JP2639026B2 - Power supply - Google Patents

Power supply

Info

Publication number
JP2639026B2
JP2639026B2 JP63312565A JP31256588A JP2639026B2 JP 2639026 B2 JP2639026 B2 JP 2639026B2 JP 63312565 A JP63312565 A JP 63312565A JP 31256588 A JP31256588 A JP 31256588A JP 2639026 B2 JP2639026 B2 JP 2639026B2
Authority
JP
Japan
Prior art keywords
power supply
load
current monitor
solar cell
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63312565A
Other languages
Japanese (ja)
Other versions
JPH02159935A (en
Inventor
幸弘 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63312565A priority Critical patent/JP2639026B2/en
Publication of JPH02159935A publication Critical patent/JPH02159935A/en
Application granted granted Critical
Publication of JP2639026B2 publication Critical patent/JP2639026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は,例えば日照時に太陽電池より負荷に電力
を供給するとともに蓄電池に電力を充電し,日陰時に蓄
電池の放電により負荷に電力を供給する人工衛星等の電
源装置に係り,特に日陰になると自動的に不用な負荷を
切り離して蓄電池の負担を軽減し,日照になると自動的
に切り離した負荷を再接続するための信号を出力する日
陰判定手段を有する電源装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention supplies power to a load from a solar cell and charges the storage battery during sunshine, and supplies power to the load by discharging the storage battery during shade, for example. In connection with power supplies such as artificial satellites, especially in shade, unnecessary load is automatically cut off to reduce the load on the storage battery, and in the sunshine, a signal for automatically reconnecting the disconnected load is output. The present invention relates to a power supply device having means.

〔従来の技術〕[Conventional technology]

第3図は負荷を接続した従来の人工衛星等の電源装置
の構成図であり,(1)は太陽電池,(2)は蓄電池,
(3)はアノードが上記太陽電池(1)の出力端に接続
された第1のダイオード,(4)はアノードが上記蓄電
池(2)の出力端と直列に接続された第2のダイオード
であり,上記第1のダイオード(3)の第2のダイオー
ド(4)のカソード同士が接続されて電源バスBを構成
している。(5)は上記第1のダイオード(3)のアノ
ードとリターンライン(以下,RTNという)間に上記他太
陽電池(1)と並列に接続され,上記太陽電池(1)で
発生した余剰電力を消費するシヤント装置,(6)は上
記電源バスと上記蓄電池(2)間に直列接続されて日照
時に上記蓄電池(2)を充電するための充電器,(7)
は電源バスBとRTN間に接続されたキヤパシタバンク,
(8)は負荷で,その負荷量は地上局よりコマンドCで
設定される。(9)は上記第1のダイオード(3)より
電源バスBに流入する電流レベルを検出し,テレメトリ
信号ISATLMに変換して送出するソーラアレイ電流モニ
タ,(10)は上記シヤント装置(5)で消費される電流
を検出し,テレメトリ信号ISHNTTLMに変換して送出する
シヤント電流モニタである。以下,従来の電源系の動作
について詳細に述べる。
FIG. 3 is a configuration diagram of a power supply device of a conventional artificial satellite or the like to which a load is connected, (1) is a solar cell, (2) is a storage battery,
(3) is a first diode whose anode is connected to the output terminal of the solar cell (1), and (4) is a second diode whose anode is connected in series with the output terminal of the storage battery (2). , The cathode of the second diode (4) of the first diode (3) is connected to form a power bus B. (5) is connected between the anode of the first diode (3) and a return line (hereinafter, referred to as RTN) in parallel with the other solar cell (1), and stores surplus power generated in the solar cell (1). A consuming shunt device, (6) is connected in series between the power supply bus and the storage battery (2), and a charger for charging the storage battery (2) during sunshine; (7)
Is a capacitor bank connected between the power bus B and RTN,
(8) is a load, and the load amount is set by the command C from the ground station. (9) is a solar array current monitor which detects the current level flowing into the power supply bus B from the first diode (3), converts it into a telemetry signal I SATLM and sends it out, and (10) is the shunt device (5) This is a shunt current monitor that detects the consumed current, converts it into a telemetry signal I SHNTTLM , and sends it out. Hereinafter, the operation of the conventional power supply system will be described in detail.

日照時,上記太陽電池(1)で発生した電力は,上記
第1のダイオード(3)を介して一部が上記充電器
(6)で変換されて上記蓄電池(2)の充電々力とな
り,残りは上記負荷(8)の許容消費電力となる。負荷
(8)は許容消費電力の範囲内で地上局からのコマンド
により軌道上サービスに必要な電力を消費する。上記充
電器(6)の充電々力と上記負荷(8)による消費電力
との和電力を上回る上記太陽電池(1)で発生する余剰
電力は上記シヤント装置(5)で消費され,上記キヤパ
シタバンク(7)の電圧(以下,バス電圧という)をシ
ヤント電圧VSHNT4に安定化させている。
At the time of sunshine, a part of the electric power generated by the solar cell (1) is converted by the charger (6) via the first diode (3) and becomes the charging power of the storage battery (2). The remainder is the allowable power consumption of the load (8). The load (8) consumes power required for on-orbit service in accordance with a command from the ground station within the allowable power consumption range. Excess power generated in the solar cell (1) exceeding the sum of the charging power of the charger (6) and the power consumed by the load (8) is consumed by the shunt device (5), and the capacitor bank ( The voltage (7) (hereinafter referred to as a bus voltage) is stabilized at the shunt voltage V SHNT 4.

この時,上記ソーラアレイ電流モニタ(9)は,上記
充電器(6)を介して上記蓄電池(2)を充電するに必
要な電流と上記負荷(8)で消費する電流との和電流を
検出し,上記シヤント電流モニタ(10)は,上記シヤン
ト装置(5)で消費するシヤント電流を検出し,それぞ
れ検出電流をテレメトリ信号に変換して地上局に送出す
る。地上局では上記テレメトリ信号より上記太陽電池
(1)で日照時に発生する電力を評価している。
At this time, the solar array current monitor (9) detects a sum current of a current required for charging the storage battery (2) via the charger (6) and a current consumed by the load (8). The shunt current monitor (10) detects a shunt current consumed by the shunt device (5), converts the detected current into a telemetry signal, and sends it to the ground station. The ground station evaluates the power generated by the solar cell (1) during sunshine from the telemetry signal.

上記太陽電池(1)で発生する電流をIS,上記ソーラ
アレイ電流モニタ(9)で検出する電流をISA,上記シヤ
ント電流モニタ(10)で検出する電流をISHNTとする
と, IS=ISA+ISHNT (1) なる関係式が成立する。
If the current generated by the solar cell (1) is I S , the current detected by the solar array current monitor (9) is I SA , and the current detected by the shunt current monitor (10) is I SHNT , I S = I SA + I SHNT (1)

日陰時は上記太陽電池(1)での電力発生が停止す
る,即ち ISA=0 ……(2) ISHNT=0 ……(3) IS=0 ……(4) となり,上記負荷(8)への電力供給は上記第2のダイ
オード(4)を介して上記蓄電池(2)の放電により行
う。
In the shade, the power generation in the solar cell (1) stops, that is, I SA = 0 (2) I SHNT = 0 (3) I S = 0 (4), and the load ( The power supply to 8) is performed by discharging the storage battery (2) via the second diode (4).

上記蓄電池(2)の許容放電量の制限による負荷量の
軽減を目的として,上記負荷(8)のうち日陰時には軌
道上サービスを行わない不用な負荷は,上記電源バスB
から切り離される。
For the purpose of reducing the amount of load by limiting the allowable discharge amount of the storage battery (2), the unnecessary load of the load (8) that does not perform on-orbit service in the shade is the power bus B
Disconnected from

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記負荷(8)のうち,日陰時に不用な負荷を切り離
す際,従来は上記ソーラアレイ電流モニタ(9)と上記
シヤント電流モニタ(10)のテレメトリ信号を地上局で
観測し,(1)式で与えられ上記太陽電池(1)で発生
する電流ISが或る閾値IBよりも小さくなつたことを人間
が判断し,日陰状態へ移行したことを人間が認識し,人
間が上記負荷(8)に不用な負荷切り離しのための負荷
軽減コマンド信号を地上局より送信していた。しかし,
この方法は静止衛星のように地上局から衛星と常に交信
できることが前提であり,周回衛星のような低軌道衛星
では,地上局と交信できない時間が多く,日陰中の蓄電
池の許容放電量の制限のため,日照中の太陽電池で発生
する電力を有効に使用できないなどの課題があつた。
When disconnecting an unnecessary load in the shade among the above-mentioned loads (8), conventionally, the telemetry signals of the solar array current monitor (9) and the shunt current monitor (10) are observed by a ground station, and given by equation (1). As a result, a person judges that the current I S generated in the solar cell (1) has become smaller than a certain threshold value I B , recognizes that the state has shifted to the shaded state, and outputs the load (8). In addition, a load reduction command signal for unnecessary load separation was transmitted from the ground station. However,
This method assumes that the ground station can always communicate with the satellite like a geostationary satellite, and low-orbit satellites such as orbiting satellites cannot communicate with the ground station for a long time, and the allowable discharge amount of the storage battery in the shade is limited. As a result, there were problems such as the inability to effectively use the power generated by solar cells during sunshine.

この発明は,上記課題を解消するためになされたもの
で,自動的に日陰状態であることを判定し,負荷に負荷
軽減信号を送出する電源装置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and has as its object to obtain a power supply device that automatically determines that a vehicle is in a shaded state and sends a load reduction signal to a load.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る電源装置は,ソーラアレイ電流モニタ
のテレメトリ信号とシヤント電流モニタのテレメトリ信
号とを入力信号とし,テレメトリ信号レベルの総和を計
算する和算器と,内部基準電源と,上記和算器の出力と
上記内部基準電源の出力を比較して上記和算器の出力が
上記内部電源の出力よりも小さい場合に負荷軽減信号を
出力する比較器により構成されたものである。
A power supply device according to the present invention has a summer for calculating a sum of telemetry signal levels using a telemetry signal of a solar array current monitor and a telemetry signal of a shunt current monitor as input signals, an internal reference power supply, and the above-described adder. An output of the adder is compared with an output of the internal reference power supply, and when the output of the adder is smaller than the output of the internal power supply, the comparator outputs a load reduction signal.

また,この発明の別の発明に係る電源装置は,ソーラ
アレイ電流モニタのテレメトリ信号とシヤント電流モニ
タのテレメトリ信号とを入力信号とし,内部基準電源
と,内部基準電源の出力信号と各テレメトリ信号のレベ
ルを比較してテレメトリ信号レベルが内部基準電源の出
力よりも小さい場合にレベル低下信号をそれぞれ出力す
る2つの比較器と,2つの比較器からレベル低下信号を受
けて初めて負荷軽減信号を出力する排他的論理和算器に
より構成されたものである。
Further, a power supply device according to another invention of the present invention is characterized in that a telemetry signal of a solar array current monitor and a telemetry signal of a shunt current monitor are input signals, an internal reference power supply, an output signal of the internal reference power supply, and a level of each telemetry signal. , Two comparators each outputting a lowering signal when the telemetry signal level is smaller than the output of the internal reference power supply, and an exclusive circuit that outputs a load reduction signal only after receiving the lowering signal from the two comparators It is configured by a logical OR calculator.

〔作用〕[Action]

この発明における電源装置は,ソーラアレイ電流モニ
タとシヤント電流モニタのテレメトリ信号から太陽電池
で発生する電流を計算し,太陽電池発生電流計算値が内
部基準電源で作られる閾値よりも小さくなると,日陰状
態と判定して負荷に負荷軽減信号を出力する。
The power supply device according to the present invention calculates the current generated in the solar cell from the telemetry signals of the solar array current monitor and the shunt current monitor, and when the calculated value of the solar cell generated current becomes smaller than the threshold value generated by the internal reference power supply, the shaded state is set. Judge and output a load reduction signal to the load.

また,この発明の別の発明における電源装置は,ソー
ラアレイ電流モニタとシヤント電流モニタの各々のテレ
メトリ信号すべてが内部基準電源で作られる閾値より小
さくなると,日陰状態であると判定して負荷に負荷軽減
信号を出力する。
Further, in the power supply device according to another aspect of the present invention, when all of the telemetry signals of the solar array current monitor and the shunt current monitor are all smaller than a threshold generated by the internal reference power supply, it is determined that the vehicle is in a shaded state and the load is reduced. Output a signal.

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す負荷を接続した電源
装置の構成図であり,(1)〜(10)は従来を構成品と
全く同一のものである。
FIG. 1 is a configuration diagram of a power supply device to which a load is connected according to an embodiment of the present invention, and (1) to (10) are exactly the same as conventional components.

(11)は日陰判定器,(12)は和算器,(13)は内部
基準電源,(14)は比較器である。
(11) is a shade determiner, (12) is an adder, (13) is an internal reference power supply, and (14) is a comparator.

以下,この発明の実施例について詳細に述べる。 Hereinafter, embodiments of the present invention will be described in detail.

和算器(12)は,上記ソーラアレイ電流モニタ(9)
のテレメトリ出力端子と上記シヤント電流モニタ(10)
のテレメトリ出力端子に接続され,上記ソーラアレイ電
流モニタ(9)のテレメトリ出力TSATLMと上記シヤント
電流モニタ(10)のテレメトリ出力ISHNTTLMを和算し,
上記比較器(14)へ信号ISTLMを出力する。
The adder (12) is the above-mentioned solar array current monitor (9)
Telemetry output terminal and the above shunt current monitor (10)
And sums the telemetry output T SATLM of the solar array current monitor (9) and the telemetry output I SHNTTLM of the shunt current monitor (10).
The signal I STLM is output to the comparator (14).

このとき,ISTLMとISATLM,ISHNTTLMの間に, ISTLM=ISATLM+ISHNTTLM ……(5) なる(1)式をと対応した関係が成立する。At this time, a relationship corresponding to the expression (1) of I STLM = I SATLM + I SHNTTLM is established between I STLM and I SATLM , I SHNTTLM .

更に,ISATLM及びISHHTTLMは実際の電流ISA及びISHNT
に対して, ISATLM=kISA ……(6) ISHNTTLM=kISHNT ……(7) なる関係があるから(5)式に(6),(7)式を代入
して(1)式を適用すれば, ISTLM=kIS ……(8) を得,上記和算器(12)の出力ISTLMが実際の太陽電池
(1)の出力電流ISに比例した量であることがわかる。
Furthermore, I SATLM and I SHHTTLM are the actual currents I SA and I SHNT
Then, I SATLM = kI SA ... (6) I SHNTTLM = kI SHNT ... (7) Since equations (5) and (7) are substituted into equation (5), equation (1) is obtained. By applying, I STLM = kI S (8) is obtained, and the output I STLM of the adder (12) is an amount proportional to the actual output current I S of the solar cell (1). Recognize.

上記比較器(14)は,上記和算器(12)の出力端子と
上記内部基準電源(13)の出力端子に接続され,上記和
算器(12)の出力ISTLMと上記内部基準電源(13)の出
力VREFの関係が, ISTLM<VREF (9) となつたとき,上記比較器(14)は上記負荷(8)へ負
荷軽減信号Dを出力する。日照時の太陽電池(1)の出
力ISはほぼ一定であり,日照から日陰への移行時に急激
にI3Sが減少して零となるから,(9)式においてVREF
の値を日照時のISTLMより十分小さく設定すれば日陰の
判定ができると同時に負荷量の制御ができる。
The comparator (14) is connected to the output terminal of the adder (12) and the output terminal of the internal reference power supply (13), and outputs the output I STLM of the adder (12) and the internal reference power supply ( When the relation of the output V REF in (13) satisfies I STLM <V REF (9), the comparator (14) outputs the load reduction signal D to the load (8). The output I S of the solar cell (1) at the time of sunshine is substantially constant, because rapidly I3 S in the transition from the sunshine to shade becomes zero decreases, V REF at (9)
If the value is set to be sufficiently smaller than the I STLM at the time of sunshine, it is possible to determine the shade and at the same time to control the load amount.

第2図はこの発明の別の実施例を示す負荷を接続した
電源装置の構成図であり,(1)〜(10)は従来の構成
品と全く同一のものである。
FIG. 2 is a block diagram of a power supply device to which a load is connected according to another embodiment of the present invention, wherein (1) to (10) are completely the same as conventional components.

(11)は日陰判定器,(13)は内部基準電源,(1
5),(16)は比較器,(17)は排他的論理和算器であ
る。
(11) is a shade detector, (13) is an internal reference power supply, (1)
5) and (16) are comparators, and (17) is an exclusive OR calculator.

以下,この発明の別の実施例について詳細に述べる。 Hereinafter, another embodiment of the present invention will be described in detail.

第1の比較器(15)は,上記ソーラアレイ電流モニタ
(9)のテレメトリ出力端子と上記内部基準電源(13)
の出力端子に接続され,上記ソーラアレイ電流モニタ
(9)の出力ISATLMと上記内部基準電源(13)の出力V
REFを比較して, ISATLM>VREF ……(10) のとき,上記第1の比較器(15)は上記排他的論理和算
器(17)へレベル低下信号を出力する。
The first comparator (15) includes a telemetry output terminal of the solar array current monitor (9) and the internal reference power supply (13).
The output I SATLM of the solar array current monitor (9) and the output V of the internal reference power supply (13)
REF is compared, and if I SATLM > V REF (10), the first comparator (15) outputs a level reduction signal to the exclusive OR (17).

第2の比較器(16)は,上記シヤント電流モニタ(1
0)のテレメトリ出力端子と上記内部基準電源(13)の
出力端子に接続され,上記シヤント電流モニタ(10)の
出力ISHNTTLMと上記内部基準電源(13)の出力VREFを比
較して, ISHNTTLM<VREF ……(11) のとき,上記第2の比較器(16)は上記排他的論理和算
器(17)へレベル低下信号を出力する。
The second comparator (16) is connected to the shunt current monitor (1).
0) is connected to the output terminal of the internal reference power supply (13) and the output I SHNTTLM of the shunt current monitor (10) is compared with the output V REF of the internal reference power supply (13). When SHNTTLM <V REF (11), the second comparator (16) outputs a level decrease signal to the exclusive OR (17).

上記排他的論理和算器(17)は,上記第1の比較器
(15)の出力端と上記第2の比較器(16)の出力端に接
続され,上記第1の比較器(15)と上記第2の比較器
(16)の両者から同時にレベル低下信号を受けて初めて
上記排他的論理和算器(7)は上記負荷(8)へ負荷軽
減信号Dを出力する。日照時の太陽電池(1)の出力電
流ISはほぼ一定であり,上記ソーラアレイ電流モニタ
(9)及びシヤント電流モニタ(10)でそれぞれ検出さ
れる電流ISA,ISHNTは,(1)式を満足するように変動
し,それぞれ対応するテレメトリ信号ISATLM,ISHNTTLM
との間に(6),(7)式で与えられる関係が成立して
いる。
The exclusive OR (17) is connected to an output terminal of the first comparator (15) and an output terminal of the second comparator (16), and is connected to the first comparator (15). The exclusive OR calculator (7) outputs the load reduction signal D to the load (8) only after receiving the level decrease signal from both the first and second comparators (16) at the same time. The output current I S of the solar cell (1) during sunshine is almost constant, and the currents I SA and I SHNT detected by the solar array current monitor (9) and the shunt current monitor (10) respectively are expressed by the following equations (1). And the corresponding telemetry signals I SATLM and I SHNTTLM
And the relationship given by equations (6) and (7) holds.

日照から日陰への移行時に急激にISが減少して零とな
ることから,上記内部基準電源(13)の出力VREFの値を
日照時のISATLMとISHNTTLMとの和に対して十分小さく設
定すれば,(10),(11)式が同時に満足するのは日陰
時であり,日陰の判定が可能となると同時に負荷量の制
御ができる。
Since the sudden I S during the transition to shade it becomes zero decreases from sunlight, well the value of the output V REF of the internal reference power supply (13) to the sum of the sunshine during I SATLM and I SHNTTLM If the value is set to a small value, the expressions (10) and (11) are satisfied at the same time in the shade, so that it is possible to determine the shade and control the load at the same time.

なお,上記実施例では,日陰時に人工衛星等電源系の
負荷を軽減する場合について説明したが,ヒータ等,日
陰時にのみ使用される負荷の自動起動機能であつてもよ
く,上記実施例と同様の効果を奏する。
In the above embodiment, the case where the load on the power supply system such as an artificial satellite is reduced in the shade is described. However, an automatic start function of the load used only in the shade, such as a heater, may be used. Has the effect of

〔発明の効果〕〔The invention's effect〕

この発明による電源装置は以上説明したとおり,ソー
ラアレイの電流モニタの出力信号とシヤント電流モニタ
の出力信号を入力する端子を有し,上記2つの信号を演
算して上記2つの信号の和,あるいは上記2つの信号の
両者がある閾値より小さいことを判定して負荷に負荷軽
減信号を出力する日陰判定器を追加したので,日照中は
太陽電池で発生する電力を有効に活用でき,日陰になる
と日陰になつたことを判定して自動的に不用な負荷を切
り離して,蓄電池の放電量を制限できるという利点があ
る。
As described above, the power supply according to the present invention has terminals for inputting the output signal of the current monitor of the solar array and the output signal of the shunt current monitor, and calculates the two signals to calculate the sum of the two signals, or A shade determiner that outputs a load reduction signal to the load by judging that both of the two signals are smaller than a certain threshold has been added, so that the power generated by the solar cell can be effectively used during the sunshine, and when the shade is reached, the shade is reduced. This is advantageous in that the unnecessary load can be automatically cut off by judging that the battery has become unreliable, and the discharge amount of the storage battery can be limited.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示す負荷を接続した電源
装置の構成図,第2図はこの発明の別の実施例を示す負
荷を接続した電源装置の構成図,第3図は従来の負荷を
接続した電源装置の構成図である。 図において,(1)は太陽電池,(2)は蓄電池,
(3),(4)はダイオード,(5)はシヤント装置,
(6)は充電器,(7)はキヤパシタバンク,(8)は
負荷,(9)はソーラアレイ電流モニタ,(10)はシヤ
ント電流モニタ,(11)は日陰判定器,(12)は和算
器,(13)は内部基準電源,(14)(15),(16)は比
較器,(17)は排他的論理和算器である。 なお,図中,同一符号は同一,または相当部分を示すも
のとする。
FIG. 1 is a block diagram of a power supply unit connected to a load showing one embodiment of the present invention, FIG. 2 is a block diagram of a power supply unit connected to a load showing another embodiment of the present invention, and FIG. FIG. 2 is a configuration diagram of a power supply device to which a load is connected. In the figure, (1) is a solar cell, (2) is a storage battery,
(3) and (4) are diodes, (5) is a shunt device,
(6) is a charger, (7) is a capacitor bank, (8) is a load, (9) is a solar array current monitor, (10) is a shunt current monitor, (11) is a shade determiner, and (12) is an adder. , (13) are internal reference power supplies, (14), (15), and (16) are comparators, and (17) is an exclusive OR calculator. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】太陽電池と,この太陽電池の出力端子とリ
ターンライン間に直列接続されたシヤント装置とシヤン
ト電流モニタと,上記太陽電池の出力端子にアノードが
接続された第1のダイオードと,この第1のダイオード
のカソードに直列に接続され,出力端子が電源バスにつ
ながるソーラアレイ電流モニタと,上記電源バスとリタ
ーンライン間に直列接続された充電器と蓄電池と,上記
電源バスにカソードが接続され上記充電器と並列に接続
された第2のダイオードと,上記電源バスとリターンラ
イン間に負荷と並列接続されたキヤパシタバンクとを備
えた電源装置において,上記ソーラアレイ電流モニタと
シヤント電流モニタの検出信号を入力し,上記2つの検
出信号の和がある閾値より小さいときに日陰と判定する
とともに,電源系の負荷量を制御すべく負荷軽減信号を
上記負荷へ発生する日陰判定手段を設けたことを特徴と
する電源装置。
1. A solar cell, a shunt device and a shunt current monitor connected in series between an output terminal of the solar cell and a return line, a first diode having an anode connected to an output terminal of the solar cell, A solar array current monitor connected in series to the cathode of the first diode and having an output terminal connected to a power supply bus, a charger and a storage battery connected in series between the power supply bus and the return line, and a cathode connected to the power supply bus And a detection signal of the solar array current monitor and the shunt current monitor in a power supply device having a second diode connected in parallel with the charger and a capacitor bank connected in parallel with a load between the power supply bus and the return line. When the sum of the above two detection signals is smaller than a certain threshold value, a shade Power supply, characterized in that the load relief signal to control the load provided shade determination means for generating to said load.
【請求項2】太陽電池と,この太陽電池の出力端子とリ
ターンライン間に直列接続されたシヤント装置とシヤン
ト電流モニタと,上記太陽電池の出力端子にアノードが
接続された第1のダイオードと,この第1のダイオード
のカソードに直列に接続されて出力端が電源バスにつな
がるソーラアレイ電流モニタと,上記電源バスとリター
ンライン間に直列接続された充電器と蓄電池と,上記電
源バスにカソードが接続され,上記充電器と並列に接続
された第2のダイオードと,上記電源バスとリターンラ
イン間に負荷と並列接続されたキヤパシタバンクとを備
えた電源装置において,上記ソーラアレイ電流モニタと
シヤント電流モニタの検出信号を入力し,上記2つの検
出信号の両方がある閾値よりも小さいときに日陰と判定
するとともに,電流系の負荷量を制御すべく負荷軽減信
号を上記負荷へ発生する日陰判定手段を設けたことを特
徴とする電源装置。
2. A solar cell, a shunt device and a shunt current monitor connected in series between an output terminal of the solar cell and a return line, a first diode having an anode connected to the output terminal of the solar cell, A solar array current monitor connected in series to the cathode of the first diode and having an output terminal connected to a power supply bus, a charger and a storage battery connected in series between the power supply bus and the return line, and a cathode connected to the power supply bus A power supply device having a second diode connected in parallel with the charger and a capacitor bank connected in parallel with a load between the power supply bus and the return line, wherein detection of the solar array current monitor and the shunt current monitor is performed. A signal is input, and when both of the two detection signals are smaller than a certain threshold value, it is determined that there is a shade, Power supply is characterized by providing shade determination means for a load reduction signal to control the load of the system occurs to the load.
JP63312565A 1988-12-10 1988-12-10 Power supply Expired - Lifetime JP2639026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63312565A JP2639026B2 (en) 1988-12-10 1988-12-10 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63312565A JP2639026B2 (en) 1988-12-10 1988-12-10 Power supply

Publications (2)

Publication Number Publication Date
JPH02159935A JPH02159935A (en) 1990-06-20
JP2639026B2 true JP2639026B2 (en) 1997-08-06

Family

ID=18030745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63312565A Expired - Lifetime JP2639026B2 (en) 1988-12-10 1988-12-10 Power supply

Country Status (1)

Country Link
JP (1) JP2639026B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0711458A1 (en) * 1994-06-01 1996-05-15 Markus Real Process and device for protecting solar cells against hot spots
RU2475921C2 (en) * 2011-04-28 2013-02-20 Открытое акционерное общество "Научно-производственный центр "Полюс" Standalone power supply system
DE102012103904B4 (en) * 2012-05-03 2016-08-04 Phoenix Contact Gmbh & Co. Kg Power supply module as a two-port and method for operating such a power supply module
RU2591057C1 (en) * 2015-07-16 2016-07-10 Закрытое акционерное общество "Научно-производственный комплекс "ВИП" Temperature-compensated system of controlled rectifier-charging modules of uninterrupted power supply to consumers with direct current
RU175772U1 (en) * 2016-07-12 2017-12-19 Открытое Акционерное Общество "Пеленг" DC UNINTERRUPTED POWER SUPPLY

Also Published As

Publication number Publication date
JPH02159935A (en) 1990-06-20

Similar Documents

Publication Publication Date Title
US5025202A (en) Solar cell power system with a solar array bus lockup cancelling mechanism
US7439635B2 (en) Output suppressing method of a plurality of dispersed power sources and dispersed power source managing system
US8629647B2 (en) Battery charger apparatus and method for a photovoltaic system
WO2022199585A1 (en) Photovoltaic power generation system, power control device, and energy storage system
US10090673B1 (en) Direct current power system with ac grid, photo voltaic, and battery inputs
EP2618456A1 (en) Electric power supply system
US20220393501A1 (en) Method and system to control multiple sources of energy using an uninterruptible power supply
JP2639026B2 (en) Power supply
JPH10201129A (en) Power generation installation making use of solar energy
JP4993972B2 (en) Private power generation system combining storage battery equipment and private power generation equipment and output control method of private power generation equipment in the system
CN108233518A (en) Rechargeable solar battery control method and system
JP3228102B2 (en) Solar cell power supply
JPH05252671A (en) Control system for photovoltaic power generation
JPH0946926A (en) Distributed power unit
JPH04372537A (en) Composite input station
JP2789778B2 (en) Power supply
CN108923520B (en) Light storage integrated power supply capable of realizing independent load distribution in series and parallel operation
JPH07231578A (en) Solar battery power supply system
JPH0678473A (en) Equipment for charging system interconnection type storage battery
JPH0720351B2 (en) Solar array bath lockup determination device
JPH02193539A (en) Power source device
JP2002286820A (en) Battery remainder-detecting apparatus
US4320335A (en) Energy regulating system
JP2001224183A (en) Link inverter having dc power limiting function
JP2569795B2 (en) Battery charge control device