JPH02247050A - Continuous casting method and apparatus thereof by twin roll - Google Patents

Continuous casting method and apparatus thereof by twin roll

Info

Publication number
JPH02247050A
JPH02247050A JP6719189A JP6719189A JPH02247050A JP H02247050 A JPH02247050 A JP H02247050A JP 6719189 A JP6719189 A JP 6719189A JP 6719189 A JP6719189 A JP 6719189A JP H02247050 A JPH02247050 A JP H02247050A
Authority
JP
Japan
Prior art keywords
short side
mold
side weir
rolls
solidified shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6719189A
Other languages
Japanese (ja)
Inventor
Haruo Sakaguchi
坂口 治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP6719189A priority Critical patent/JPH02247050A/en
Publication of JPH02247050A publication Critical patent/JPH02247050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the development of molten metal leakage and wear of short side weirs by ascending/descending the short side weir in sliding contact with end faces of mold rolls and adjusting the lower end of the weir so as to correspond to confluent position of solidified shell. CONSTITUTION:A cast slab 22 is continuously drawn from one pair of mold rolls 1, 1 mutually arranged as parallel. In the above continuous casting method by twin rolls, the lower end 5a of the short side weir 5 in sliding contact with the end faces of the mold rolls 1, is made to correspond to the confluent position A of the solidified shell 11 formed on the peripheral surfaces of the mold rolls 1. Further, a movable piece 17 is set in contact with the lower end part of the short side weir 5 and abutted on the end faces of the mold rolls 1, and a dummy bar (not shown in the figure) is inserted and the molten steel is poured to start casting. By this method, leakage of the molten steel is prevented. After that, according to the casting velocity Vc, a motor 15 for driving rolls is controlled, and also by controlling a lifting jack 7 with a control unit 12, the lower end 5a of the short side weir 5 is always made to correspond to the variable confluent position A. By this method, the confluent solidified shell 11 is forced out and cooled, and the wear of the short side weir 5 and molten steel leakage are prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は互いに平行に配置したモールドロール間から連
続的に鋳片を引き抜く、ツインロールによる連続鋳造方
法およびその装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a continuous casting method using twin rolls and an apparatus therefor, in which a slab is continuously drawn from between mold rolls arranged parallel to each other.

従来の技術 互いに平行に配置された一対のモールドロール間から連
続的に鋳片を引き抜くツインロール型連続鋳造設備にお
いて、モールド1:7−ルの周面に形成される凝固シェ
ルがモールドロール最接近部」1方近傍で合流して鋳片
が形成される。これらモールドロール間に溶鋼を供給す
る溶鋼堰を、たとえばモールドロールの端面にわたる一
対の短辺堰で構成した場合、凝固シェルの合流部からモ
ールドロールの最接近部にわたって、凝固シェルが合流
圧縮されてシェルが鋳片の側端面より押し出され、この
押し出されるシェルの応力で短辺堰とモールドロールの
端面との間に隙間が生じ、この隙間に溶鋼が入り込んで
トラブルが生じることがあった。
2. Description of the Related Art In twin-roll continuous casting equipment in which a slab is continuously drawn from between a pair of mold rolls arranged parallel to each other, the solidified shell formed on the circumferential surface of the mold 1:7 is closest to the mold rolls. The two parts merge near one side to form a slab. If the molten steel weir that supplies molten steel between these mold rolls is configured, for example, by a pair of short side weirs that span the end faces of the mold rolls, the solidified shells are merged and compressed from the merging part of the solidified shells to the closest part of the mold rolls. The shell is extruded from the side end face of the slab, and the stress of the extruded shell creates a gap between the short side weir and the end face of the mold roll, and molten steel sometimes enters this gap, causing trouble.

また、押し出されるシェル部分の摺動抵抗が増大して凝
固シェルの−・部が短辺堰に引っ掛かり、引き抜かれる
鋳片の幅が狭くなったり、また引っ掛かり部分がある程
度大きくなると一度に鋳片といっしょに引き抜かれたり
してyiJ“1の側端部に凹凸か生じ、鋳片の引き裂き
やブレークアウトの原因となることがあった。
In addition, the sliding resistance of the extruded shell part increases, and the - part of the solidified shell gets caught on the short side weir, and the width of the slab to be pulled out becomes narrow. Also, if the caught part becomes large to a certain extent, the slab is removed all at once. If they were pulled out together, unevenness would occur on the side edges of yiJ"1, which could cause tearing or breakout of the slab.

そのため、たとえば特開昭63−622/11−り公報
および特開昭63−62243号公報には、端部堰間に
設けた中間堰または2等分した側端部層を紡ノ′1の引
き抜き方向に沿って下方に所定速度で下降させるものが
提案されている。
Therefore, for example, in JP-A No. 63-622/11 and JP-A-63-62243, an intermediate weir provided between the end weirs or a side end layer divided into two halves is There has been proposed a device that moves downward at a predetermined speed along the drawing direction.

発明が解決しようとする課題 しかし上記従来構成によれば、中間堰または側端部層は
10〜60Ib −1−下方向に長い中間堰または側端部層が必要で、き
わめて不経済であった。
Problems to be Solved by the Invention However, according to the above-mentioned conventional configuration, the intermediate weir or side end layer requires a downwardly long intermediate weir or side end layer of 10 to 60 Ib -1, which is extremely uneconomical. .

本発明は上記問題点を解決して、凝固シェル合流部から
押し出されるシェルに起因する短辺堰の摩耗やブレーク
アラI・などを防止でき、経済的なツインロール型連続
鋳造設備における連続鋳造方法および溶鋼堰を提供する
ことを目的とする。
The present invention solves the above-mentioned problems and prevents short side weir wear and breakage caused by shells extruded from the solidified shell merging section, and is an economical continuous casting method in twin-roll type continuous casting equipment. and to provide molten steel weirs.

課題を解決するための手段 」−記問題点を解決するために本発明の連続鋳造方法は
、互いに平行に配置さilな一対のモールドロール間か
ら連続的に鋳片を引き抜くに際し、両モールド17−ル
の端面に摺接する短辺堰の下端を、モールドロール周面
に形成される凝固シェルの合流位置に対応させるととも
に、短辺堰の下端部とモールドロール最接近部に対応す
る位置にわたって配置した可動片をモールドロールの端
面に当接させ、モールドロール間にダミーバーを挿入し
て溶鋼を供給後、前記ダミーバーを引き抜いて鋳造を開
始するとともに、前記可動片をモールドロールから離間
させ、凝固シェル合流位置の変動に応じそ短辺堰を昇降
し短辺堰の下端部を凝固シェル合流位置に対応させるも
のである。
In order to solve the problems described in "Means for Solving the Problems", the continuous casting method of the present invention provides a continuous casting method in which when a slab is continuously pulled out from between a pair of mold rolls arranged parallel to each other, both mold rolls 17 - The lower end of the short side weir that slides into contact with the end surface of the mold roll corresponds to the merging position of the solidified shell formed on the peripheral surface of the mold roll, and the lower end of the short side weir and the position corresponding to the closest part of the mold roll are arranged. A dummy bar is inserted between the mold rolls to supply molten steel, and then the dummy bar is pulled out to start casting, and the movable piece is separated from the mold roll to form a solidified shell. The short side weir is raised and lowered in response to changes in the merging position, so that the lower end of the short side weir corresponds to the solidified shell merging position.

また、本発明の連続鋳造装置は、互いに平行に配置され
た一対のモールドロール間から連続的に鋳片を引き抜く
ツインロール型連続鋳造設備において、両モールドロー
ルの端面に摺接して下端がモールドロール最接近部上方
近傍に位置する短辺堰を昇降自在に設け、この短辺廟を
昇降移動する昇降装置を設け、鋳造速度によって演算さ
れるモールドロール周面の凝固シェル合流位置に前記短
辺堰の下端位置を追従するように前記昇降装置を制御す
る制御装置を設け、前記短辺堰の下端とモ−ルトロール
最接近部に対応する位置にわたる可動片をモールドロー
ル端面に当接i!i[間可能に設(〕なものである。
Further, the continuous casting device of the present invention is a twin-roll type continuous casting device that continuously pulls slabs from between a pair of mold rolls arranged parallel to each other, and the lower end is in sliding contact with the end surfaces of both mold rolls. A short side weir located near the upper part of the closest part is provided so as to be able to rise and fall freely, and an elevating device is provided to move the short side weir up and down. A control device is provided to control the elevating device so as to follow the lower end position of i!, and a movable piece extending over a position corresponding to the lower end of the short side weir and the closest part of the mold roll is brought into contact with the end face of the mold roll i! It is something that can be set up for an extended period of time.

作用 上記構成により、起動時にモールドロール端部でダミー
バーと短辺堰との間の間隙を可動片により閉鎖して溶鋼
の漏れを防ぎ、また鋳造開始後凝固シェルの合流により
鋳片の側端部に押し出されるシェルは拘束されることな
くはみ出して冷却される。したがって、押し出されたシ
ェルによって短辺堰が押圧されてモールドロールとの間
に隙間が生じたり、短辺堰が摩耗してブレークアウトの
原因となることもない。また、鋳造速度により変動する
凝固シェル合流位置に追従して短辺堰を4降させるので
、B造速度を変化させても、湯漏れや短辺堰の摩耗が発
生することもない。
Effect With the above configuration, the movable piece closes the gap between the dummy bar and the short side weir at the end of the mold roll at the start of the mold roll to prevent leakage of molten steel, and after the start of casting, the solidified shells join together to close the gap between the dummy bar and the short side weir. The shell that is extruded out is not constrained and cools. Therefore, the short side weir is not pressed by the extruded shell and a gap is not created between the short side weir and the mold roll, and the short side weir is not worn and causes a breakout. In addition, since the short side weir is lowered four times in accordance with the solidified shell confluence position which varies depending on the casting speed, even if the B-forming speed is changed, there will be no occurrence of melt leakage or wear of the short side weir.

実施例 以下本発明の一実施例を図面に基づいて説明づる。Example An embodiment of the present invention will be described below based on the drawings.

第2図に示すように、−・定間隔をあけて互いに平行に
配設された左右一対のモールドロール1゜1には、溶鋼
2を受けるための溶鋼受3か配設される。この溶鋼受3
は、モールトロ−ル1,1の端面間にわたって摺接され
て下端5aがモールドロール1,1の最接近部4上方近
傍に位置する一対の短辺堰5,5からなる。この短辺堰
5は、第3図(aL (b)に示すように耐火物で成形
されるとともに、外面が鋼製枠6に保持され、外方から
シリンダ装置等の公知の押付は手段(図示せず)により
所定の力でモールド1コール1,1の端面に押付けられ
るとともに、昇降自在に支持されている。
As shown in FIG. 2, a molten steel receptacle 3 for receiving molten steel 2 is disposed on a pair of left and right mold rolls 1°1 which are arranged parallel to each other at regular intervals. This molten steel receiver 3
consists of a pair of short side weirs 5, 5 which are in sliding contact between the end faces of the mold rolls 1, 1 and whose lower ends 5a are located above and near the closest portion 4 of the mold rolls 1, 1. This short side weir 5 is formed of refractory material as shown in FIG. (not shown) is pressed against the end surfaces of the mold 1 calls 1, 1 with a predetermined force, and is supported so as to be able to rise and fall freely.

またこれら短辺堰5の上方には、第1図に示すようにウ
オームギヤやねじ軸を利用した昇降ジヤツキ7が配設さ
れ、この昇降ジヤツキ7に昇降される昇降杆7aが短辺
堰5の上部に連結される。この昇降ジヤツキ7には短辺
堰5の下端5a位置を検出する位置検出器8が配設され
るとともに、昇降ジャツー¥7を減速機7bを介して駆
動する昇降用モータ7cには、鋳造速度vcによって演
算されるモールドロール1,1周面上の凝固シェル11
11の合流位置Aに短辺堰5の下@5 aを追従させる
制御装置12が接続される。そのため、この制御装置1
2には、モールドロール1.1を分配歯車13および減
速機14を介して駆動するロール駆動モータ15に対し
て、モールド1コール駆動制御装置16から出力される
鋳造速度■cの指令信号が入力されるように構成されて
いる。
Further, above the short side weirs 5, as shown in FIG. 1, a lifting jack 7 using a worm gear or a screw shaft is provided. Connected to the top. This lifting jack 7 is provided with a position detector 8 that detects the position of the lower end 5a of the short side weir 5, and a lifting motor 7c that drives the lifting jack 7 via a reduction gear 7b has a casting speed. Solidified shell 11 on the circumferential surface of mold roll 1, 1 calculated by vc
A control device 12 is connected to the merging position A of 11 to follow the lower part of the short side weir 5 @5a. Therefore, this control device 1
2, a command signal for the casting speed ■c output from the mold 1 call drive control device 16 is input to the roll drive motor 15 that drives the mold roll 1.1 via the distribution gear 13 and the reducer 14. is configured to be

前記短辺堰5の下方には、短辺堰5の下@5aからモー
ルドロール最接近部4にわたる耐火物製の可動shoか
モールドロール1,1の端面に当接離間自在に配置され
、この可動片15は前記鋼製枠6の下部に支持部材18
を介して取(=Jけられたシリンダ装置19の作動ロッ
ド19aに支持される。そして、この可動片17は第3
図(a)に示すように、起動時にシリンダ装置19によ
りモールドロール111の端面に押付りられて、モール
ドロール最接近部4を閉塞するダミーバー20と短辺堰
5との間に形成されるモールドローラ1,1の端面間間
隙21を封鎖するように構成される。第3図(b)にお
いて、22は引き抜かれる鋳片、22aは鋳片22の側
端部より押し出されたシェルである。
Below the short side weir 5, a refractory movable shaft extending from the bottom @5a of the short side weir 5 to the closest part 4 to the mold rolls is arranged so as to be able to come into contact with and separate from the end faces of the mold rolls 1, 1. The movable piece 15 has a support member 18 at the bottom of the steel frame 6.
The movable piece 17 is supported by the actuating rod 19a of the cylinder device 19, which is taken through the
As shown in Figure (a), a mold is formed between the short side weir 5 and the dummy bar 20 that is pressed against the end surface of the mold roll 111 by the cylinder device 19 to close the mold roll closest portion 4 at the time of startup. It is configured to close the gap 21 between the end faces of the rollers 1,1. In FIG. 3(b), reference numeral 22 indicates a slab to be drawn, and 22a indicates a shell pushed out from a side end of the slab 22.

次にこの実施例における連続鋳造方法について説明する
Next, the continuous casting method in this example will be explained.

まず短辺j[I5.5の下@5a、5aを鋳造速度vc
により求められる凝固シェル合流位置Aに対応させるよ
うに、昇降ジヤツキ7.7の昇降用モータ10.10を
駆動して短辺堰5,5を昇降させる。
First, lower the short side j[I5.5 @5a, 5a at the casting speed vc
The elevating motor 10.10 of the elevating jack 7.7 is driven to raise and lower the short side weirs 5, 5 so as to correspond to the solidified shell merging position A determined by .

凝固シェル合流位置Aは、第4図に示すように、次の演
算式により求められる。
The solidified shell merging position A is determined by the following equation, as shown in FIG.

Lをモールドロール最接近部4から湯面2aまでの高さ
、 Rをモールドロール1の半径、 θをロール中心0における最接近部Aとモールドロール
1の湯面2a接触点Cとのなす角とすると、 θ−5in −1L ■の関係となり、 Nをモールドロール1の周面の溶鋼接触部の長さとする
と、 θ N−πRXηIであられされる。
L is the height from the closest part 4 of the mold roll to the hot water surface 2a, R is the radius of the mold roll 1, and θ is the angle between the closest part A at the roll center 0 and the contact point C of the hot water surface 2a of the mold roll 1. Then, the relationship is θ-5in-1L (2), and if N is the length of the molten steel contact portion on the circumferential surface of the mold roll 1, then θN-πRXηI.

また、tを冷却時間とすると、 七−石 ・・・・・・(1) (鋳造速度VC−モールドロール1の周速度)の関係と
なる。
Further, if t is the cooling time, the relationship is as follows: (1) (casting speed VC - circumferential speed of mold roll 1).

Sを凝固シェル11の厚み、 Kを溶鋼の凝係数とすると、 5=KJ  ・・・・・・(2)の関係であり、さらに
、Dを鋳片22の厚み、 mを一方の凝固シェル11の圧縮量とすると、m共S 
 N  ・・・・・・(3)の関係となる。
If S is the thickness of the solidified shell 11 and K is the solidification coefficient of the molten steel, then the relationship is as follows: 5=KJ (2), and furthermore, D is the thickness of the slab 22, and m is the solidification coefficient of one of the solidified shells. If the compression amount is 11, m and S
N...The relationship is as shown in (3).

ここで、hをモールドロール最接近部4から凝固シェル
合流位置Aまでの距離とすると、h=   −R−m 
 −−−−−−(4)の関係となり、となる。
Here, if h is the distance from the closest part 4 of the mold roll to the solidified shell joining position A, then h= -R-m
-----------The relationship is as shown in (4), and it becomes.

上記(5)式が制御装置12により演算され、この演算
値りと、モールドロール最接近位置4からの短辺堰5の
下端5aの距離を検出する位置検出器8の検出値との差
が0になるように、昇降用モータ7Cが駆動される。
The above equation (5) is calculated by the control device 12, and the difference between this calculated value and the detected value of the position detector 8 which detects the distance of the lower end 5a of the short side weir 5 from the mold roll closest position 4 is calculated. The elevating motor 7C is driven so that the value becomes 0.

次に、両モールド17−・ル1.1間にダミーバー20
を挿入するとともに、シリンダ装置19を伸展して可動
片17をモールドロール1.1の端面に押し付け、タン
デイツシュノズル23から注湯を開始する。所定時間経
過後に、ロール駆動モータ15を駆動してモールドロー
ル1,1を回転し、所定の鋳造速度Vcで鋳片22を引
き抜く。この鋳造開始と同時に、シリンダ装置19によ
り可動ハ17をモールドロール1,1の端面から離間さ
せる。なお、可動片17の離間は、凝固シェル11が押
し出される力が可動片17に加わった時に行ってもよい
Next, a dummy bar 20 is placed between both molds 17- and 1.1.
At the same time, the cylinder device 19 is extended to press the movable piece 17 against the end surface of the mold roll 1.1, and pouring from the tundish nozzle 23 is started. After a predetermined time has elapsed, the roll drive motor 15 is driven to rotate the mold rolls 1, 1, and the slab 22 is pulled out at a predetermined casting speed Vc. Simultaneously with the start of this casting, the movable roller 17 is separated from the end surfaces of the mold rolls 1, 1 by the cylinder device 19. Note that the movable piece 17 may be separated when a force for pushing out the solidified shell 11 is applied to the movable piece 17.

@造開始後、鋳造速度■cを変化さぜると、モールドロ
ール駆動制御装置16からの速度指令信号が制御装置1
2に入力され、短辺堰5は昇降ジヤツキ7により、下端
5aか凝固シェル合流位置Aの変動に対応して昇降移動
される。
After the start of casting, when the casting speed ■c is changed, the speed command signal from the mold roll drive control device 16 is transmitted to the control device 1.
2, and the short side weir 5 is moved up and down by the lifting jack 7 in response to fluctuations in the lower end 5a or the solidified shell merging position A.

上記実施例によれば、短辺堰5の下端5aを凝固シェル
合流位置Aに対応して配置するとともに、制御装置12
により、鋳造速度■cの変化により変動する凝固シェル
合流位置Aを演算し、昇降ジャツキ7を駆動しな短辺堰
5を昇降さぜ、下端5aを凝固シェル合流位置Aの変動
に追従させるので、合流位置Aで合流した凝固シェル1
1.11がモールド17−ル1,1の回転に伴い圧縮さ
れて鋳片22の側端部に押し出されてきても、短辺堰5
の下方に突出して拘束されることなく冷却される。した
がって、従来のように押し出されたシェル22aが短辺
堰5を押圧してモールド1′:I−ル1との間に隙間を
形成させたり、短辺堰5を摩耗させてブレークアウトの
原因となることはない。なお従来から鋳片22は、性状
の安定しない側端縁を切断して製品化するため、押し出
されたシェル22aのためにのみ切断作業を行う必要も
なく、また製品の歩留りも低下することもない。
According to the above embodiment, the lower end 5a of the short side weir 5 is arranged corresponding to the solidified shell confluence position A, and the control device 12
As a result, the solidified shell merging position A, which fluctuates due to changes in the casting speed c, is calculated, and the short side weir 5 is raised and lowered without driving the lifting jack 7, so that the lower end 5a follows the fluctuation of the solidified shell merging position A. , solidified shells 1 that merged at merge position A
1.11 is compressed as the molds 17-rules 1, 1 rotate and are pushed out to the side ends of the slab 22, the short side weir 5
It protrudes downward and is cooled without being constrained. Therefore, as in the conventional case, the extruded shell 22a presses the short side weir 5 and forms a gap between the mold 1' and the I-rule 1, or the short side weir 5 is worn out, causing breakout. It will never be. Note that conventionally, the slab 22 is manufactured by cutting the side edges whose properties are unstable, so there is no need to perform cutting work only for the extruded shell 22a, and the yield of the product does not decrease. do not have.

また連続鋳造は、鋳造が不安定な起動時と鋳造が安定す
る通常運転時とは、n造速度■cを変化さぜ、3ffi
常運転時の方を高速で行う。このような鋳造速度VCの
変化により変動する凝固シェル合流位置Aに追従して制
御装置12により昇降シャツA7を制御し、短辺堰5を
昇降して下端5aを変位させるので、短辺堰5に押し出
されたシェル22が短辺堰5を押圧したり、短辺堰5の
下端と凝固シェル合流位WAとの間に隙間が生じて溶鋼
2が漏れ出すこともない。
In addition, in continuous casting, the casting speed is varied between the start-up period when the casting is unstable and the normal operation period when the casting is stable.
Perform at high speed during normal operation. The control device 12 controls the elevating shirt A7 to follow the solidified shell confluence position A that changes due to changes in the casting speed VC, and moves the short side weir 5 up and down to displace the lower end 5a. The shell 22 pushed out presses the short side weir 5, and the molten steel 2 does not leak out due to a gap being created between the lower end of the short side weir 5 and the solidified shell confluence WA.

さらに起動時に生じるダミーバー20と短辺堰5の隙間
21を可動片17により閉鎖するので、供給された溶鋼
2が漏れることもない。
Furthermore, since the gap 21 between the dummy bar 20 and the short side weir 5 that occurs during startup is closed by the movable piece 17, the supplied molten steel 2 will not leak.

発明の効果 以上に述べたごとく本発明によれば、起動時にモールド
ロール端部でダミーパーと短辺堰との間の間隙を可動片
により閉鎖して溶鋼の漏れを防ぐことができる。また、
鋳造開始後凝固シェルの合流により鋳片の側端部に押し
出されるシェルは拘束されることなくはみ出して冷却さ
れるので、押し出されたシェルによって短辺堰が押圧さ
れてモールドロールとの間に隙間が生じたり、短辺堰が
摩耗してブレークアウトの原因となることもない。
Effects of the Invention As described above, according to the present invention, the gap between the dummy par and the short side weir can be closed by the movable piece at the end of the mold roll at the time of startup, thereby preventing leakage of molten steel. Also,
After the start of casting, the solidified shells merge and are pushed out to the side edges of the slab.The shells are pushed out without being restrained and cooled, so the short side weir is pressed by the pushed out shells, creating a gap between them and the mold rolls. There is no risk of breakouts caused by wear on the short side weirs.

さらに、鋳造速度により変動する凝固シェル合流位置に
追従して短辺堰を昇降さぜるので、鋳造速度を変化させ
ても湯漏れや短辺堰の摩耗が発生ずることもない。さら
にまた、従来のように鋳造方向に沿って堰を下降するこ
ともないので、上下刃向に長い堰も必要でなく、きわめ
て経済的となる。
Furthermore, since the short side weir is moved up and down in accordance with the solidified shell confluence position which varies depending on the casting speed, there is no possibility of melt leakage or wear of the short side weir even if the casting speed is changed. Furthermore, since there is no need to move down the weir along the casting direction as in the conventional method, there is no need for weirs that are long in the direction of the upper and lower blades, making it extremely economical.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は概略構成図、
第2図は全体斜視図、第3図(aHb)は動作を説明す
る短辺@縦断面図、第4図は演算式の概略説明図である
。 1・・・モールドロール、2・・・溶鋼、3・・・溶鋼
受、4・・・モールドロールfL接近部、5・・・短辺
堰、5a・・・下端、7・・・昇降ジヤツキ、11・・
・凝固シェル、12・・制御装置、16・・・モールド
ロール駆動制御装置、17・・・可動片、19・・・シ
リンダ装置、20・・・ダミーパー22・・・鋳片、A
・・・凝固シェル合流部、Vc・・・鋳造速度。 代理人   森  本  義  弘
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic configuration diagram;
FIG. 2 is an overall perspective view, FIG. 3 (aHb) is a short side @ vertical sectional view for explaining the operation, and FIG. 4 is a schematic explanatory diagram of the calculation formula. DESCRIPTION OF SYMBOLS 1... Mold roll, 2... Molten steel, 3... Molten steel receiver, 4... Mold roll fL approach part, 5... Short side weir, 5a... Lower end, 7... Lifting jack , 11...
- Solidified shell, 12... Control device, 16... Mold roll drive control device, 17... Movable piece, 19... Cylinder device, 20... Dummy par 22... Slab, A
... Solidified shell confluence section, Vc... Casting speed. Agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】 1、互いに平行に配置された一対のモールドロール間か
ら連続的に鋳片を引き抜くに際し、両モールドロールの
端面に摺接する短辺堰の下端を、モールドロール周面に
形成される凝固シェルの合流位置に対応させるとともに
、短辺堰の下端部とモールドロール最接近部に対応する
位置にわたって配置した可動片をモールドロールの端面
に当接させ、モールドロール間にダミーバーを挿入して
溶鋼を供給後、前記ダミーバーを引き抜いて鋳造を開始
するとともに、前記可動片をモールドロールから離間さ
せ、凝固シェル合流位置の変動に応じて短辺堰を昇降し
短辺堰の下端部を凝固シェル合流位置に対応させること
を特徴とするツインロールによる連続鋳造方法。 2、互いに平行に配置された一対のモールドロール間か
ら連続的に鋳片を引き抜くツインロール型連続鋳造設備
において、両モールドロールの端面に摺接して下端がモ
ールドロール最接近部上方近傍に位置する短辺堰を昇降
自在に設け、この短辺堰を昇降移動する昇降装置を設け
、鋳造速度によって演算されるモールドロール周面の凝
固シェル合流位置に前記短辺堰の下端位置を追従するよ
うに前記昇降装置を制御する制御装置を設け、前記短辺
堰の下端とモールドロール最接近部に対応する位置にわ
たる可動片をモールドロール端面に当接離間可能に設け
たことを特徴とするツインロールによる連続鋳造装置。
[Claims] 1. When continuously drawing slabs from between a pair of mold rolls arranged parallel to each other, a lower end of a short side weir that comes into sliding contact with the end surfaces of both mold rolls is formed on the peripheral surface of the mold roll. At the same time, a movable piece placed over a position corresponding to the lower end of the short side weir and the closest part of the mold roll is brought into contact with the end surface of the mold roll, and a dummy bar is inserted between the mold rolls. After supplying molten steel, the dummy bar is pulled out to start casting, and the movable piece is separated from the mold roll, and the lower end of the short side weir is moved up and down according to fluctuations in the solidified shell joining position. A continuous casting method using twin rolls, which is characterized by matching the solidified shell merging position. 2. In twin-roll type continuous casting equipment that continuously draws slabs from between a pair of mold rolls arranged parallel to each other, the lower end is located near the upper part of the part closest to the mold rolls, slidingly contacting the end surfaces of both mold rolls. A short side weir is provided so that it can be raised and lowered, and an elevating device is provided to move the short side weir up and down, so that the lower end position of the short side weir follows the confluence position of the solidified shell on the peripheral surface of the mold roll, which is calculated based on the casting speed. A control device for controlling the lifting device is provided, and a movable piece extending over a position corresponding to the lower end of the short side weir and the closest part of the mold roll is provided so as to be able to come into contact with and separate from the end surface of the mold roll. Continuous casting equipment.
JP6719189A 1989-03-17 1989-03-17 Continuous casting method and apparatus thereof by twin roll Pending JPH02247050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6719189A JPH02247050A (en) 1989-03-17 1989-03-17 Continuous casting method and apparatus thereof by twin roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6719189A JPH02247050A (en) 1989-03-17 1989-03-17 Continuous casting method and apparatus thereof by twin roll

Publications (1)

Publication Number Publication Date
JPH02247050A true JPH02247050A (en) 1990-10-02

Family

ID=13337767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6719189A Pending JPH02247050A (en) 1989-03-17 1989-03-17 Continuous casting method and apparatus thereof by twin roll

Country Status (1)

Country Link
JP (1) JPH02247050A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188603A (en) * 2007-02-01 2008-08-21 Ihi Corp Method for operating twin-roll casting machine and device for supporting side weir
WO2019092903A1 (en) * 2016-11-07 2019-05-16 日本製鉄株式会社 Side sealing device, double roll type continuous casting device, and method for manufacturing thin slab

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188603A (en) * 2007-02-01 2008-08-21 Ihi Corp Method for operating twin-roll casting machine and device for supporting side weir
WO2019092903A1 (en) * 2016-11-07 2019-05-16 日本製鉄株式会社 Side sealing device, double roll type continuous casting device, and method for manufacturing thin slab
CN111278585A (en) * 2016-11-07 2020-06-12 日本制铁株式会社 Side seal device, twin roll type continuous casting device, and method for manufacturing thin-walled cast piece
KR20210087566A (en) * 2016-11-07 2021-07-12 닛폰세이테츠 가부시키가이샤 Side sealing device, double roll type continuous casting device, and method for manufacturing thin slab
US11192174B2 (en) 2016-11-07 2021-12-07 Nippon Steel Corporation Side sealing device, twin-roll continuous casting apparatus, and method of manufacturing cast strip

Similar Documents

Publication Publication Date Title
KR101446937B1 (en) Low surface roughness cast strip and method and apparatus for making the same
JP2003509220A (en) Strip casting
JPH02247050A (en) Continuous casting method and apparatus thereof by twin roll
JP2004502552A (en) Strip casting
KR20160043144A (en) Continuous casting apparatus for casting strip of variable width
JP3452799B2 (en) Continuous casting guide roll device and continuous casting method
US5035279A (en) Arrangement for continuously casting a continuous metal sheet
JPH11221651A (en) Method for making forged product subjected to coating and apparatus therefor
KR100472531B1 (en) The control method of driven roll pressure in continuous casting equipments
JPH06210410A (en) Single belt type continuous casting apparatus
JPS61189850A (en) Continuous casting method of steel slab
JPH0450097B2 (en)
JPH0615415A (en) Method and device for twin roll continuous casting
JPS61182804A (en) Method and equipment for continuously manufacturing sheet
JPS60137562A (en) Continuous casting method for thin sheet
JPH04333352A (en) Continuous casting machine for metal strip
JPH0555218B2 (en)
JPH02211947A (en) Continuous casting machine for metal strip and operational method thereof
JPH0115340B2 (en)
KR100660198B1 (en) Reduction apparatus for continuous casting segment rolls
JP2582952B2 (en) Metal ribbon continuous casting machine
JPH01133648A (en) Method for controlling casting in twin roll type continuous casting machine
JPH08141715A (en) Continuous casting apparatus and continuous casting method
JPH02251344A (en) Continuous casting machine for metal strip
JPH035897B2 (en)