JPH02192854A - Method for controlling separating point in cast billet in twin directional drawing type horizontal continuous casting - Google Patents

Method for controlling separating point in cast billet in twin directional drawing type horizontal continuous casting

Info

Publication number
JPH02192854A
JPH02192854A JP914889A JP914889A JPH02192854A JP H02192854 A JPH02192854 A JP H02192854A JP 914889 A JP914889 A JP 914889A JP 914889 A JP914889 A JP 914889A JP H02192854 A JPH02192854 A JP H02192854A
Authority
JP
Japan
Prior art keywords
mold
copper plate
cooling
continuous casting
feed nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP914889A
Other languages
Japanese (ja)
Inventor
Isao Matsui
松井 功夫
Toshio Fujimura
俊生 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP914889A priority Critical patent/JPH02192854A/en
Publication of JPH02192854A publication Critical patent/JPH02192854A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To stabilize separating point of solidified shell in a cast billet and to maintain the above point at the fixed position near just below a feed nozzle by arranging spray cooling type nozzles at circumference of outer wall at center part of the mold, penetrating outer wall of the mold, slowly cooling mold copper plate at center part and forcedly cooling in accordance with apart from the center part. CONSTITUTION:In the inner part of the mold 6 at near just below the feed nozzle 8, the mold copper plate 6A is arranged and the inner part thereof is brought into contact with the molten steel 2 poured from the feed nozzle 8, and in the outside of the mold 6, the mold outer wall 6B consisting of iron shell is arranged. The plural atomizing nozzles 20 for cooling are fitted to upper and rear faces and both side faces of the outer wall 6B at center part of the mold. Each of the nozzle 20 for cooling provides a cooling water flow rate control valve 24 and a compressed air flow rate control valve 28, and the spraying flow rate can be independently controlled to each other. By this method, the separating point of the solidified shell in the cast billet is maintained to the fixed position and stable operation can be executed without any accident of breakout, etc., in the horizontal continuous casting.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は双方向引抜型水平連鋳における鋳片分離点制御
方法に係り、特に左右両凝固殻の分離点位置を安定化し
鋳造の安定性を向上できる鋳片分離点制御方法に関し、
鋼の連続鋳造分野に広く利用される。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for controlling the separation point of slabs in bi-directional drawing type horizontal continuous casting, and in particular stabilizes the separation point position of both left and right solidified shells to improve the stability of casting. Regarding the slab separation point control method that can improve
Widely used in continuous steel casting field.

〔従来の技術〕[Conventional technology]

連続鋳造分野において、従来の垂直もしくは弯曲型の連
続鋳造法に代って、水平配置された連続鋳造鋳型を用い
鋳片を水平に引抜いて鋳造する水平連続鋳造法が提案さ
れ、矩形もしくは正方形断面の鋳片を鋳造することが行
われている。
In the field of continuous casting, instead of the conventional vertical or curved continuous casting method, a horizontal continuous casting method has been proposed in which a horizontally arranged continuous casting mold is used to pull out and cast slabs horizontally. Casting of slabs is carried out.

これらの水平連続vI造法では、従来の垂直もしくは弯
曲型の連続鋳造法が高さ30〜40mに達する建家と、
これに伴う大重量を支持する構造物の建設に大なる費用
を要するのに対し、建家高さを低くすることができ、設
備費が割安であるという利点から脚光をあびているもの
である。
With these horizontal continuous casting methods, conventional vertical or curved continuous casting methods can be used to create buildings reaching heights of 30 to 40 meters,
This is attracting attention because of the advantages of being able to reduce the height of the building and having relatively low equipment costs, whereas the construction of a structure to support the large weight associated with this requires a large amount of cost.

水平連続鋳造法も、初期の鋳型−右端からの鋳片の引抜
きを行う形式から、特開昭58−138544号に開示
されている如く鋳型の両端部からそれぞれ反対方向に引
抜く方法が提案され生産能力の向上が達成されている。
The horizontal continuous casting method also changed from the initial method in which slabs were pulled out from the right end of the mold to a method in which slabs were pulled out from both ends of the mold in opposite directions, as disclosed in JP-A-58-138544. Improvements in production capacity have been achieved.

この方法を第5図(A)、(B)により説明する。This method will be explained with reference to FIGS. 5(A) and 5(B).

溶鋼2を収容する取鍋あるいはタンデイツシュ等の容器
4の下方には水平方向にその端部を向けた鋳型6が水平
に配置されている。容器4と鋳型6はフィードノズル8
により溶鋼2の洩れがないように連通している。鋳型6
は鋳型銅板6Aと鋳型外壁6Bより成っている。鋳型6
、容器4は振動装置10によって左右に振動され、溶鋼
2が凝固した鋳片12は、ピンチロール1.4によって
左右に引抜かれる。
Below a container 4, such as a ladle or a tundish, which accommodates molten steel 2, a mold 6 is horizontally arranged with its end facing in the horizontal direction. Container 4 and mold 6 are feed nozzle 8
This allows the molten steel 2 to communicate without leakage. Mold 6
consists of a mold copper plate 6A and a mold outer wall 6B. Mold 6
, the container 4 is vibrated left and right by a vibrating device 10, and the slab 12 in which the molten steel 2 has solidified is pulled out left and right by pinch rolls 1.4.

鋳型の両端部から鋳片を水平に引抜く水平連続鋳造にお
いてはブレークアウトのない強固な凝固殻を形成し、な
おかつ凝固殻を安定して定位置で破断させるという相反
する要求を満足させる必要がある。
In horizontal continuous casting, in which slabs are drawn horizontally from both ends of the mold, it is necessary to satisfy the contradictory demands of forming a strong solidified shell without breakouts and stably breaking the solidified shell in a fixed position. be.

水平連続鋳造における鋳型内の凝固殻の形成の状況を第
6図(A)、(B)、(C)により説明する。
The formation of a solidified shell in a mold in horizontal continuous casting will be explained with reference to FIGS. 6(A), (B), and (C).

第6図(A)に示す如く凝固殻16の形成開始位置が鋳
型6の中央部でフィードノズル8の直下にあり、ここで
破断するのが理想である。しかしながら実際操業におい
ては、第6図(B)の如くなんらかの原因で中央部を外
れた部分に不健全な薄い凝固殻16が形成されそこから
破断し、これが繰返されると第6図(C)に示す如く中
央部を外れて大きな幅の凝固殻16の薄い部分が形成さ
れ、そこから破断し、最後には破断位置が鋳型6から外
れてブレークアウトが発生し大きな事故となる。また、
凝固殻の厚い部分で左右の凝固殻の分離が行われると、
分離点の跡がオシレーションマークとして残るが、凝固
殻の厚さが厚いほどオシレーションマークの深さが深く
鋳片の圧延後の鋼板に疵として残り、鋼板の品質を低下
させるという問題がある。
As shown in FIG. 6(A), the formation start position of the solidified shell 16 is located at the center of the mold 6, directly below the feed nozzle 8, and ideally the solidified shell 16 is broken at this point. However, in actual operation, for some reason, an unhealthy thin solidified shell 16 is formed in a portion away from the center as shown in FIG. 6(B) and breaks from there, and if this is repeated, the state shown in FIG. 6(C) occurs. As shown, a thin part of the solidified shell 16 with a large width is formed off the central part, and it breaks from there.Finally, the break position moves away from the mold 6 and a breakout occurs, resulting in a major accident. Also,
When the left and right solidified shells are separated in the thick part of the solidified shell,
Traces of the separation points remain as oscillation marks, but the thicker the solidified shell, the deeper the oscillation marks, which remain as flaws on the steel plate after rolling the slab, resulting in a problem of degrading the quality of the steel plate. .

上記の如き破断位置の移動を防止し凝固殻を安定して定
位置で破断させるため、従来種々の検討がなされている
が、例えば特願昭61−85719号では次の如き方法
が提案されている。
In order to prevent the above-mentioned movement of the fracture position and to stably fracture the solidified shell at a fixed position, various studies have been made in the past. There is.

(イ) 断熱性の高い耐火物を使用して凝固殻の形成開
始位置を制御する方法。
(a) A method of controlling the starting position of solidified shell formation using a highly insulating refractory.

(ロ) 鋳型内においてヒーター、あるいは耐火物、も
しくはそれらの併用により局部的な緩冷却を施して凝固
殻の形成開始位置を制御する方法。
(b) A method of controlling the starting position of solidified shell formation by applying localized slow cooling in the mold using a heater, refractory, or a combination thereof.

しかし、これらの方法は次の如き問題点がある。However, these methods have the following problems.

(A)  耐火物を用いる場合、耐火物と銅板製鋳型の
面を合わせるのが難しいうえに、使用しているうちに溶
損して段差が発生し、ブレークアウトの原因となる。ま
た、耐火物を交換する必要があるためにランニングコス
ト増につながる。
(A) When using refractories, it is difficult to match the surfaces of the refractories and the copper plate mold, and the refractories and copper plate molds are not only eroded during use, but also become uneven, causing breakouts. Additionally, the need to replace refractories increases running costs.

(B)  ヒーターを用いる場合、鋳型銅板の温度の上
昇を招くために、鋳型の変形、摩耗を助長する結果とな
る。
(B) When using a heater, the temperature of the copper plate of the mold increases, resulting in accelerated deformation and wear of the mold.

その他の従来技術としては次の如きものである。Other conventional techniques are as follows.

゛(ハ) 左右の鋳片の引抜速度を制御して、破断位置
がフィードノズル8の直下に来るようにする方法。
(c) A method of controlling the drawing speed of the left and right slabs so that the fracture position is located directly below the feed nozzle 8.

(ニ) フィードノズル8の近傍の鋳型6を緩冷却する
ために、鋳型銅板6Aに熱伝、導率の低い材料をめっき
するか、もしくは溶射する方法。
(d) In order to slowly cool the mold 6 near the feed nozzle 8, a method of plating or thermal spraying a material with low heat conductivity and conductivity on the mold copper plate 6A.

しかし、これらの方法にも次の如き問題点がある。However, these methods also have the following problems.

(C) (ハ)の方法は、左右鋳片の引抜速度が一定と
ならないために鋳片内部品質が不安定である。
(C) In method (c), the internal quality of the slab is unstable because the drawing speed of the left and right slabs is not constant.

(D) (ニ)の方法は、緩冷却効果が小さく、コスト
も高い。
(D) The method (d) has a small slow cooling effect and is expensive.

そこで本発明者らは先に分離点位置を安定させる対策と
して、フィードノズルの近傍の鋳型に超音波振動を印加
する方法を発明し特願昭63−159610号にて開示
した。この方法によりフィードノズル近傍の中央部鋳型
銅板と凝固殻との間に空気層が生成され緩冷却されるこ
とにより、この部分が分離点となるので破断位置を安定
せしめる効果を収めることができたが、未だ十分に満足
し得る域に達したとは断じ難い。その結果、実際操業に
おいては、左右節1、第2ストランドの鋳片引抜速度を
変化させることによって、鋳片分離点をフィードノズル
直下の中央部に安定させる制御を行っているのが実状で
ある。
Therefore, the present inventors previously invented a method of applying ultrasonic vibration to the mold near the feed nozzle as a measure to stabilize the position of the separation point, and disclosed it in Japanese Patent Application No. 159610/1983. With this method, an air layer is created between the central mold copper plate near the feed nozzle and the solidified shell, which causes gradual cooling, and this area becomes the separation point, which has the effect of stabilizing the fracture position. However, it is still difficult to conclude that we have reached a level where we are fully satisfied. As a result, in actual operation, control is performed to stabilize the slab separation point at the center directly below the feed nozzle by changing the slab withdrawal speed of the left and right sections 1 and 2nd strand. .

しかし、左右鋳片引抜速度差による分離点制御は、鋳型
銅板6Aの上下面および両側面で分離点の偏位方向が反
対になった場合には、例えば、第3図(A)で0面の分
離点が左方の第1ストランド側へ、またD面の分離点が
右方の第2ストランド側へ偏位している場合には、従来
の鋳片引抜速度差による分離点制御は、すべての面A、
B、C。
However, the separation point control based on the difference in the drawing speed of the left and right slabs cannot be performed when the deviation direction of the separation point is opposite on the upper and lower surfaces and both side surfaces of the mold copper plate 6A, for example, when the separation point is If the separation point of surface D is deviated to the left side of the first strand, and the separation point of surface D is deviated to the right side of the second strand, the separation point control using the conventional slab drawing speed difference is as follows: All sides A,
B.C.

D面の分離点を左右何れかの方向へ移動させる方法であ
るので、かかる偏位を正常位置に制御することは不可能
である。その結果鋳片の表面性状の悪化を招いていた。
Since this method moves the separation point on the D plane in either the left or right direction, it is impossible to control such deviation to the normal position. As a result, the surface quality of the slab deteriorated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来技術の問題点を解決し、鋳型
への特殊耐火物もしくはヒーター等を使用することなく
、また左右面ストランドの引抜速度を同一としたままで
、凝固殻をフィードノズル直下の定位置で分離し、オシ
レーションマークの発生を防止して表面性状の良好な鋳
片を安定して得ることのできる双方向引抜型水平連鋳に
おける鋳片分離点制御方法を提供するにある。
An object of the present invention is to solve the problems of the prior art described above, and to transfer the solidified shell to the feed nozzle without using special refractories or heaters for the mold, and while keeping the drawing speed of the left and right strands the same. To provide a method for controlling the separation point of slabs in horizontal continuous casting of bi-directional drawing type, which separates at a fixed position directly below, prevents the occurrence of oscillation marks, and stably obtains slabs with good surface properties. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の要旨とするところは次の如くである。 The gist of the present invention is as follows.

すなわち、取鍋からフィードノズルを介して水平配置さ
れた鋳型に溶鋼を注入し該鋳型の両端部からそれぞれ反
対方向に凝固した鋳片を引抜く双方向引抜型水平連続鋳
造方法において、前記鋳型中央部外壁の周囲に独立して
制御し得る複数の噴霧冷却式ノズルを設け、該ノズルは
前記鋳型外壁を貫通してその先端が鋳型銅板に対向する
如く配置し、前記フィードノズルを取巻く中央部鋳型銅
板を緩冷却すると共に、該中央部から瀬れるに従い次第
に強冷却することを特徴とする双方向引抜型水平連鋳に
おける鋳片分離点制御方法である。
That is, in a bidirectional drawing type horizontal continuous casting method in which molten steel is injected from a ladle into a horizontally arranged mold through a feed nozzle and solidified slabs are pulled out from both ends of the mold in opposite directions, the central part of the mold is A plurality of spray cooling nozzles that can be independently controlled are provided around the outer wall of the mold, and the nozzles are arranged so that their tips penetrate the outer wall of the mold and face the mold copper plate, and a central mold surrounding the feed nozzle is provided. This is a method for controlling a slab separation point in horizontal continuous casting of a bidirectional drawing type, which is characterized by slowly cooling a copper plate and gradually cooling it strongly as it declines from the central part.

本発明の詳細を第1図を参照して説明する。第1図はフ
ィードノズル8直下近傍の本発明による連鋳装置を示す
部分断面図である。鋳型6の内部には鋳型銅板6Aが設
けられ、その内面はフィードノズル8から注入された溶
112に接するが、従来の鋳型6では、鋳型銅板6Aの
内部に冷却水を通ずる溝が設けられ、フィードノズル8
の直下近傍は冷却水の流速が小で緩冷却され、フィード
ノズルの直下から離れるに従い、次第に流速を大として
強冷却される構成となっているが、本発明の対象とする
鋳型銅板6Aは、かかる従来の鋳型銅板6Aの構成に全
く関係なく適用することができる。従って従来の内部水
冷式鋳型銅板でも、また内部水冷流路を有しない鋳型銅
板にも適用することができる。
The details of the present invention will be explained with reference to FIG. FIG. 1 is a partial sectional view showing the continuous casting apparatus according to the present invention in the vicinity directly below the feed nozzle 8. A mold copper plate 6A is provided inside the mold 6, and its inner surface is in contact with the melt 112 injected from the feed nozzle 8, but in the conventional mold 6, a groove is provided inside the mold copper plate 6A to allow cooling water to flow. Feed nozzle 8
Directly below the feed nozzle, the flow rate of the cooling water is low and the cooling water is slowly cooled, and as it moves away from directly under the feed nozzle, the flow rate is gradually increased and the cooling water is strongly cooled. The present invention can be applied regardless of the structure of the conventional molded copper plate 6A. Therefore, it can be applied to conventional internal water-cooled molded copper plates as well as molded copper plates without internal water-cooled channels.

鋳型6の外側には鉄皮より成る鋳型外壁6Bが設けられ
ているが、第2図、第3図(A)に示す如く、本発明に
よる噴霧冷却式ノズル20は、鋳型中央部外壁6Bの上
下面A、Bおよび両側面C5Dに複数個取付けられてお
り、第1図に示す如く、噴霧冷却式ノズル20のそれぞ
れには冷却水配管22、冷却水流量調節弁24および圧
搾空気配管26、圧搾空気流量調節弁28を有し、それ
ぞれ独立して噴霧流量を制御し得るように構成されてい
る。しかして各噴霧冷却式ノズル2oは、鋳型外壁6B
を貫通してその先端は鋳型銅板6Aに垂直に対向するよ
うに配置されている。従って鋳型銅板6Aの中央部外周
には、第2図に示す如く。
A mold outer wall 6B made of an iron shell is provided on the outside of the mold 6. As shown in FIGS. A plurality of spray cooling nozzles 20 are attached to the upper and lower surfaces A and B and both sides C5D, and as shown in FIG. It has a compressed air flow rate control valve 28 and is configured to be able to independently control the spray flow rate. Therefore, each spray cooling type nozzle 2o is connected to the mold outer wall 6B.
It penetrates through and is arranged so that its tip is perpendicularly opposed to the mold copper plate 6A. Therefore, the outer periphery of the central portion of the mold copper plate 6A is as shown in FIG.

形成される鋳片16の長さ方向および幅方向に複数個の
噴霧冷却式ノズル20が設けられている。
A plurality of spray cooling nozzles 20 are provided in the length direction and width direction of the slab 16 to be formed.

この噴霧冷却式ノズル20を設ける区間は、鋳型の断面
寸法により異なるが、通常フィードノズル8の直下から
左右へそれぞれ400〜700 mnである。
The section where this spray cooling type nozzle 20 is provided varies depending on the cross-sectional size of the mold, but is usually 400 to 700 mn from directly below the feed nozzle 8 to the left and right.

〔作用〕[Effect]

上記構成の本発明による噴霧冷却装置を使用し、溶鋼2
の注入に際しては、フィードノズル8直下から左右へ5
0mm以内の鋳型6の中央部においては、噴霧冷却式ノ
ズル20を調節して緩冷却とし、フィードノズル8直下
から引抜方向に向ってそれぞれ50〜400m+の区間
は次第に強冷却とするものである。噴霧冷却式ノズル2
0からのミストスプレーにより鋳型銅板6Aが抜熱され
るが、本発明において緩冷却と称するのは、鋳型銅板6
Aの表面1d当り1 、 OKcal/ff1in以下
の抜熱がある場合とし、強冷却と称するのは鋳型銅板6
Aの表面1d当り1 、0〜4 、 、OKcal/w
inの抜熱がある場合とする。
Using the spray cooling device according to the present invention having the above configuration, molten steel 2
When injecting, from just below the feed nozzle 8 to the left and right 5
In the central part of the mold 6 within 0 mm, the spray cooling type nozzle 20 is adjusted to provide gentle cooling, and the sections from 50 to 400 m+ in the drawing direction from directly below the feed nozzle 8 are gradually provided with strong cooling. Spray cooling nozzle 2
The heat is removed from the mold copper plate 6A by mist spray from 0. In the present invention, slow cooling refers to the mold copper plate 6A.
It is assumed that there is heat removal of less than 1 OKcal/ff1in per 1d of surface of A, and strong cooling is defined as mold copper plate 6.
1,0~4,,OKcal/w per 1d of surface of A
Assume that there is heat removal of in.

本発明による鋳片分難点制御方法における作用を第3図
(A)、(B)により説明する。フィードノズル8直下
の鋳型銅板6Aにおいて、凝固殻16の分離点21が、
(A)図の如く0面においては左方第1ストランド側へ
偏位し、D面においては右方第2ストランド側に偏位し
ている場合には、本発明の適用により、0面に対しては
フィードノズル8直下の中心点より左方の第1ストラン
ド側を強冷却し、右方第2ストランド側を緩冷却し、更
にD面に対しては左方第1ストランド側を緩冷却、右方
第2ストランド側を強冷却を行うことにより、それぞれ
の偏位が制御されて(B)図に示す如くフィードノズル
8直下の中央部へ分離点21を移動させることができる
The operation of the control method for controlling difficult spots in slabs according to the present invention will be explained with reference to FIGS. 3(A) and 3(B). In the mold copper plate 6A directly below the feed nozzle 8, the separation point 21 of the solidified shell 16 is
(A) As shown in the figure, if the 0-plane is deviated toward the left first strand, and the D-plane is deviated toward the right 2nd strand, the present invention can be applied to the 0-plane. For surface D, the first strand on the left side from the center point directly below the feed nozzle 8 is strongly cooled, the second strand on the right is slowly cooled, and the first strand on the left side is slowly cooled for surface D. By strongly cooling the right second strand side, the displacement of each strand is controlled, and the separation point 21 can be moved to the center directly below the feed nozzle 8 as shown in Figure (B).

〔実施例〕〔Example〕

C:  0.04  % Si:  0.O2 Mn:  0.45 Al二 0.020 なる成分を有し、溶鋼過熱度△Tu:20℃の溶鋼を1
50nmX150mmの鋳型を使用し、オシレーション
条件150cp頂、引抜速度2m/mjnとして水平連
鋳を実施時に本発明を適用した。すなわち、フィードノ
ズル直下の中央部より左右にそれぞれ50ffIll+
の区間は緩冷却とし、該中央部より左右に400++n
の位置を4 、0 Kcal/mjnを抜熱する強冷却
とし、その中間は中央部の1 、 Q Kcal/wi
nより2 、 O〜3 、0 Kcal/minと次第
に抜熱量を増加して試験した。
C: 0.04% Si: 0. O2 Mn: 0.45 Al2 0.020 Molten steel superheat degree △Tu: 20℃ 1
The present invention was applied to horizontal continuous casting using a mold of 50 nm x 150 mm, oscillation conditions of 150 cp top, and drawing speed of 2 m/mjn. That is, 50ffIll+ on each side from the center directly below the feed nozzle.
The section is slowly cooled, and the temperature is 400++n to the left and right from the center.
The position of 4,0 Kcal/mjn is strongly cooled to remove heat, and the middle part is the central part of 1,Q Kcal/wi.
The test was conducted by gradually increasing the amount of heat removed from n to 2,0 to 3,0 Kcal/min.

試験の途中において分離点21の偏位があったが、前記
した方法により調整して分離点21をほぼフィードノズ
ル直下部の定位置に拘束させることかできた。
Although there was some deviation of the separation point 21 during the test, it was possible to adjust the separation point 21 using the method described above to restrain the separation point 21 at a fixed position approximately directly below the feed nozzle.

連鋳完了後の鋳片はオシレーションマークおよび2重肌
はほとんど認められなかった。
Oscillation marks and double skin were hardly observed in the slab after continuous casting was completed.

なお、本試験中に測定した強冷却および緩冷却による左
方第1ストランド側と、右方第2ストランド側との鋳片
1d当りの抜熱量の差と、分離点移動速度(+nm/m
1n)との間に第4図に示す如き関係が存在することが
判明した。
In addition, the difference in the amount of heat removed per 1 d of slab between the left first strand side and the right second strand side due to strong cooling and slow cooling measured during this test, and the separation point movement speed (+nm/m
1n), it was found that a relationship as shown in FIG. 4 existed.

〔゛発明の効果〕[Effect of invention]

双方向引抜型水平連続鋳造方法において、左右両ストラ
ンドの凝固殻の分離点をフィードノズル直下の定位置に
安定して維持する制御技術が最も重要な技術であるが、
従来の多くの制御技術では、鋳型銅板各面毎の制御が不
可能のため、分離点の安定した定位置化が極めて困難で
あることに鑑み、本発明はフィードノズルを取囲む鋳型
外壁の周囲に、それぞれ独立して制御し得る噴霧冷却ノ
ズルを設け、該ノズルは鋳型外壁を貫通して、その先端
が鋳型銅板に垂直に対向する如き構成とすると共に、中
央部を緩冷却し、中央部を離れるに従い次第に強冷却に
することにより、鋳型銅板を各辺毎に制御するようにし
たので、次の如き効果を挙げることができた。
In the bidirectional drawing type horizontal continuous casting method, the most important technology is the control technology that stably maintains the separation point of the solidified shells of both the left and right strands at a fixed position directly below the feed nozzle.
With many conventional control techniques, it is impossible to control each side of the mold copper plate, making it extremely difficult to stably position the separation point. Spray cooling nozzles that can be controlled independently are installed in each of the nozzles, and the nozzles penetrate through the outer wall of the mold so that their tips face perpendicularly to the mold copper plate. The mold copper plate was controlled on a side-by-side basis by gradually cooling the mold more strongly as it left the mold, resulting in the following effects.

(イ) 鋳片凝固殻分離点を常に安定してフィードノズ
ル直下近傍の定位置に維持することができた。
(a) The solidified slab solidified shell separation point could always be stably maintained at a fixed position directly below the feed nozzle.

(ロ) (イ)の結果、水平連鋳がブレークアウト等の
事故がなく、安定操業が可能となった。
(b) As a result of (a), there were no accidents such as breakouts in horizontal continuous casting, and stable operation was possible.

(ハ) 従って製造鋳片にはオシレーションマーク、2
重肌等の欠陥がなく表面性状を著しく向上させることが
できた。
(c) Therefore, the manufactured slab has oscillation marks, 2
There were no defects such as heavy skin, and the surface quality was significantly improved.

(ニ) 生産性および歩留を向上し、生産コストを著し
く低減させることができた。
(d) Productivity and yield were improved, and production costs were significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の9雅点制御方法に使用する噴霧冷却装
置を示す部分断面図、第2図は本発明による噴霧冷却式
ノズルを備えた鋳型銅板を示す模式斜視図、第3図(A
)、(B)は本発明による作用、効果を説明する鋳型銅
板における各面に対応する分離点の移動を示す斜視図で
あって、第3図(A)は各面によって分離点が偏位して
いる状況を示し、第3図(B)は5本発明により制御さ
れた各面とも正常の分離点位置を示す、第4図は本発明
の実施例で判明した左方第1ストランド側および右方、
第2ストランド側の鋳片1d当りの抜熱量の差(Kca
l/m1n)と鋳片分離点の本発明による制御による移
動速度(mu/ff1in)との間の関係を示す線図、
第5図(A)、(B)は双方向引抜型水平連続鋳造の従
来装置を示し、第5、図(A)は鋳片長さ方向断面図、
第5図(B)は鋳片幅方向断面図、第6図(A)、(B
)、(C)は双方向引抜型水平連鋳における凝固殻およ
び分離点を示す断面図であって、第6図(A)は正常状
態、第6図(B)、(C)は異常状態を示す。 2・・・溶鋼      4・・・容器6・・・鋳型 
    6A・・・鋳型銅板6B・・・鋳型外壁   
 8・・・フィードノズル12・・・鋳片     1
6・・・凝固殻20・・・噴霧冷却式ノズル
FIG. 1 is a partial cross-sectional view showing a spray cooling device used in the nine point control method of the present invention, FIG. 2 is a schematic perspective view showing a molded copper plate equipped with a spray cooling type nozzle according to the present invention, and FIG. A
) and (B) are perspective views showing the movement of the separation point corresponding to each surface in a molded copper plate to explain the action and effect of the present invention, and FIG. 3(A) shows the movement of the separation point corresponding to each surface. Figure 3 (B) shows the normal separation point position on each surface controlled by the present invention, Figure 4 shows the position of the left first strand, which was found in the embodiment of the present invention. and right side,
Difference in heat removal per 1 d of slab on the second strand side (Kca
A diagram showing the relationship between the movement speed (mu/ff1in) of the slab separation point controlled by the present invention (mu/ff1in),
Figures 5(A) and 5(B) show a conventional bidirectional drawing type horizontal continuous casting device, and Figure 5(A) is a longitudinal cross-sectional view of the slab;
Figure 5 (B) is a sectional view in the width direction of the slab, Figures 6 (A) and (B).
) and (C) are cross-sectional views showing solidified shells and separation points in bi-directional drawing type horizontal continuous casting, where FIG. 6(A) is a normal state and FIG. 6(B) and (C) are an abnormal state. shows. 2... Molten steel 4... Container 6... Mold
6A... Mold copper plate 6B... Mold outer wall
8...Feed nozzle 12...Slab 1
6... Solidified shell 20... Spray cooling type nozzle

Claims (3)

【特許請求の範囲】[Claims] (1)取鍋からフィードノズルを介して水平配置された
鋳型に溶鋼を注入し該鋳型の両端部からそれぞれ反対方
向に凝固した鋳片を引抜く双方向引抜型水平連続鋳造方
法において、前記鋳型中央部外壁の周囲に独立して制御
し得る複数の噴霧冷却式ノズルを設け、該ノズルは前記
鋳型外壁を貫通してその先端が鋳型銅板に対向する如く
配置し、前記フィードノズルを取巻く中央部鋳型銅板を
緩冷却すると共に、該中央部から離れるに従い次第に強
冷却することを特徴とする双方向引抜型水平連鋳におけ
る鋳片分離点制御方法。
(1) In a bidirectional drawing type horizontal continuous casting method in which molten steel is injected from a ladle into a horizontally arranged mold through a feed nozzle and solidified slabs are pulled out from both ends of the mold in opposite directions, the mold A plurality of spray cooling nozzles that can be independently controlled are provided around the outer wall of the central part, and the nozzles are arranged so that they penetrate the outer wall of the mold and their tips face the mold copper plate, and the central part surrounding the feed nozzle is provided with a plurality of spray cooling nozzles that can be independently controlled. A method for controlling a slab separation point in bidirectional drawing type horizontal continuous casting, characterized by slowly cooling a mold copper plate and gradually cooling it strongly as it moves away from the central part.
(2)前記中央部鋳型銅板の緩冷却区間においては該銅
板表面1cm^2当り1.0Kcal/min以下の抜
熱を行い、該中央部から離れた強冷却区間においては該
銅板表面1cm^2当り1.0〜4.0Kcal/mi
nの抜熱を行う請求項(1)記載の双方向引抜型水平連
鋳における鋳片分離点制御方法。
(2) In the slow cooling section of the central mold copper plate, heat is removed at a rate of 1.0 Kcal/min or less per 1 cm^2 of the surface of the copper plate, and in the strong cooling section away from the center, the heat is removed per 1 cm^2 of the copper plate surface. 1.0-4.0Kcal/mi
A method for controlling a slab separation point in bidirectional drawing type horizontal continuous casting according to claim (1), wherein n heat removal is performed.
(3)前記中央部鋳型銅板の緩冷却区間は前記フィード
ノズル直下の中央部から引抜方向に向つてそれぞれ50
mm以内とし、前記鋳型銅板の強冷却区間は前記フィー
ドノズル直下の中央部から引抜方向に向つてそれぞれ5
0〜400mmとする請求項(1)もしくは(2)記載
の双方向引抜型水平連鋳における鋳片分離点制御方法。
(3) The slow cooling section of the center mold copper plate extends from the center directly below the feed nozzle toward the drawing direction.
The strong cooling section of the mold copper plate is 5 mm or less from the center directly below the feed nozzle in the drawing direction.
A method for controlling a slab separation point in bidirectional drawing type horizontal continuous casting according to claim (1) or (2), wherein the separation point is set to 0 to 400 mm.
JP914889A 1989-01-18 1989-01-18 Method for controlling separating point in cast billet in twin directional drawing type horizontal continuous casting Pending JPH02192854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP914889A JPH02192854A (en) 1989-01-18 1989-01-18 Method for controlling separating point in cast billet in twin directional drawing type horizontal continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP914889A JPH02192854A (en) 1989-01-18 1989-01-18 Method for controlling separating point in cast billet in twin directional drawing type horizontal continuous casting

Publications (1)

Publication Number Publication Date
JPH02192854A true JPH02192854A (en) 1990-07-30

Family

ID=11712539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP914889A Pending JPH02192854A (en) 1989-01-18 1989-01-18 Method for controlling separating point in cast billet in twin directional drawing type horizontal continuous casting

Country Status (1)

Country Link
JP (1) JPH02192854A (en)

Similar Documents

Publication Publication Date Title
US4865115A (en) Pouring device for dual-roll type continuous casting machines
KR100817171B1 (en) Method and device for continuous casting and subsequent forming of a steel billet, especially a billet in the form of an ingot or a preliminary section
US3520352A (en) Continuous casting mold having insulated portions
JP3293794B2 (en) Cooling system for continuous casting machine
JPH02192854A (en) Method for controlling separating point in cast billet in twin directional drawing type horizontal continuous casting
US3339623A (en) Thermal bending of continuous castings
JP3291265B2 (en) Mold for continuous casting machine
US3435879A (en) Continuous casting method
KR20030020978A (en) Method and strand guide for supporting, guiding and cooling casting strands made of steel, especially preliminary sections for girders
JPH01154849A (en) Mold for two directional drawing type horizontal continuous casting machine
JP3377340B2 (en) Continuous casting method
JPH0475110B2 (en)
JPH057104B2 (en)
JPH0211247A (en) Twin directional drawing type horizontal continuous casting method
JPH01150451A (en) Tundish for twin directional drawing type horizontal continuous casting machine
JP3130152B2 (en) Twin belt type continuous casting machine and pouring method thereof
JPH0519167Y2 (en)
JPH01166859A (en) Horizontal continuous casting method of bidirectional drawing type
JPS63180351A (en) Cast slab casting method
JPH0237942A (en) Horizontal continuous casting mold
JPS5835050A (en) Tundish for continuous casting having heating function for molten metal
JPH0195846A (en) Mold for both direction drawing type horizontal continuous casting machine
JPH0464776B2 (en)
EP0342020A2 (en) Method and apparatus for continuous strip casting
JPH02247050A (en) Continuous casting method and apparatus thereof by twin roll