JP3291265B2 - Mold for continuous casting machine - Google Patents

Mold for continuous casting machine

Info

Publication number
JP3291265B2
JP3291265B2 JP04105499A JP4105499A JP3291265B2 JP 3291265 B2 JP3291265 B2 JP 3291265B2 JP 04105499 A JP04105499 A JP 04105499A JP 4105499 A JP4105499 A JP 4105499A JP 3291265 B2 JP3291265 B2 JP 3291265B2
Authority
JP
Japan
Prior art keywords
mold
short side
slab
side mold
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04105499A
Other languages
Japanese (ja)
Other versions
JP2000237843A (en
Inventor
一郎 中山
Original Assignee
三宝伸銅工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三宝伸銅工業株式会社 filed Critical 三宝伸銅工業株式会社
Priority to JP04105499A priority Critical patent/JP3291265B2/en
Publication of JP2000237843A publication Critical patent/JP2000237843A/en
Application granted granted Critical
Publication of JP3291265B2 publication Critical patent/JP3291265B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅合金等の圧延コ
イル製造材料等として使用される直方体状の金属鋳塊を
連続鋳造法又は半連続鋳造法により製造する場合に使用
される連続鋳造機の鋳型に関するものであり、具体的に
は、前後に対峙する一対の長辺鋳型壁と左右に対峙する
一対の短辺鋳型壁とで構成される矩形枠状の鋳型に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting machine used for producing a rectangular parallelepiped metal ingot used as a material for producing a rolled coil such as a copper alloy by a continuous casting method or a semi-continuous casting method. More specifically, the present invention relates to a rectangular frame-shaped mold composed of a pair of long side mold walls facing front and back and a pair of short side mold walls facing left and right.

【0002】[0002]

【従来の技術】連続鋳造機によれば、鋳型にその上方か
ら注入した金属溶湯を一次冷却させることにより凝固さ
せつつ、表面に凝固シェルが形成された鋳片を鋳型から
下方へと所定速度(鋳造速度)で連続的に引き抜き、鋳
型から引き抜かれた鋳片を二次冷却させることにより、
直方体状の鋳塊が得られる。このとき、鋳型内において
は、溶湯凝固の進行(凝固シェルの生成)及び温度の低
下(凝固シェルの成長)により凝固シェル部分の体積
は、それが液相であった時の体積に比べて収縮する。そ
して、鋳造方向たる鉛直方向における収縮は、高温溶湯
が鋳型の上方から注入されることから、鋳型の下部側に
おいて顕著に発生する。また、圧延コイル製造材料等と
して使用される金属鋳塊の横断面形状(鋳型からの引き
抜き方向(鋳造方向)に直交する断面の形状)は、長辺
方向幅が短辺方向幅に比してかなり長尺な矩形状(例え
ば、1260mm×190mm)をなすものであるか
ら、鋳造方向に直交する方向(水平方向)における収縮
は短辺側において大きくなり、長辺側においては殆ど認
められない。
2. Description of the Related Art According to a continuous casting machine, a molten metal poured into a mold from above is solidified by primary cooling, and a slab having a solidified shell formed on a surface thereof is moved downward from the mold at a predetermined speed ( (Casting speed) by continuous withdrawal, and secondary cooling of the slabs drawn from the mold,
A rectangular ingot is obtained. At this time, in the mold, the volume of the solidified shell part shrinks due to the progress of the solidification of the molten metal (formation of the solidified shell) and the decrease in temperature (growth of the solidified shell) as compared with the volume when the liquid phase was in the liquid phase. I do. Shrinkage in the vertical direction, which is the casting direction, occurs remarkably on the lower side of the mold because the high-temperature molten metal is injected from above the mold. In addition, the cross-sectional shape (shape of a cross-section orthogonal to the drawing direction (casting direction) from the mold) of a metal ingot used as a material for manufacturing a rolled coil has a longer side direction width than a shorter side direction width. Since it has a rather long rectangular shape (for example, 1260 mm × 190 mm), shrinkage in the direction (horizontal direction) perpendicular to the casting direction increases on the short side, and is hardly recognized on the long side.

【0003】したがって、長辺鋳型壁及び短辺鋳型壁を
共に平行とした鋳型を使用する場合、鋳型の下部側にお
いて、鋳片の凝固収縮による短辺鋳型壁からの離脱が生
じ、つまり短辺鋳型壁と凝固シェルとの間に断熱空間で
ある空隙が生じ、その空隙に対応する凝固シェル部分が
再溶融して、所謂発汗帯が生成し、最終的に得られる鋳
塊が表面欠陥を有するものとなる。
[0003] Therefore, when using a mold in which the long side mold wall and the short side mold wall are both parallel, separation from the short side mold wall occurs due to solidification shrinkage of the slab at the lower side of the mold. A void that is an adiabatic space is generated between the mold wall and the solidified shell, and the solidified shell portion corresponding to the void is re-melted, so-called a sweat band is generated, and the finally obtained ingot has a surface defect. It will be.

【0004】そこで、従来からも、両短辺鋳型壁をテー
パ状とし、その対向間隔が下方へと漸次小さくなるよう
にして、収縮による空隙の発生を回避するように工夫さ
れた鋳型が提案されている。
In view of the above, there has been proposed a mold in which both short-side mold walls are tapered so that the distance between the opposite mold walls is gradually reduced downward so as to avoid the generation of voids due to shrinkage. ing.

【0005】[0005]

【発明が解決しようとする課題】しかし、鋳型内におけ
る収縮は常に同じ条件で発生するものではなく、収縮量
も区々である。潤滑剤(フラックス)の種類,使用状
況,消費状況,出湯温度の変化,溶湯成分,一次冷却能
力等の変動によって鋳型内の凝固の進行は時々刻々変化
する。したがって、短辺鋳型壁をテーパ状としても、上
記した空隙の発生はこれを確実に防止することができな
い。しかも、収縮量が短辺鋳型壁のテーパ量よりも小さ
い場合には、鋳片の引き抜き不良やブレークアウト(拘
束性ブレークアウト)等の重大な問題が発生する。例え
ば、鋳型には、一般に、鋳造の安定性確保(シェル形成
の均一化,溶融フラックスの潤滑促進等)のため、鋳型
を上下方向に振動させるオッシレーションが実施されて
いるが、鋳型の上下振動のうち、上昇動の際、メニスカ
ス部分の初期凝固シェル内に引っ張り力が作用して、シ
ェルの破断つまり拘束性ブレークアウトが発生する虞れ
がある。
However, shrinkage in the mold does not always occur under the same conditions, and the amount of shrinkage varies. The progress of solidification in the mold changes from moment to moment due to variations in the type of lubricant (flux), usage, consumption, changes in tapping temperature, molten metal components, primary cooling capacity, and the like. Therefore, even if the short side mold wall is tapered, the generation of the above-described void cannot be reliably prevented. In addition, when the shrinkage is smaller than the taper of the short side mold wall, serious problems such as poor drawing of the slab and breakout (restrictive breakout) occur. For example, in order to ensure casting stability (equalization of shell formation, promotion of lubrication of molten flux, etc.), the mold is generally subjected to an oscillation for vertically oscillating the mold. Among them, during the upward movement, a tensile force acts on the initially solidified shell of the meniscus portion, and there is a possibility that the shell may be broken, that is, restrictive breakout may occur.

【0006】本発明は、このような点に鑑みてなされた
もので、短辺鋳型壁と凝固シェルとの間に空隙を生じさ
せることなく、表面欠陥のない良品質の鋳塊を連続鋳造
又は半連続鋳造することができる実用的な鋳型を提供す
ることを目的とするものである。
[0006] The present invention has been made in view of the above-mentioned points, and a continuous casting or high-quality ingot having no surface defects without forming a gap between the short side mold wall and the solidified shell. It is an object of the present invention to provide a practical mold that can be semi-continuously cast.

【0007】[0007]

【課題を解決するための手段】本発明は、前後に対峙す
る一対の長辺鋳型壁と左右に対峙する一対の短辺鋳型壁
とで構成される矩形枠状の鋳型において、特に、各短辺
鋳型壁をその上端部を中心として一定範囲で左右揺動自
在に支持すると共に、両短辺鋳型壁を対向方向にコイル
スプリングにより附勢しておくことを提案するものであ
る。
SUMMARY OF THE INVENTION The present invention relates to a rectangular frame-shaped mold composed of a pair of long-side mold walls facing each other in front and back and a pair of short-side mold walls facing left and right. The side mold wall is supported so that it can swing left and right within a certain range around the upper end, and both short side mold walls are coiled in the opposite direction.
It is proposed to be biased by a spring .

【0008】かかる構成によれば、鋳型内での収縮量に
応じて各短辺鋳型壁のテーパ量が自動的に追従変化する
ことから、常に、鋳片表面が短辺鋳型壁に密接して空隙
を生じることがなく、発汗現象(部分的溶融)の発生が
確実に防止され、鋳型からの引き出し不良やブレークア
ウトを生じることもない。
According to this structure, the taper amount of each short side mold wall automatically changes in accordance with the amount of shrinkage in the mold, so that the slab surface is always in close contact with the short side mold wall. No voids are generated, and the occurrence of a sweating phenomenon (partial melting) is reliably prevented, and no draw-out from the mold or breakout occurs.

【0009】[0009]

【実施の形態】以下、本発明の実施の形態を図1〜図5
に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.
It will be described based on.

【0010】図1〜図5は銅合金等の直方体状鋳塊を得
るための連続鋳造機の一例を示したもので、横断面矩形
状のキャビティを有する鋳型1と冷却装置7,8とを具
備する。
FIGS. 1 to 5 show an example of a continuous casting machine for obtaining a rectangular parallelepiped ingot such as a copper alloy, in which a mold 1 having a cavity having a rectangular cross section and cooling devices 7 and 8 are provided. Have.

【0011】鋳型1は、図1〜図4に示す如く、前後に
対峙する一対の長辺鋳型壁2,2と、長辺鋳型壁2,2
間に位置して左右に対峙する一対の短辺鋳型壁機3,3
と、各短辺鋳型壁3をその上端部を中心として一定範囲
で左右揺動自在に支持する支持機構4,4と、両短辺鋳
型壁3,3を対向方向に附勢する附勢機構5,5とを具
備する。
As shown in FIGS. 1 to 4, the mold 1 includes a pair of long side mold walls 2 and 2 facing each other and a pair of long side mold walls 2 and 2 facing each other.
A pair of short side mold wall machines 3 and 3 located between and facing left and right
And support mechanisms 4 and 4 for supporting each short side mold wall 3 so as to be able to swing right and left within a certain range around the upper end thereof, and an urging mechanism for urging both short side mold walls 3 and 3 in opposite directions. 5,5.

【0012】両長辺鋳型壁2,2は、図1及び図2に示
す如く、本体部21,21とその対向面に貼着された銅
板等の壁面部22,22とからなる矩形構造体であり、
本体部21,21の左右端部間を連結機枠6,6で連結
することにより、鉛直方向(鋳造方向)に平行する状態
で保持されている。
As shown in FIGS. 1 and 2, both long side mold walls 2 and 2 have a rectangular structure composed of main body portions 21 and 21 and wall surfaces 22 and 22 such as copper plates adhered to opposing surfaces thereof. And
By connecting the left and right ends of the main body portions 21 and 21 with the connecting machine frames 6 and 6, the main body portions 21 and 21 are held parallel to the vertical direction (casting direction).

【0013】両短辺鋳型壁3,3は、図1〜図3に示す
如く、本体部31,31とその対向面に貼着された銅板
等の壁面部32,32とからなる矩形構造体であり、両
長辺鋳型壁2,2の壁面部22,22間に配置されてい
る。
As shown in FIGS. 1 to 3, both short-side mold walls 3 and 3 have a rectangular structure composed of main bodies 31 and 31 and wall surfaces 32 and 32 such as copper plates adhered to opposing surfaces thereof. And is disposed between the wall surfaces 22, 22 of both long side mold walls 2, 2.

【0014】各支持機構4は、図2〜図4に示す如く、
短辺鋳型壁3の本体部31の上端部に固着された第1ブ
ラケット41と、当該本体部31の下端部に固着された
第2ブラケット42と、連結機枠6の上下端部に取り付
けられて左右方向に水平に延びる第1及び第2支持杆4
3,44とを具備する。第1支持杆43の先端部は、第
1ブラケット41に第1水平ピン45により枢着されて
いて、短辺鋳型壁3を第1水平ピン45を中心として左
右方向に揺動自在に支持している。第2支持杆44と第
2ブラケット42とは、第2ブラケット42に固着した
第2水平ピン47を第2支持杆44の先端部に形成した
長孔46に係合させることにより、連結されていて、短
辺鋳型壁3の揺動範囲を規制するようになっている。長
孔46は第1水平ピン45を中心とする円弧状をなして
おり、その長さは、短辺鋳型壁3が鉛直線に対して左右
方向に所定量揺動できるように設定されている。短辺鋳
型壁3が対向する短辺鋳型壁3に接近する方向への揺動
量(壁面部32の鉛直線に対する傾斜角度であり、以下
「テーパ量」という)θは、図3に示す如く、第2水平
ピン47が第2支持杆44の先端側における長孔46の
端部に衝合したときに最大となる。この最大テーパ量
は、鋳造条件(溶湯性状,冷却条件,溶融凝固シェルの
収縮量等)に応じて適宜に設定される。なお、この例で
は、第2支持杆44は、ネジ軸に構成されると共に、連
結機枠6に適宜のネジ送り機構49を介して軸線方向に
進退操作自在に支持されていて、最大テーパ量を調節し
うるように工夫されている。すなわち、第2支持杆44
を短辺鋳型壁方向に螺送操作することにより、最大テー
パ量を大きくすることができ、逆方向に螺送操作するこ
とにより、最大テーパ量を小さくすることができる。
Each support mechanism 4 is, as shown in FIGS.
A first bracket 41 fixed to the upper end of the main body 31 of the short side mold wall 3, a second bracket 42 fixed to the lower end of the main body 31, and attached to upper and lower ends of the coupling machine frame 6. First and second support rods 4 extending horizontally in the horizontal direction
3, 44. The distal end of the first support rod 43 is pivotally attached to the first bracket 41 by a first horizontal pin 45, and supports the short side mold wall 3 so as to be swingable in the left-right direction about the first horizontal pin 45. ing. The second support rod 44 and the second bracket 42 are connected by engaging a second horizontal pin 47 fixed to the second bracket 42 with an elongated hole 46 formed at the tip of the second support rod 44. Thus, the swing range of the short side mold wall 3 is regulated. The long hole 46 has an arc shape centered on the first horizontal pin 45, and its length is set such that the short side mold wall 3 can swing a predetermined amount in the left-right direction with respect to the vertical line. . As shown in FIG. 3, the amount of swing θ of the short side mold wall 3 in the direction in which the short side mold wall 3 approaches the opposed short side mold wall 3 (the angle of inclination of the wall surface portion 32 with respect to the vertical line, hereinafter referred to as “taper amount”) is The maximum value is obtained when the second horizontal pin 47 abuts on the end of the elongated hole 46 on the distal end side of the second support rod 44. The maximum taper amount is appropriately set according to casting conditions (melt properties, cooling conditions, shrinkage amount of the molten and solidified shell, etc.). In this example, the second support rod 44 is formed as a screw shaft, and is supported by the connecting machine frame 6 via a suitable screw feed mechanism 49 so as to be able to advance and retreat in the axial direction. It is devised so that it can be adjusted. That is, the second support rod 44
By operating the screw in the direction of the short side mold wall, the maximum taper amount can be increased, and by operating the screw in the opposite direction, the maximum taper amount can be reduced.

【0015】鋳型1の上端開口部たる溶湯注入口11及
び下端開口部たる鋳片引き出し口12は矩形状をなし、
それらの短辺方向幅To ,Te 及び溶湯注入口11の長
辺方向幅Wo は短辺鋳型壁3,3の揺動に拘わらず一定
に保持されるが、鋳片引き出し口12の長辺方向幅We
は短辺鋳型壁3,3の揺動によって変化する。例えば、
両短辺鋳型壁3,3のテーパ量θを最小(θ=0°)と
すると、対向端面たる壁面部32,32が鉛直方向に沿
う平行状態となり、鋳片引き出し口12の長辺方向幅W
e が最大となる。つまり、溶湯注入口11と鋳片引き出
し口12とが同一の矩形状をなす。この状態から両短辺
鋳型壁3,3が対向方向に揺動すると、図4に示す如
く、壁面部32,32がその対向間隔が下方へと漸次小
さくなる倒立ハの字状となり、鋳片引き出し口12の長
辺方向幅We が減少する。そして、テーパ量θが最大と
なると、図3に示す如く、鋳片引き出し口12の長辺方
向幅We が最小となる。なお、溶湯注入口11の形状は
鋳造しようとする鋳片の形状に応じて設定され、この例
ではWo =1260mm,To =190mmに設定され
ている。
A molten metal inlet 11 as an upper end opening and a slab outlet 12 as a lower end opening of the mold 1 are rectangular.
The widths To and Te in the short side direction and the width Wo in the long side direction of the molten metal injection port 11 are kept constant irrespective of the swing of the short side mold walls 3 and 3. Width We
Is changed by the swing of the short side mold walls 3. For example,
Assuming that the taper amount θ of both short side mold walls 3, 3 is minimized (θ = 0 °), the wall surfaces 32, 32 as opposing end surfaces are in a parallel state along the vertical direction, and the width of the slab withdrawal port 12 in the long side direction. W
e is maximized. That is, the molten metal inlet 11 and the slab outlet 12 have the same rectangular shape. When the two short-side mold walls 3 and 3 swing in the facing direction from this state, as shown in FIG. 4, the wall portions 32 and 32 have an inverted C-shape in which the distance between the facing walls gradually decreases downward, and The width We of the drawing port 12 in the long side direction decreases. When the taper amount θ becomes the maximum, as shown in FIG. 3, the long side width We of the slab outlet 12 becomes the minimum. The shape of the molten metal inlet 11 is set according to the shape of the slab to be cast. In this example, Wo = 1260 mm and To = 190 mm.

【0016】各附勢機構5は、図2〜図4に示す如く、
第2支持杆44をネジ軸に構成すると共に、これに螺合
させたスプリング受体51と第2ブラケット42との間
にコイルスプリング52を介装して、短辺鋳型壁3をテ
ーパ量θが増大する方向に附勢するようになっている。
短辺鋳型壁3は、図3に示す如く、鋳造開始時において
はテーパ量θが最大となる位置に附勢保持される。コイ
ルスプリング52のバネ力は、スプリング受体51を左
右方向に螺送操作することによって、自由に変更調整す
ることができる。
Each urging mechanism 5 is, as shown in FIGS.
The second support rod 44 is formed as a screw shaft, and a coil spring 52 is interposed between a spring receiver 51 screwed to the second support rod 44 and the second bracket 42 so that the short side mold wall 3 has a taper amount θ. Are urged to increase.
As shown in FIG. 3, the short side mold wall 3 is biased and held at a position where the taper amount θ is maximum at the start of casting. The spring force of the coil spring 52 can be freely changed and adjusted by screwing the spring receiver 51 in the left-right direction.

【0017】冷却装置は、図2〜図5に示す如く、溶湯
注入口11から鋳型1に注入された溶湯金属9を冷却す
る一次冷却機構7と鋳型1の鋳片引き出し口12から引
き出された鋳片91を冷却する二次冷却機構8とからな
る。
As shown in FIGS. 2 to 5, the cooling device is drawn from a primary cooling mechanism 7 for cooling the molten metal 9 injected into the mold 1 from a molten metal inlet 11 and a slab outlet 12 of the mold 1. And a secondary cooling mechanism 8 for cooling the slab 91.

【0018】一次冷却機構7は、図3に示す如く、鋳型
1の内に設けられており、各鋳型壁2,3の本体部2
1,31を中空の水冷ジャケットに構成して、各本体部
21,31内に冷却水71を連続供給することにより各
壁面部22,32を水冷して、鋳型1内の溶湯8を冷却
(一次冷却)するように構成されている。なお、各本体
部21,31の内部は、その下端部に開設した給水口7
2及び排水口73に連通する一連の循環水路77を形成
すべく、仕切られている。
The primary cooling mechanism 7 is provided in the mold 1, as shown in FIG.
1 and 31 are configured as hollow water-cooled jackets, and the cooling water 71 is continuously supplied into the main body portions 21 and 31 to cool the wall surfaces 22 and 32, thereby cooling the molten metal 8 in the mold 1 ( (Primary cooling). The inside of each of the main bodies 21 and 31 is provided with a water supply port 7 opened at the lower end thereof.
It is partitioned so as to form a series of circulating water passages 77 communicating with the second and drain ports 73.

【0019】二次冷却機構8は、図2〜図5に示す如
く、鋳片引き出し口12の直下近傍位置に配置されてお
り、鋳型1から引き出された鋳片91の各長片側表面9
2に冷却水81を噴霧する複数の長辺側ノズル82…と
鋳片91の各短辺側表面93に冷却水81を噴霧する複
数の短辺側ノズル83…とで構成されている。
As shown in FIGS. 2 to 5, the secondary cooling mechanism 8 is disposed at a position immediately below the slab outlet 12, and the surface 9 on each long side of the slab 91 drawn from the mold 1.
2 comprises a plurality of long side nozzles 82 for spraying the cooling water 81 and a plurality of short side nozzles 83 for spraying the cooling water 81 to each short side surface 93 of the cast piece 91.

【0020】長辺側ノズル82…は、鋳型1から引き出
されてくる鋳片91の各長辺側表面92に対向して横方
向(左右方向)に等間隔を隔てた状態で並列配置されて
おり、長辺側表面92への噴霧水量を鋳片中央部から鋳
片端部へと漸次減少するようにゾーン制御されている。
すなわち、図2及び図5に示す如く、各長辺側表面92
の被冷却ゾーンは、横方向において、鋳片中央部の第1
被冷却ゾーンAと鋳片端部の第3被冷却ゾーンCとそれ
らの中間ゾーンである第2被冷却ゾーンBとに分けられ
ており、第1被冷却ゾーンAに対向して設けられた複数
の第1長辺側ノズル82a…、第2被冷却ゾーンBに対
向して設けられた複数の第2長辺側ノズル82b…及び
第3被冷却ゾーンCに対向して設けられた複数の第1長
辺側ノズル82c…は、夫々、各別の流量制御器(流量
調整弁等)84a,84b,84cを介して、冷却水供
給路86に接続されている。そして、流量制御器84
a,84b,84cにより、各第1長辺側ノズル82a
からの噴霧水量を最大として、各第2長辺側ノズル82
bからの噴霧水量が各第1長辺側ノズル82bからの噴
霧水量より減少し、更に各第3長辺側ノズル82cから
の噴霧水量が各第2長辺側ノズル82bからの噴霧水量
より減少する最小となるように、長辺側ノズル82…か
らの噴霧水量をゾーン制御させてある。
The long-side nozzles 82 are arranged side by side at equal intervals in the horizontal direction (left-right direction) so as to face each long-side surface 92 of the slab 91 drawn from the mold 1. Zone control is performed so that the amount of water sprayed on the long side surface 92 gradually decreases from the center of the slab to the end of the slab.
That is, as shown in FIG. 2 and FIG.
The zone to be cooled is the first in the center of the slab in the lateral direction.
It is divided into a zone to be cooled A, a third zone to be cooled C at the end of the slab, and a second zone to be cooled B which is an intermediate zone between them, and a plurality of zones provided to face the first zone to be cooled A. The first long side nozzles 82a, the plurality of second long side nozzles 82b provided facing the second cooled zone B, and the plurality of first nozzles provided facing the third cooled zone C. The long-side nozzles 82c are connected to the cooling water supply passage 86 via respective flow controllers (flow control valves and the like) 84a, 84b, 84c, respectively. And the flow controller 84
a, 84b, 84c, each first long side nozzle 82a
Each of the second long side nozzles 82
b, the amount of water sprayed from each first long side nozzle 82b is smaller than the amount of water sprayed from each third long side nozzle 82c, and the amount of water sprayed from each third long side nozzle 82c is smaller than the amount of water sprayed from each second long side nozzle 82b. The amount of water sprayed from the long-side nozzles 82 is zone-controlled to minimize the amount of water sprayed.

【0021】各第3長辺側ノズル82cからの噴霧水量
は各短辺側ノズル83からの噴霧水量と略同一としてお
くことが好ましく、ノズル82,83の設置数及び噴出
水量は鋳造条件に応じて適宜に設定されるが、この例で
は、図5に示す如く、6個の第1長辺側ノズル82a…
と8個の第2長辺側ノズル82b…と4個の第3長辺側
ノズル82c…と2個の短辺側ノズル83…とを設ける
と共に、各第1長辺側ノズル82aからの噴霧水量:1
0l/min,各第2長辺側ノズル82bからの噴霧水
量:8l/min,各第3長辺側ノズル82c及び各短
辺側ノズル83からの噴霧水量:4l/minに調整し
てある。なお、短辺側ノズル83…の噴霧水量を制御す
る流量制御器85は、上記した如く噴霧水量を同一とす
ることから、第3長辺側ノズル82c…用の流量制御器
84cと兼用させるようにしてもよい。
The amount of water sprayed from each of the third long side nozzles 82c is preferably substantially the same as the amount of water sprayed from each of the short side nozzles 83. In this example, as shown in FIG. 5, six first long side nozzles 82a.
, Eight second long side nozzles 82b, four third long side nozzles 82c, and two short side nozzles 83, and spray from the first long side nozzles 82a. Water volume: 1
0 l / min, the amount of spray water from each second long side nozzle 82b: 8 l / min, and the amount of spray water from each third long side nozzle 82c and each short side nozzle 83: 4 l / min. The flow controller 85 for controlling the amount of spray water of the short-side nozzles 83 is used as the flow controller 84c for the third long-side nozzles 82c because the amount of spray water is the same as described above. It may be.

【0022】以上のように構成された連続鋳造機によれ
ば、溶湯注入口11から鋳型1に注入された溶湯9は各
鋳型壁2,3の本体部21,31内を循環する冷却水7
1により一次冷却されて凝固し、凝固シェルが形成され
た鋳片91は鋳型1の鋳片引き出し口12から順次引き
出されて、二次冷却機構8により二次冷却され、必要に
応じて更に三次冷却(水槽への浸漬等)され、直方体状
の鋳塊が得られる。
According to the continuous casting machine configured as described above, the molten metal 9 injected into the mold 1 from the molten metal injection port 11 is cooled by the cooling water 7 circulating in the main bodies 21 and 31 of the mold walls 2 and 3.
The cast slab 91, which has been primarily cooled and solidified by the slab 1 to form a solidified shell, is sequentially pulled out from the slab draw-out port 12 of the mold 1 and is secondarily cooled by the secondary cooling mechanism 8 and further tertiary if necessary. It is cooled (immersed in a water tank or the like) to obtain a rectangular solid ingot.

【0023】このとき、凝固による収縮は長辺側表面9
2に比して短辺側表面93において著しく、短辺側表面
93と短辺鋳型壁3との間に凝固収縮による空隙が生じ
る。しかし、上記した鋳型1にあっては、短辺側表面9
3が収縮した場合、その収縮に追従して各短辺側鋳型壁
3のテーパ量θが自動的に増減変化して、短辺側鋳型壁
3が短辺側表面93に密接する。例えば、鋳造初期の段
階では一次冷却のみであるため収縮量は小さいが、鋳造
の進行に伴い二次冷却(更には三次冷却)されるように
なると、短辺側表面93の収縮量が増大する。かかる場
合、コイルスプリング52により短辺鋳型壁3が短辺側
表面93へと附勢揺動されて、当該短辺側表面93に密
接し、空隙の発生を防止する。また、逆に収縮量が減少
すると、短辺鋳型壁3がコイルスプリング52に抗して
テーパ量θを減じる方向に揺動され、鋳型1内における
鋳片91を必要以上に圧縮させることなく、短辺側鋳型
壁3が短辺側表面93に密接する。鍛造初期の段階にお
ける鋳片91の下降は、このような短辺鋳型壁3の揺動
(テーパ量θを減じる方向の揺動)によって、円滑に行
われる。
At this time, the contraction due to solidification is caused by the long side surface 9.
2, a gap is generated between the short side surface 93 and the short side mold wall 3 due to solidification shrinkage. However, in the above-described mold 1, the short side surface 9
3 shrinks, the taper amount θ of each short side mold wall 3 automatically increases and decreases following the contraction, and the short side mold wall 3 comes into close contact with the short side surface 93. For example, in the early stage of casting, the amount of shrinkage is small because only primary cooling is performed. However, when secondary cooling (and further tertiary cooling) is performed as the casting proceeds, the amount of shrinkage of the short side surface 93 increases. . In such a case, the short-side mold wall 3 is urged and oscillated toward the short-side surface 93 by the coil spring 52 to come into close contact with the short-side surface 93, thereby preventing the generation of a gap. Conversely, when the amount of shrinkage decreases, the short side mold wall 3 swings in a direction to reduce the taper amount θ against the coil spring 52, and does not compress the slab 91 in the mold 1 more than necessary. The short side mold wall 3 is in close contact with the short side surface 93. The lowering of the slab 91 in the early stage of forging is smoothly performed by such swinging of the short side mold wall 3 (swinging in a direction in which the taper amount θ is reduced).

【0024】このように、短辺側表面92の収縮等の鋳
造状態変化に追従して、短辺鋳型壁3,3が自動的に揺
動変位することから、上記空隙による発汗現象の発生が
確実に防止されると共に、鋳型1からの鋳片91の引き
抜きが円滑に行われて、ブレークアウト等の問題も生じ
ない。したがって、発汗帯等の表面欠陥のない高品質の
鋳塊を得ることができる。
As described above, the short-side mold walls 3 and 3 are automatically oscillatingly displaced in accordance with a change in the casting state such as shrinkage of the short-side surface 92. In addition to being reliably prevented, the slab 91 can be smoothly pulled out of the mold 1 without any problem such as breakout. Therefore, a high-quality ingot without surface defects such as sweat bands can be obtained.

【0025】また、鋳型1から引き抜かれた鋳片91は
二次冷却されて、更に凝固されるが、このとき、鋳片9
1の表面を均等に水冷する従来の二次冷却手法によれ
ば、当該鋳片91の表面温度が不均一になる。すなわ
ち、鋳型1から引き出される鋳片91における温度分布
は一定でなく、長手方向における中央部は端部側に比し
てより高温となっている。したがって、鋳片1の表面を
均一水量の冷却水で冷却した場合、冷却温度が不均一と
なり、凝固シェルの成長(シェル厚さの増大)が不均一
となる。その結果、鋳片91に割れ,凹みや巣が発生す
る。特に、長辺側表面92への水冷作用と短辺側表面9
3への水冷作用とを共に受ける鋳片1のコーナ部におい
ては過冷却となり、割れや凹み等の変形が発生する。し
かし、上記した二次冷却機構8によれば、各長辺側ノズ
ル82から長辺側表面92に噴霧される冷却水量を、中
央部の第1被冷却ゾーンAにおいて最大とすると共に端
部の第3被冷却ゾーンCにおいて最小とし、中間の第2
被冷却ゾーンBにおいて両ゾーンA,Cの中間水量を噴
霧させるようにしている。すなわち、鋳片1の温度分布
に応じて鋳片表面が均等温度に冷却されるように各長辺
側ノズル82からの噴霧水量を制御するようにしてい
る。したがって、第3被冷却ゾーンCにおける各第3長
辺側ノズル82cからの噴霧水量を各短辺側ノズル83
と同一としたこととも相俟って、鋳片1の表面が均一温
度に冷却される。その結果、二次冷却による割れや巣の
発生が防止され、欠陥のない極めて高品質の鋳塊が得ら
れる。
The slab 91 drawn from the mold 1 is secondarily cooled and further solidified.
According to the conventional secondary cooling method of uniformly cooling the surface of the casting 1 with water, the surface temperature of the slab 91 becomes uneven. That is, the temperature distribution in the slab 91 drawn from the mold 1 is not constant, and the central portion in the longitudinal direction has a higher temperature than the end portion. Therefore, when the surface of the slab 1 is cooled with a uniform amount of cooling water, the cooling temperature becomes uneven, and the growth of the solidified shell (increase in shell thickness) becomes uneven. As a result, cracks, dents and cavities occur in the slab 91. In particular, the water cooling action on the long side surface 92 and the short side surface 9
In the corner portion of the slab 1 which receives both the water cooling action and the water cooling action 3, supercooling occurs, and deformation such as cracks and dents occurs. However, according to the secondary cooling mechanism 8 described above, the amount of cooling water sprayed from each of the long-side nozzles 82 to the long-side surface 92 is maximized in the first cooled zone A at the center, and the amount of cooling water at the end is reduced. Minimized in the third cooled zone C,
In the zone to be cooled B, the amount of intermediate water between the zones A and C is sprayed. That is, the amount of water sprayed from each long side nozzle 82 is controlled so that the slab surface is cooled to a uniform temperature in accordance with the temperature distribution of the slab 1. Therefore, the amount of water sprayed from each of the third long side nozzles 82c in the third cooled zone C is reduced by each of the short side nozzles 83.
The surface of the slab 1 is cooled to a uniform temperature. As a result, generation of cracks and cavities due to secondary cooling is prevented, and a very high quality ingot without defects is obtained.

【0026】なお、本発明は上記した実施の形態に限定
されるものではなく、本発明の基本原理を逸脱しない範
囲において適宜に改良,変更することができる。例え
ば、各短辺鋳型壁3の支持機構4は、支持杆43,44
を共に軸線方向に進退操作できるように構成して、両短
辺鋳型壁3,3の対向間隔を所望する鋳片形状(長辺方
向幅)に応じて変更調節できるようにしておくこともで
きる。また、被冷却ゾーン数は、鋳片91の長辺方向幅
に応じて任意に設定することができる。また、本発明
は、銅合金等の非鉄金属の鋳塊を得る場合のみならず、
鋼等の鋳塊を得る場合にも適用できることは勿論である
が、特に、長辺方向幅と短辺方向幅との比率が或る程度
以上に大きな矩形状の横断面を有する鋳塊を得る場合に
おいて好適する。
It should be noted that the present invention is not limited to the above-described embodiment, but can be appropriately improved and changed without departing from the basic principle of the present invention. For example, the support mechanism 4 of each short side mold wall 3 includes support rods 43 and 44.
May be configured so that both can be advanced and retracted in the axial direction, so that the opposing interval between the two short-side mold walls 3 can be changed and adjusted according to a desired slab shape (long-side direction width). . The number of zones to be cooled can be arbitrarily set according to the width of the slab 91 in the long side direction. Further, the present invention is not only for obtaining an ingot of a non-ferrous metal such as a copper alloy,
Of course, it can be applied to the case of obtaining an ingot of steel or the like, but in particular, to obtain an ingot having a rectangular cross section in which the ratio between the width in the long side direction and the width in the short side direction is larger than a certain degree. Suitable in some cases.

【0027】[0027]

【発明の効果】以上の説明から容易に理解されるよう
に、本発明の連続鋳造機の鋳型にあっては、両短辺鋳型
壁が対向方向に揺動可能に附勢されているため、鋳型内
における鋳片の引き出しや収縮変化に追従して短辺鋳型
壁が自動的に揺動することから、常に鋳片が鋳型に密接
した状態で凝固され且つ鋳型から円滑に引き出される。
したがって、本発明によれば、発汗帯の発生や鋳型から
の引き出し不良,ブレークアウト等の問題を生じること
なく、表面欠陥のない高品質の金属鋳塊を得ることがで
きる。
As can be easily understood from the above description, in the mold of the continuous casting machine of the present invention, since both short side mold walls are urged to swing in opposite directions, Since the short side mold wall automatically swings in accordance with the drawing or shrinkage change of the slab in the mold, the slab is always solidified in close contact with the mold and smoothly drawn out of the mold.
Therefore, according to the present invention, it is possible to obtain a high-quality metal ingot without surface defects without causing problems such as generation of a sweat band, poor pulling out from a mold, and breakout.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る鋳型を備えた連続鋳造機の一例を
示す平面図である。
FIG. 1 is a plan view showing an example of a continuous casting machine provided with a mold according to the present invention.

【図2】同背面図である。FIG. 2 is a rear view of the same.

【図3】図1のIII −III 線に沿う縦断正面図である。FIG. 3 is a vertical sectional front view taken along the line III-III in FIG. 1;

【図4】図3と異なる状態を示す図3相当の縦断正面図
である。
FIG. 4 is a longitudinal sectional front view corresponding to FIG. 3, showing a state different from FIG. 3;

【図5】鋳片の二次冷却状態を示す横断平面図(断面は
図4のV−V線に沿う)である。
5 is a cross-sectional plan view showing a secondary cooling state of the slab (the cross section is along the line VV in FIG. 4).

【符号の説明】[Explanation of symbols]

1…鋳型、2…長辺鋳型壁、3…短辺鋳型壁、4…支持
機構、5…附勢機構、7…一次冷却機構、8…二次冷却
機構、9…溶湯、11…溶湯注入口、12…鋳片引き出
し口、52…コイルスプリング、71,81…冷却水、
82a…第1長辺側ノズル、82b…第2長辺側ノズ
ル、82c…第3長辺側ノズル、83…短辺側ノズル、
84a,84b,84c,85…流量制御器、91…鋳
片、92…長辺側表面、93…短辺側表面、A…第1被
冷却ゾーン、B…第2被冷却ゾーン、C…第3被冷却ゾ
ーン、θ…短辺鋳型壁のテーパ量。
REFERENCE SIGNS LIST 1 mold, 2 long mold wall, 3 short mold wall, 4 support mechanism, 5 urging mechanism, 7 primary cooling mechanism, 8 secondary cooling mechanism, 9 molten metal, 11 molten metal injection Inlet, 12: slab outlet, 52: coil spring, 71, 81: cooling water,
82a: first long side nozzle, 82b: second long side nozzle, 82c: third long side nozzle, 83: short side nozzle,
84a, 84b, 84c, 85 ... flow rate controller, 91 ... cast piece, 92 ... long side surface, 93 ... short side surface, A ... first cooled zone, B ... second cooled zone, C ... 3 Zone to be cooled, θ: taper amount of short side mold wall.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22D 11/05 B22D 11/04 311 B22D 11/051 B22D 11/053 B22D 11/16 105 B22D 11/16 106 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) B22D 11/05 B22D 11/04 311 B22D 11/051 B22D 11/053 B22D 11/16 105 B22D 11/16 106

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 前後に対峙する一対の長辺鋳型壁と左右
に対峙する一対の短辺鋳型壁とで構成される矩形枠状の
鋳型において、各短辺鋳型壁をその上端部を中心として
一定範囲で左右揺動自在に支持すると共に、両短辺鋳型
壁を対向方向にコイルスプリングにより附勢して、鋳片
の引き出しや収縮変化に追従して短辺鋳型壁が自動的に
揺動するように構成したことを特徴とする連続鋳造機の
鋳型。
1. A rectangular frame-shaped mold comprising a pair of long side mold walls facing front and back and a pair of short side mold walls facing left and right, each short side mold wall being centered on its upper end. The slab is slidably supported in a certain range, and both short side mold walls are urged by coil springs in the opposite direction.
The short side mold wall automatically follows the drawer and shrinkage changes
A mold for a continuous casting machine, which is configured to swing .
JP04105499A 1999-02-19 1999-02-19 Mold for continuous casting machine Expired - Lifetime JP3291265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04105499A JP3291265B2 (en) 1999-02-19 1999-02-19 Mold for continuous casting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04105499A JP3291265B2 (en) 1999-02-19 1999-02-19 Mold for continuous casting machine

Publications (2)

Publication Number Publication Date
JP2000237843A JP2000237843A (en) 2000-09-05
JP3291265B2 true JP3291265B2 (en) 2002-06-10

Family

ID=12597705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04105499A Expired - Lifetime JP3291265B2 (en) 1999-02-19 1999-02-19 Mold for continuous casting machine

Country Status (1)

Country Link
JP (1) JP3291265B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293794B2 (en) * 1999-02-19 2002-06-17 三宝伸銅工業株式会社 Cooling system for continuous casting machine
JP5011087B2 (en) * 2007-12-26 2012-08-29 新日鉄エンジニアリング株式会社 Continuous casting mold
CN110976833B (en) * 2019-11-20 2021-07-23 河钢乐亭钢铁有限公司 Quick-change cooling device and quick-change process for large-shrinkage steel grade hot tundish
CN112453340A (en) * 2020-10-14 2021-03-09 福建圣力智能工业科技股份有限公司 Intelligent continuous casting machine capable of discharging flexibly
CN112091191B (en) * 2020-11-11 2021-02-09 西安斯瑞先进铜合金科技有限公司 Preparation method and device of non-vacuum down-drawing semi-continuous casting copper-manganese alloy slab ingot

Also Published As

Publication number Publication date
JP2000237843A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US4865115A (en) Pouring device for dual-roll type continuous casting machines
JPS6115783B2 (en)
JP3291265B2 (en) Mold for continuous casting machine
JP3293794B2 (en) Cooling system for continuous casting machine
JP4337565B2 (en) Steel slab continuous casting method
JPH0131976B2 (en)
JPS59199151A (en) Continuous casting device for thin billet
JPS609553A (en) Stopping down type continuous casting machine
JP3377340B2 (en) Continuous casting method
JP2867894B2 (en) Continuous casting method
JPS6120648A (en) Synchronous type horizontal and continuous casting device
JPS6087956A (en) Continuous casting method of metal
JPS5970442A (en) Mold for continuous casting
JPH01143742A (en) Mold for continuous casting
JP2845706B2 (en) Molding equipment for continuous casting equipment
KR101443587B1 (en) Continuous casting method of ultralow carbon steel
KR20110120544A (en) Jig for drawing bubbling cone of ladle and method for drawing bubbling cone using the same
KR101377484B1 (en) Method for estimating carbon-increasing of molten steel
JPH0346218B2 (en)
JPH06218496A (en) Horizontal continuous casting apparatus by molten metal mold and casting starting method thereof
KR20060073215A (en) Drawing method of final slab in continuous casting of thin slab
JPH01150451A (en) Tundish for twin directional drawing type horizontal continuous casting machine
JPS58218349A (en) Stationary side plate of continuous casting device of thin steel plate
JPH07276015A (en) Receiving base for half-continuously casting aluminum square cast ingot and production of square cast ingot
JPS6040660A (en) Continuous casting device of thin-walled slab

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140322

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term