動する自然変動発電設備であり、その出力の変動によって連系線潮流に変動を生じる要因となる。本発明においては、太陽光発電設備14および風力発電設備15は、負の負荷としてみることができ、さらに、これらを省略することができる。   The photovoltaic power generation facility 14 is a natural variation power generation facility whose output fluctuates depending on the presence or absence of sunlight or the magnitude of the sunshine, and causes fluctuations in the interconnected power flow due to fluctuations in the output. Further, the wind power generation facility 15 is a natural variation power generation facility whose output fluctuates depending on the presence / absence of the wind and the air volume, and causes fluctuations in the interconnected power flow due to fluctuations in the output. In the present invention, the solar power generation facility 14 and the wind power generation facility 15 can be viewed as negative loads, and these can be omitted.

連系線潮流検出手段16は、連系線の潮流を検出して連系線潮流信号を出力する手段であり、CT、VT、トランスデューサなどにより構成することができる。   The interconnecting line power flow detection means 16 is a means for detecting the power flow of the interconnecting line and outputting an interconnecting line power flow signal, and can be configured by a CT, a VT, a transducer, or the like.

蓄電池設備出力検出手段17は、蓄電池の出力を検出して蓄電池出力信号を出力する手段であり、CT、VT、トランスデューサなどにより構成することができる。   The storage battery facility output detection means 17 is means for detecting the output of the storage battery and outputting a storage battery output signal, and can be constituted by a CT, a VT, a transducer, or the like.

加算器18は、連系線潮流信号と蓄電池出力信号を加算して加算信号を出力する手段であり、見かけの連系線潮流信号を出力する。加算器18は、加算トランスデューサやシーケンサを用いることにより構成することができる。   The adder 18 is a means for adding the interconnection line power flow signal and the storage battery output signal and outputting an addition signal, and outputs an apparent interconnection line power flow signal. The adder 18 can be configured by using an addition transducer or a sequencer.

このような構成を有する自家発電システム1を連系線31を介して電力系統3に接続した場合に、連系線潮流が連系線潮流設定値を超えると、蓄電池設備12が検出した連系線潮流信号に基づいて蓄電池121から電力線19へ電力を出力し、自家発電設備11が連系線潮流信号に蓄電池設備出力信号を加算した見かけの連系線潮流信号を用いて電力線19への出力が制御される。   When the private power generation system 1 having such a configuration is connected to the power system 3 through the connection line 31, if the connection line flow exceeds the connection line flow set value, the connection detected by the storage battery facility 12 Power is output from the storage battery 121 to the power line 19 based on the line power flow signal, and the private power generation facility 11 outputs to the power line 19 using an apparent connection power flow signal obtained by adding the storage battery facility output signal to the connection power flow signal. Is controlled.

各設備の出力の変化の態様を、図2を用いて説明する。一定の値で負荷電力に変動がない時点では、連系線潮流が連系線潮流設定値となるように自家発電設備から電力が供給されており、蓄電池設備の出力は“0”である。時刻Aで負荷電力が増大すると、連系線潮流が連系線潮流設定値を超え、連系線潮流信号が蓄電池設備および自家発電設備に供給される。蓄電池設備は、迅速に連系線潮流の変動に追随してその出力を上げて、連系線潮流を連系線潮流設定値に引き下げる。しかしながら、自家発電設備は連系線潮流信号および蓄電池出力信号の和の見かけの連系線潮流信号に基づいて緩慢な応答によってその出力を増大して行く。自家発電設備の出力の増加に伴なって蓄電池設備の出力は連系線潮流が連系線潮流設定値に保たれるように緩慢に低下してゆく。最終的に自家発電設備の出力が負荷変動に対応できる値となると、蓄電池の出力は“0”となり自家発電設備の出力のみによって連系線潮流は連系線潮流設定値に維持される。   A mode of change in output of each facility will be described with reference to FIG. When the load power does not fluctuate at a constant value, power is supplied from the private power generation facility so that the interconnected power flow becomes the interconnected power flow set value, and the output of the storage battery facility is “0”. When the load power increases at time A, the interconnecting power flow exceeds the interconnecting power flow set value, and the interconnecting power flow signal is supplied to the storage battery facility and the private power generation facility. The storage battery facility quickly follows the fluctuation of the interconnection power flow, increases its output, and lowers the interconnection power flow to the connection power flow setting value. However, the private power generation facility increases its output by a slow response based on the apparent interconnected power flow signal that is the sum of the interconnected power flow signal and the battery output signal. As the output of the private power generation facility increases, the output of the storage battery facility gradually decreases so that the interconnected power flow is maintained at the interconnected power flow set value. When the output of the private power generation facility finally becomes a value that can cope with the load fluctuation, the output of the storage battery becomes “0”, and the interconnected power flow is maintained at the interconnected power flow set value only by the output of the private power generation facility.

上記の説明では、連系線潮流が連系線潮流設定を上回るように負荷13が変動する場合を説明したが、連系線潮流が連系線潮流設定を下回るように負荷が変動する場合においても、まず蓄電池設備12が負荷の減少に伴なう連系線潮流の減少を吸収するように迅速に充電状態とされ、自家発電設備11が負荷の減少に伴うように緩慢に出力を減少させることによって、負荷の急激な減少に対応することができる。この場合、加算器18において、連系線潮流信号に加算される蓄電池出力信号は負の値とされる。   In the above description, the case where the load 13 fluctuates so that the interconnecting line power flow exceeds the interconnecting line power flow setting has been described. However, in the case where the load fluctuates so that the interconnecting line power flow falls below the interconnecting line power flow setting. First, the storage battery facility 12 is quickly charged so as to absorb the decrease in interconnection power flow accompanying the decrease in load, and the in-house power generation facility 11 slowly decreases the output as the load decreases. Thus, it is possible to cope with a sudden decrease in load. In this case, in the adder 18, the storage battery output signal added to the interconnection power flow signal is a negative value.

このようにして、急激な負荷変動に対して応答速度の異なる蓄電池設備と自家発電設備を備えた自家発電システムにおいて、急激な負荷変動時にはまず蓄電池設備が負荷を分担し、その後自家発電設備が確実に負荷を分担することができる。   In this way, in a private power generation system equipped with storage battery equipment and private power generation equipment with different response speeds against sudden load fluctuations, the storage battery equipment first shares the load during sudden load fluctuations, and then the private power generation equipment is surely The load can be shared.

本発明に係る電力系統に連系した自家発電システムの構成を説明する図。The figure explaining the structure of the private electric power generation system connected to the electric power grid | system which concerns on this invention. 本発明に係る自家発電システムの動作の態様を説明する図。The figure explaining the mode of operation of the private power generation system concerning the present invention. 単純な電力系統に連系した蓄電池設備を有する自家発電システムの構成を説明する図。The figure explaining the structure of the private electric power generation system which has the storage battery equipment connected to the simple electric power system. 統合制御装置を用いた電力系統に連系した蓄電池設備を有する自家発電システムの構成を説明する図。The figure explaining the structure of the private electric power generation system which has the storage battery equipment connected to the electric power grid | system using an integrated control apparatus. 単純な電力系統に連系した自家発電システムの構成を説明する図。The figure explaining the structure of the private electric power generation system connected with the simple electric power grid | system.

符号の説明Explanation of symbols

1:自家発電システム、11:自家発電設備、12:蓄電池設備、121:蓄電池、122:双方向コンバータ、13:負荷、14:太陽光発電設備、15:風力発電設備、16:連系線潮流検出手段、17:蓄電池出力検出手段、18:加算器、19:電力線、3:電力系統、31:連系線、5:統合制御装置   1: Private power generation system, 11: Private power generation facility, 12: Storage battery facility, 121: Storage battery, 122: Bidirectional converter, 13: Load, 14: Solar power generation facility, 15: Wind power generation facility, 16: Grid power flow Detection means, 17: storage battery output detection means, 18: adder, 19: power line, 3: power system, 31: interconnection line, 5: integrated control device

Claims (3)

電力系統に連系される自家発電システムにおける自家発電設備の出力制御方法において、
前記自家発電システムは、蓄電池設備と自家発電設備を備えており、
前記蓄電池設備が連系線潮流の変動に基づいて連系線潮流が連系線潮流設定値となるように蓄電池出力を制御し、
前記自家発電設備が連系線潮流と蓄電池出力の和に基づいて連系線潮流が連系線潮流設定値となるように自家発電設備の出力を制御する
ことを特徴とする自家発電設備の出力制御方法。
In the output control method of the private power generation facility in the private power generation system linked to the power system,
The private power generation system includes a storage battery facility and a private power generation facility,
The storage battery equipment controls the storage battery output based on the fluctuation of the interconnection current, so that the interconnection current becomes the interconnection current setting value,
The output of the private power generation facility is characterized in that the private power generation facility controls the output of the private power generation facility based on the sum of the interconnection power flow and the storage battery output so that the interconnection power flow becomes a connection power flow setting value. Control method.
請求項1に記載の自家発電設備の出力制御方法において、
前記自家発電システムは、発電量を制御可能な自家発電設備と、充放電可能な蓄電池および充放電電流を制御する出力制御手段からなる蓄電池設備と、連系線の潮流を検出する連系線潮流検出部と、蓄電池設備の充放電電力を検出する蓄電池設備出力検出部と、自家発電設備出力制御手段を有している
ことを特徴とする自家発電設備の出力制御方法。
In the private power generation facility output control method according to claim 1,
The in-house power generation system includes an in-house power generation facility capable of controlling the amount of power generation, a storage battery facility comprising a chargeable / dischargeable storage battery and output control means for controlling charge / discharge current, and an interconnected line power flow for detecting the power flow of the interconnected line. An output control method for a private power generation facility, comprising: a detection unit; a storage battery facility output detection unit for detecting charge / discharge power of the storage battery facility; and a private power generation facility output control means.
系統電源に連系される自家発電システムにおいて、
前記自家発電システムが、
発電量を制御可能な自家発電設備と、
充放電可能な蓄電池および充放電電流を制御する出力制御手段からなる蓄電池設備と、
連系線の潮流を検出する連系線潮流検出部と、
蓄電池設備の充放電電力を検出する蓄電池設備出力検出部と、
自家発電設備出力制御手段を有しており、
前記蓄電池設備が連系線潮流の変動に基づいて連系線潮流が連系線潮流設定値となるように蓄電池出力を制御し、前記自家発電設備は連系線潮流と蓄電池出力の和の値が連系線潮流設定値となるように自家発電設備の出力を制御する
ことを特徴とする自家発電システム。
In the private power generation system linked to the grid power supply,
The in-house power generation system is
In-house power generation equipment that can control power generation,
A storage battery facility comprising a chargeable / dischargeable storage battery and an output control means for controlling the charge / discharge current;
An interconnecting line tidal current detector that detects the tidal current of the interconnecting line;
A storage battery facility output detector for detecting charge / discharge power of the storage battery facility;
It has private power generation facility output control means,
The storage battery equipment controls the storage battery output based on fluctuations in the interconnection power flow so that the interconnection power flow becomes the connection power flow setting value, and the private power generation equipment is the sum of the interconnection power flow and the storage battery output. Is a private power generation system that controls the output of the private power generation equipment so that the power flow setting value becomes the interconnection line power setting value.
JP2006242289A 2006-09-07 2006-09-07 Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system Active JP4993972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006242289A JP4993972B2 (en) 2006-09-07 2006-09-07 Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006242289A JP4993972B2 (en) 2006-09-07 2006-09-07 Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system

Publications (2)

Publication Number Publication Date
JP2008067484A true JP2008067484A (en) 2008-03-21
JP4993972B2 JP4993972B2 (en) 2012-08-08

Family

ID=39289683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006242289A Active JP4993972B2 (en) 2006-09-07 2006-09-07 Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system

Country Status (1)

Country Link
JP (1) JP4993972B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175862A (en) * 2011-02-23 2012-09-10 Toshiba Mitsubishi-Electric Industrial System Corp Power control system
JP2012222908A (en) * 2011-04-06 2012-11-12 Kyocera Corp Power conditioner, power control system, and power control method
JP2014165952A (en) * 2013-02-21 2014-09-08 Daiwa House Industry Co Ltd Power supply system
JP2016059129A (en) * 2014-09-08 2016-04-21 東芝エレベータ株式会社 Storage battery device and storage battery control system
JP2019129547A (en) * 2018-01-22 2019-08-01 株式会社日立製作所 Renewable energy hybrid power generation system and control method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293930A (en) * 1990-04-06 1991-12-25 Mitsubishi Electric Corp Purchase power quantity control device
JPH07231570A (en) * 1994-02-10 1995-08-29 Osaka Gas Co Ltd Power generation system
JPH1155858A (en) * 1997-07-30 1999-02-26 Meidensha Corp Incoming and transforming station for private use
JP2001161098A (en) * 1999-11-30 2001-06-12 Tokyo Gas Co Ltd Instantaneous incoming power control system wherein reverse power flow is permitted
JP2002374629A (en) * 2001-06-13 2002-12-26 Osaka Gas Co Ltd Received power regulating device, private power generating device, and method of controlling them
JP2004362787A (en) * 2003-06-02 2004-12-24 Hitachi Home & Life Solutions Inc Fuel cell system with power storing means

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293930A (en) * 1990-04-06 1991-12-25 Mitsubishi Electric Corp Purchase power quantity control device
JPH07231570A (en) * 1994-02-10 1995-08-29 Osaka Gas Co Ltd Power generation system
JPH1155858A (en) * 1997-07-30 1999-02-26 Meidensha Corp Incoming and transforming station for private use
JP2001161098A (en) * 1999-11-30 2001-06-12 Tokyo Gas Co Ltd Instantaneous incoming power control system wherein reverse power flow is permitted
JP2002374629A (en) * 2001-06-13 2002-12-26 Osaka Gas Co Ltd Received power regulating device, private power generating device, and method of controlling them
JP2004362787A (en) * 2003-06-02 2004-12-24 Hitachi Home & Life Solutions Inc Fuel cell system with power storing means

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012175862A (en) * 2011-02-23 2012-09-10 Toshiba Mitsubishi-Electric Industrial System Corp Power control system
JP2012222908A (en) * 2011-04-06 2012-11-12 Kyocera Corp Power conditioner, power control system, and power control method
JP2016165218A (en) * 2011-04-06 2016-09-08 京セラ株式会社 Power conversion device, power control system, and power control method
JP2014165952A (en) * 2013-02-21 2014-09-08 Daiwa House Industry Co Ltd Power supply system
JP2016059129A (en) * 2014-09-08 2016-04-21 東芝エレベータ株式会社 Storage battery device and storage battery control system
JP2019129547A (en) * 2018-01-22 2019-08-01 株式会社日立製作所 Renewable energy hybrid power generation system and control method of the same
JP7181691B2 (en) 2018-01-22 2022-12-01 株式会社日立製作所 RENEWABLE ENERGY HYBRID GENERATION SYSTEM AND CONTROL METHOD THEREOF

Also Published As

Publication number Publication date
JP4993972B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4850019B2 (en) Storage battery equipment in private power generation equipment connected to power system and operation method of storage battery equipment
EP2169800B1 (en) Power generation system and method for storing electrical energy
EP2793352B1 (en) Power supply system and power conditioner for charging and discharging
JP4353446B2 (en) DC power output device and solar power generation system
JP5717172B2 (en) Power supply system
JP5626563B2 (en) Power system
JP2018107991A (en) Composite power generation system
US20140204613A1 (en) Providing control power with a photovoltaic system
CA2797807A1 (en) Managing renewable power generation
JP5614626B2 (en) Power system
KR20140030143A (en) Automatic voltage regulation for photovoltaic systems
US9391537B2 (en) Photovoltaic system and power supply system
WO2017037868A1 (en) Power generation facility and power generation control device
KR20110085781A (en) A energy storage system, and a method for controlling the same
JP3781977B2 (en) Distributed power supply network
US9531191B2 (en) Method and apparatus for power imbalance correction in a multi-phase power generator
CN110176788B (en) Power storage system and power storage device
JP4993972B2 (en) Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system
KR20150106694A (en) Energy storage system and method for driving the same
JP2017121171A (en) Storage battery charge-discharge system, and interconnection system
JP2018098953A (en) Power supply system
JP2018014783A (en) Solar power generation apparatus
US11329488B2 (en) Power conversion system, method for controlling converter circuit, and program
WO2016084400A1 (en) Storage battery system and electricity storage method
JP6527681B2 (en) POWER CONDITIONER, POWER CONTROL METHOD THEREOF, AND POWER CONTROL SYSTEM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120508

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4993972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250