JPH021919B2 - - Google Patents

Info

Publication number
JPH021919B2
JPH021919B2 JP57180037A JP18003782A JPH021919B2 JP H021919 B2 JPH021919 B2 JP H021919B2 JP 57180037 A JP57180037 A JP 57180037A JP 18003782 A JP18003782 A JP 18003782A JP H021919 B2 JPH021919 B2 JP H021919B2
Authority
JP
Japan
Prior art keywords
component
electrode
nickel
membrane
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57180037A
Other languages
Japanese (ja)
Other versions
JPS5970785A (en
Inventor
Yoshio Oda
Takashi Otoma
Eiji Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP57180037A priority Critical patent/JPS5970785A/en
Publication of JPS5970785A publication Critical patent/JPS5970785A/en
Publication of JPH021919B2 publication Critical patent/JPH021919B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水電解用陰極の製造法、特には低電圧
で水電解が可能な電極触媒−イオン膜接合体とそ
の製造法に関する。 水素は、最近のエネルギー事情を反映し石油に
代る新しいエネルギー源として多方面から注目さ
れている。そして、水素の工業的製造方法として
は大別して水電解法とコークスや石油のガス化法
が挙げられる。前者の方法は、原料として入手し
易い水が用いられる反面、多数の電解設備が必要
なこと、電流の過不足に対する適応性が不充分で
あること、電解液の炭酸化による劣化や床面積、
設備費などに多くの問題が残されている。他方、
後者の方法は一般に操作が煩雑であると共に設備
もかなり大型なものが要求され、設備費がかなり
かかるなどの問題がある。 上記の問題を解決する手段として、陽イオン交
換膜を用い電解槽で水を電解し、水素を製造する
方法が最近提案されている。 本発明はこのような陽イオン交換膜を用いる水
電解法において特にラネーニツケル、ラネーコバ
ルト系三成分合金を陰極用電極触媒として陽イオ
ン交換膜に接合したものを発明の主旨とするもの
である。通常卑金属系電極触媒としては、ニツケ
ル、ニツケル多孔体、ニツケル複合酸化物などが
用いられる。たとえば、本出願人が既に提案した
特開昭54−112785号公報で開示される電極は、そ
れまでに知られた電極に比べて低水素過電圧化及
びその耐久性に関し、大きな効果を持つものであ
る。しかしながら本発明者等は、更に詳細に検討
を加えた結果、上記公報で開示される電極もある
場合には、必ずしも耐久性が充分でない場合のあ
ることを見出し、この解決のため鋭意努力した結
果本発明を見出すに至つたものである。耐久性が
損われる原因はニツケル系の電極触媒に共通した
ものである。このため本発明の思想は特開昭54−
11278号公報に記載されている以外のニツケル系
電極触媒についても同様に適用できる。 また本発明は電極触媒とイオン膜との直接接合
体の場合にもニツケル系触媒が有する同様な欠点
が見出されるので本改善が効果的である。イオン
膜の各側に電極触媒を付着接合せしめて水電解を
行ういわゆるSPE水電解はすでに述べたように従
来のアスベストを隔膜として用いる方法に代替し
得る新しい省エネルギータイプの水素製造法であ
る。そしてこの型の電解方式においては陰極とし
て上述の如き低水素過電圧陰極が好ましく用いら
れるが、上記電解は運転の途中、種々の理由によ
り運転を停止することがあり、この場合、運転を
再開すると水素過電圧の上昇することが認められ
た。本発明者等はこの現象について深く追求した
結果、電極活性成分であるラネーニツケル粒子あ
るいはラネーコバルト粒子のニツケルあるいはコ
バルトが水酸化ニツケルあるいは水酸化コバルト
に変質することにより電極活性が劣化する(即
ち、水素過電圧が上昇する)ことを見出したもの
で、この変質を防止するのに、ニツケル、コバル
ト等の第一の成分とアルミニウム、亜鉛、マグネ
シウム、シリコン等の第二の成分とからなる公知
の金属粒子に第三の特定の成分を含有せしめるこ
とが著しい効果をもたらすことを見出し、本発明
を完成したもので、本発明は、電極活性金属粒子
がニツケル及び/又はコバルトからなる成分X、
アルミニウム、亜鉛、シリコンマグネシウムから
選ばれる成分Y、及び周期律表第族金属から選
ばれる成分Zが、第1図の点A,B,C,D及び
Eで囲まれる範囲にある合金である高耐久性低水
素過電圧電極触媒 A:X=99wt% Y=0wt% Z=1wt% B:X=79wt% Y=20wt% Z=1wt% C:X=50wt% Y=20wt% Z=30wt% D:X=42wt% Y=16wt% Z=42wt% E:X=50wt% Y=0wt% Z=50wt% がイオン膜に接合されている膜−電極触媒接合体
であり、その製法においてニツケル及び/又はコ
バルトからなる成分X、アルミニウム、亜鉛、マ
グネシウムシリコンから選ばれる成分Y及び周期
律表第族金属から選ばれる成分Zが、第2図の
点A′,B′,C′,D′及びE′で囲まれる範囲にある
合金からなる該電極活性金属粒子を陰極としてイ
オン膜に圧着せしめて接合することを特徴とする
高耐久性水電解用イオン膜−電極触媒接合体の製
法 A′:X=59wt% Y=40wt% Z=1wt% B′:X=39wt% Y=60wt% Z=1wt% C′:X=25wt% Y=60wt% Z=15wt% D′:X=25wt% Y=50wt% Z=25wt% E′:X=35wt% Y=40wt% Z=25wt% を要旨とするものである。 ここで、第1図は、ニツケル及び/又はコバル
トからなる成分X、アルミニウム、亜鉛、マグネ
シウムから選ばれる成分Y及び周期律表第族金
属から選ばれる成分Zの三成分ダイアグラムであ
つて、本発明陰極における金属粒子の合金組成は
第1図の点A,B,C,D,Eで囲まれる範囲の
ものであることが必要である。好ましくは、F,
G,H,Eの範囲である。ここで点F,G,Hの
X,Y,Z成分の量は、各々(95、0、5)、
(85、10、5)、(46、10、44)である。 本発明の効果は合金組成の1成分として周期律
表第族金属が包含されることによるものである
が、何故に、第族金属の包含がニツケルまたは
コバルトの水酸化物生成を阻止しうるのが詳細に
ついては未だ解明されていない。しかしながら、
本発明者等は、第族金属の内でもチタニウム、
スズジルコニウムが本発明の効果を奏するのに最
適であるとの知見を得ている。即ち、第族金属
の内でもチタニウム、スズジルコニウムを用いる
時には、より激しい環境条件においてもより長期
にわたつて低水素過電圧を維持することができ
る。 本発明陰極の金属粒子が第1図のABCDEで囲
まれる組成を有することがよいのは、上記範囲以
外の組成の粒子では、長期にわたつて水素過電圧
を低く維持できなかつたりすることによる。 上述の金属粒子の平均粒径は、電極表面の多孔
性度及び後述する電極製造の際の粒子の分散性に
も関係するが、0.1μ〜100μであれば充分である。 上記範囲中、電極表面の多孔性等の点から、好
ましくは0.1μ〜50μ、更に好ましくは0.1μ〜10μで
ある。 更に本発明の粒子は、電極のより低い水素過電
圧を達成するため、表面多孔性であることが好ま
しい。更には粒子の内部まで多孔性になつている
ことが好ましい。 多孔性の程度は、その程度がかなり大きい程好
ましいが、過程に多孔性にすると粒子の機械的強
度が低下する為多孔度(porosity)が20〜90%に
することが好ましい。上記範囲中更に好ましくは
35〜85%、特に好ましくは50〜80%である。 尚、上記多孔度とは、公知の水置換法または窒
素吸着法によつて測定される値である。 多孔性にする方法としては種々の方法が採用で
きるが、例えば成分X,Y,Zからなる合金か
ら、成分Yの金属の一部又は全部を除去して多孔
性にする方法が好ましい。 かかる場合、成分X,Y,Zが所定割合に均一
に配合された合金を苛性アルカリ処理して、成分
Yの金属の少くとも一部を除去せしめる方法が特
に好ましい。本発明の膜−電極接合体の場合、例
えばアルカリ水溶液を電解して水素を製造する場
合には、必ずしも電解槽に装着される前に苛性ア
ルカリで処理する必要はなく、使用される陰極液
が苛性アルカリ条件であるため、電解中に徐々に
成分Yの金属が除去され、目的の陰極となりう
る。 上記金属粒子の組成の組合せとしては各種のも
のが使用でき、その代表的なものとしては、Ni
−Al−Ti、Ni−Al−Sn、Ni−Zn−Ti、Ni−Zn
−Sn、Co−Al−Ti、Co−Al−Sn、Co−Zn−
Ti、Co−Zn−Sn、Ni−Mg−Ti、Ni−Mg−
Sn、Co−Mg−Ti、Co−Mg−Sn などが考えられる。さらにはTiをZrにかえたも
のが考えられる。 この中でも特に好ましい組合せはNi−Al−Ti、
Co−Al−Tiである。 本発明においては上記の如き合金粒子をイオン
交換膜上に接合するわけであるが、この接合につ
いては特別に限定されることは必要でなく例えば
特開昭54−112398号公報で開示されるような方法
が好ましく用いられる。 かような苛性アルカリ処理の条件は、出発金属
粒子の組成によつても異るが、後述するような組
成の金属粒子の場合、苛性アルカリ濃度
(NaOH換算)10〜35重量%の10〜100℃水溶液
に0.5〜30時間浸漬することが好ましい。この理
由は、成分Yはなるべく除去しやすく、また成分
Zはなるべく除去されないことを条件として選定
したものである。 また、本発明の場合、金属粒子としては、ニツ
ケル及び/又はコバルトからなる成分X、アルミ
ニウム、亜鉛、マグネシウムから選ばれる成分Y
及び周期律表第族金属から選ばれる成分Zが第
2図の点A′,B′,C′,D′及びE′で囲まれる範囲
の合金であることが必要である。その理由は、こ
の範囲からはずれると膜との接合工程での付着量
を充分に確保できなかつたり、接合できても付着
強度が低かつたり、また、アルカリ易溶金属すな
わち成分Yの溶解抽出後の電極触媒としての活性
が充分でないなどのためである。従つて、A′〜
E′で示される範囲から若干ずれる場合には初期の
水素過電圧が若干高く後述の短絡による酸化に対
する抵抗性が低下するが、大きくずれる場合は低
い機械的強度や高い初期過電圧のため、もはや実
用に供することはできないからである。 かくして、得られたイオン膜−電極触媒接合体
はその後必要に応じ、苛性アルカリ処理(例えば
苛性アルカリ水溶液に浸漬する)して、金属粒子
中の成分Yの金属の少なくとも一部を溶出除去せ
しめ、該粒子を多孔性にする。 かゝる場合の条件は前述の通りである。 又、粒子として前述した成分X,Y,Zの合金
を採用した場合、上述した様な苛性アルカリ処理
を行なうことが好ましいが、かゝる粒子を付着し
た電極を苛性アルカリ処理をせず、そのままアル
カリ水電解槽に取り付け、実際に電解を行つても
よい。 かゝる場合、電解の過程で成分Yの金属が溶出
し、電極の過電圧が低下する。ただし、該溶出し
た成分Yの金属イオンによつて、生成苛性アルカ
リ水溶液が若干汚染されるが、一般には問題とな
ることはない。 尚本発明の場合陽極として使用する電極触媒
は、特に限定されることなく、陽極触媒として有
効である各種貴金属、例えばロジウム、イリジウ
ム、白金などでよい。さらにはニツケル系電極触
媒でもよい。これらが膜に直接接合されていても
よく、別の芯体上に各種の方法、たとえば浸漬
法、化学メツキ法、電気メツキ法、噴霧法などに
よつて結合された電極体を用いてもよい。これら
は本水電解法においては酸素過電圧がなるべく低
いことが好ましいことはいうまでもない。また本
発明に用いる陽イオン交換膜としては公知の含フ
ツ素系陽イオン交換膜が使用されうるがなかでも
イオン交換基としてカルボン酸基を有するパーフ
ルオロフツ化カーボン膜(例えば特開昭51−
140899号、特開昭52−48598号に開示されるもの)
が耐久性、低電圧の観点から特に好ましい。 次に本発明の実施例を挙げて説明する。 実施例 1〜11 表1に示す組成を有する合金粉末(500メツシ
ユパス)を調製し、これの15gに対し、メチルセ
ルロース25gを加え、45分間混練し、更にシクロ
ヘキサノール3c.c.、シクロヘキサノン1c.c.を加
え、15分間混練し、触媒ペーストを得た。CF2
CF2とCF2=CFO(CF23COOCH3との共重合体で
イオン交換容量1.90meq/g樹脂、膜厚150μの陽
イオン交換膜の片面に上記の合金粉末をそれぞれ
5mg/cm2、スクリーン印刷機で塗布した。イオン
膜の他の側には別に調製したロジウム黒を3mg/
cm2塗布した。つぎにこれを150℃、250Kg/cm2で10
分間プレスした。80℃、15%NaOH水溶液で20
時間加水分解した。ここで電極触媒の一部を剥離
して組成分析した。つぎに集電体としてNiメツ
シユを用い、ロジウム黒側を陽極として35%
NaOH、90℃、20A/dm2の条件で電解を行つ
た。電解開始後3日目につぎの短絡試験を実施し
た。 まず、直流電源による給電を停止するととも
に、銅導線によつて陽極、陰極を電槽外部で接続
し、そのまゝ約15時間放置した。この間陰極から
陽極への電流を観測した。なお、電解停止後約3
時間の間陰極液温度を90℃に保持し、ついで自然
放冷した。15時間の放置冷却後、電極を取り出し
て水素過電圧を測定した結果を表1に示す。これ
は試験前の性能とほとんど同一である。 また、実施例2の電極触媒−膜接合体を、40%
NaOH水溶液中に100℃で1週間浸漬した。空気
との接触を充分にさせるため容器深さを7cmと浅
くし、容器上部は開放した。本電極の水素過電圧
を浸漬試験前と後に測定した。水素過電圧は約
0.08Vと試験前後でほとんど変化なかつた。
The present invention relates to a method for manufacturing a cathode for water electrolysis, and particularly to an electrode catalyst-ion membrane assembly capable of performing water electrolysis at low voltage and a method for manufacturing the same. Reflecting the recent energy situation, hydrogen is attracting attention from many quarters as a new energy source to replace oil. Industrial hydrogen production methods can be roughly divided into water electrolysis methods and coke or petroleum gasification methods. Although the former method uses readily available water as a raw material, it requires a large number of electrolytic equipment, is insufficiently adaptable to excess or insufficient current, and suffers from deterioration due to carbonation of the electrolyte and floor space.
Many issues remain, including equipment costs. On the other hand,
The latter method is generally complicated to operate, requires fairly large equipment, and has problems such as considerable equipment costs. As a means to solve the above problems, a method has recently been proposed in which water is electrolyzed in an electrolytic cell using a cation exchange membrane to produce hydrogen. The gist of the present invention is particularly directed to a water electrolysis method using such a cation exchange membrane, in which a Raney nickel or Raney cobalt ternary alloy is bonded to the cation exchange membrane as a cathode electrode catalyst. As the base metal electrode catalyst, nickel, nickel porous material, nickel composite oxide, etc. are usually used. For example, the electrode disclosed in Japanese Unexamined Patent Publication No. 112785/1985, which the present applicant had already proposed, has greater effects in terms of lower hydrogen overvoltage and durability than previously known electrodes. be. However, as a result of further detailed study, the inventors of the present invention discovered that some of the electrodes disclosed in the above publication may not necessarily have sufficient durability, and as a result of making earnest efforts to solve this problem, This is what led to the discovery of the present invention. The cause of the loss of durability is common to nickel-based electrode catalysts. Therefore, the idea of the present invention is
The same applies to nickel-based electrode catalysts other than those described in Publication No. 11278. Further, the present invention is effective in the case of a direct bonded body of an electrode catalyst and an ion membrane, since the same drawbacks as that of a nickel-based catalyst are found. As mentioned above, so-called SPE water electrolysis, in which water electrolysis is performed by bonding electrode catalysts to each side of an ion membrane, is a new energy-saving hydrogen production method that can replace the conventional method of using asbestos as a diaphragm. In this type of electrolysis method, a low hydrogen overvoltage cathode as described above is preferably used as the cathode. However, during the electrolysis operation, the operation may be stopped for various reasons, and in this case, when the operation is restarted, hydrogen An increase in overvoltage was observed. As a result of deep investigation into this phenomenon, the present inventors found that the electrode activity deteriorates due to the nickel or cobalt in Raney nickel particles or Raney cobalt particles, which are active components of the electrode, changing into nickel hydroxide or cobalt hydroxide (i.e., hydrogen In order to prevent this deterioration, known metal particles consisting of a first component such as nickel or cobalt and a second component such as aluminum, zinc, magnesium, or silicon are used. The present invention was completed based on the discovery that the inclusion of a third specific component in a component X, in which the electrode active metal particles are composed of nickel and/or cobalt,
An alloy in which component Y selected from aluminum, zinc, silicon magnesium, and component Z selected from group metals of the periodic table are in the range surrounded by points A, B, C, D, and E in Figure 1. Durable low hydrogen overvoltage electrode catalyst A: X = 99wt% Y = 0wt% Z = 1wt% B: X = 79wt% Y = 20wt% Z = 1wt% C: X = 50wt% Y = 20wt% Z = 30wt% D :X=42wt% Y=16wt% Z=42wt% E: Or component X consisting of cobalt, component Y selected from aluminum, zinc, magnesium silicon, and component Z selected from group metals of the periodic table are located at points A', B', C', D' and E in Figure 2. A method for manufacturing a highly durable ion membrane-electrode catalyst assembly for water electrolysis, characterized in that the electrode-active metal particles made of an alloy in the range surrounded by ' are used as a cathode and are bonded to the ion membrane by pressure bonding A':X = 59wt% Y = 40wt% Z = 1wt% B': X = 39wt% Y = 60wt% Z = 1wt% C': X = 25wt% Y = 60wt% Z = 15wt% D': X = 25wt% Y = The main points are: 50wt% Z=25wt% E': X=35wt% Y=40wt% Z=25wt%. Here, FIG. 1 is a ternary component diagram of a component X consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, and magnesium, and a component Z selected from group metals of the periodic table. It is necessary that the alloy composition of the metal particles in the cathode falls within the range surrounded by points A, B, C, D, and E in FIG. Preferably F,
The range is G, H, E. Here, the amounts of X, Y, and Z components of points F, G, and H are (95, 0, 5), respectively.
(85, 10, 5), (46, 10, 44). The effects of the present invention are due to the inclusion of a group metal of the periodic table as a component of the alloy composition, but why does the inclusion of a group metal prevent the formation of hydroxides of nickel or cobalt? However, the details have not yet been clarified. however,
The present inventors have discovered that titanium, among group metals,
It has been found that tin zirconium is optimal for achieving the effects of the present invention. That is, when using titanium or tin zirconium among group metals, a low hydrogen overvoltage can be maintained for a longer period of time even under more severe environmental conditions. The reason why it is preferable for the metal particles of the cathode of the present invention to have a composition surrounded by ABCDE in FIG. 1 is because particles having a composition outside the above range may not be able to maintain a low hydrogen overvoltage over a long period of time. The average particle diameter of the metal particles described above is related to the porosity of the electrode surface and the dispersibility of particles during electrode production, which will be described later, but it is sufficient if it is between 0.1 μ and 100 μ. Among the above ranges, from the viewpoint of the porosity of the electrode surface, it is preferably 0.1 μ to 50 μ, more preferably 0.1 μ to 10 μ. Furthermore, the particles of the present invention are preferably superficially porous in order to achieve a lower hydrogen overpotential of the electrode. Furthermore, it is preferable that the inside of the particles be porous. As for the degree of porosity, it is preferable that the degree of porosity is considerably large; however, if porosity is created during the process, the mechanical strength of the particles decreases, so it is preferable that the porosity is 20 to 90%. More preferably within the above range
35-85%, particularly preferably 50-80%. Incidentally, the above-mentioned porosity is a value measured by a known water displacement method or nitrogen adsorption method. Although various methods can be used to make the material porous, for example, it is preferable to remove part or all of the metal component Y from an alloy consisting of components X, Y, and Z to make it porous. In such a case, it is particularly preferable to treat an alloy in which components X, Y, and Z are uniformly blended in predetermined proportions with caustic alkali treatment to remove at least a portion of the metal component Y. In the case of the membrane-electrode assembly of the present invention, for example, when producing hydrogen by electrolyzing an alkaline aqueous solution, it is not necessarily necessary to treat it with caustic alkali before installing it in an electrolytic cell, and the catholyte used is Because of the caustic alkaline conditions, the metal of component Y is gradually removed during electrolysis and can become the desired cathode. Various composition combinations of the above metal particles can be used, and a typical example is Ni.
−Al−Ti, Ni−Al−Sn, Ni−Zn−Ti, Ni−Zn
−Sn, Co−Al−Ti, Co−Al−Sn, Co−Zn−
Ti, Co−Zn−Sn, Ni−Mg−Ti, Ni−Mg−
Possible examples include Sn, Co-Mg-Ti, and Co-Mg-Sn. Furthermore, it is conceivable that Ti is replaced with Zr. Among these, a particularly preferable combination is Ni-Al-Ti,
It is Co-Al-Ti. In the present invention, the alloy particles as described above are bonded onto the ion exchange membrane, but there is no need for this bonding to be particularly limited. A method is preferably used. The conditions for such caustic alkali treatment vary depending on the composition of the starting metal particles, but in the case of metal particles with the composition described below, the caustic alkali concentration (NaOH equivalent) is 10 to 100% by weight (NaOH equivalent) of 10 to 35% by weight. It is preferable to immerse it in a ℃ aqueous solution for 0.5 to 30 hours. The reason for this is that the component Y was selected on the condition that it should be removed as easily as possible, and the component Z should be removed as little as possible. In the case of the present invention, the metal particles include a component X made of nickel and/or cobalt, and a component Y selected from aluminum, zinc, and magnesium.
It is necessary that the component Z selected from the group metals of the periodic table is an alloy within the range surrounded by points A', B', C', D' and E' in FIG. The reason for this is that if it deviates from this range, it may not be possible to secure a sufficient amount of adhesion during the bonding process with the membrane, or even if bonding is possible, the adhesion strength may be low. This is because the activity as an electrode catalyst is not sufficient. Therefore, A′~
If it deviates slightly from the range shown by E', the initial hydrogen overvoltage will be slightly higher and the resistance to oxidation due to short circuits, which will be described later, will decrease, but if it deviates significantly, the mechanical strength will be low and the initial overvoltage will be high, making it no longer practical. This is because it cannot be provided. The thus obtained ionic membrane-electrode catalyst assembly is then treated with caustic alkali (e.g., immersed in an aqueous caustic solution) as necessary to elute and remove at least a portion of the metal of component Y in the metal particles, The particles are rendered porous. The conditions in such a case are as described above. In addition, when an alloy of the components X, Y, and Z described above is used as particles, it is preferable to perform the caustic alkali treatment as described above, but it is preferable to perform the caustic alkali treatment as described above. It may be attached to an alkaline water electrolyzer to actually perform electrolysis. In such a case, the metal of component Y is eluted during the electrolysis process, and the overvoltage of the electrode is reduced. However, although the aqueous caustic alkaline solution produced is slightly contaminated by the eluted metal ions of component Y, this generally does not pose a problem. In the present invention, the electrode catalyst used as an anode is not particularly limited, and may be any of various noble metals that are effective as an anode catalyst, such as rhodium, iridium, platinum, and the like. Furthermore, a nickel-based electrode catalyst may also be used. These may be directly bonded to the membrane, or an electrode body may be used that is bonded to another core body by various methods such as dipping, chemical plating, electroplating, spraying, etc. . It goes without saying that in this water electrolysis method, it is preferable that the oxygen overvoltage is as low as possible. Further, as the cation exchange membrane used in the present invention, known fluorine-containing cation exchange membranes can be used, and among them, perfluorinated carbon membranes having carboxylic acid groups as ion exchange groups (e.g.,
No. 140899, disclosed in Japanese Patent Application Laid-Open No. 52-48598)
is particularly preferable from the viewpoint of durability and low voltage. Next, examples of the present invention will be described. Examples 1 to 11 An alloy powder (500 mesh passes) having the composition shown in Table 1 was prepared, 25 g of methyl cellulose was added to 15 g of the powder, kneaded for 45 minutes, and 3 c.c. of cyclohexanol and 1 c.c. of cyclohexanone were added. was added and kneaded for 15 minutes to obtain a catalyst paste. CF 2 =
CF 2 and CF 2 = CFO (CF 2 ) 3 Copolymer with COOCH 3 , ion exchange capacity 1.90 meq/g resin, 5 mg/cm 2 of each of the above alloy powders on one side of a cation exchange membrane with a film thickness of 150 μm. , applied by screen printing machine. On the other side of the ion membrane, 3 mg/g of separately prepared rhodium black was added.
cm 2 applied. Next, heat this at 150℃ and 250Kg/cm 2 for 10
Pressed for a minute. 80℃, 15% NaOH aqueous solution for 20
Hydrolyzed for hours. Here, a part of the electrode catalyst was peeled off and the composition was analyzed. Next, a Ni mesh was used as a current collector, and the rhodium black side was used as an anode at 35%
Electrolysis was performed under the conditions of NaOH, 90° C., and 20 A/dm 2 . The following short circuit test was conducted on the third day after the start of electrolysis. First, the power supply from the DC power supply was stopped, and the anode and cathode were connected outside the container using a copper conductor wire, and the battery was left as it was for about 15 hours. During this time, the current flowing from the cathode to the anode was observed. In addition, after stopping electrolysis, approximately 3
The catholyte temperature was maintained at 90° C. for a period of time and then allowed to cool naturally. After cooling for 15 hours, the electrode was taken out and the hydrogen overvoltage was measured. Table 1 shows the results. This is almost the same as the pre-test performance. In addition, the electrode catalyst-membrane assembly of Example 2 was added to 40%
It was immersed in NaOH aqueous solution at 100°C for one week. To ensure sufficient contact with air, the depth of the container was made shallow to 7 cm, and the top of the container was left open. The hydrogen overvoltage of this electrode was measured before and after the immersion test. The hydrogen overvoltage is approximately
There was almost no change before and after the test at 0.08V.

【表】 比較例 1〜2 Ni−Al、およびCo−Al合金粉末を実施例1〜
11に使用したと同様の方法でイオン膜に接合し
た。 得られた電極触媒−イオン膜接合体上の金属粒
子を一部剥離して、その組成を調べた。その結果
を表2に併記した。実施例1〜11と同様に短絡試
験を行い、その前後での水素過電圧変化を測定し
た。結果を表2に示す。なお試験前の水素過電圧
は約0.07Vであつた。 比較例 3〜9 合金粉末の組成を表2の比較例3〜9に変えた
こと以外は実施例と同様にして膜−電極接合体を
製作した。そして実施例と同様にして行つた短絡
試験の結果を表2に示した。 短絡試験前の水素過電圧は、比較例3〜9につ
いて、各々0.17V、0.18V、0.20V、0.16V、
0.09V、0.08V、0.09Vであつた。
[Table] Comparative Examples 1-2 Ni-Al and Co-Al alloy powders in Examples 1-2
It was bonded to the ionic membrane using the same method used in Example 11. A portion of the metal particles on the obtained electrode catalyst-ion membrane assembly was peeled off, and its composition was investigated. The results are also listed in Table 2. A short circuit test was conducted in the same manner as in Examples 1 to 11, and changes in hydrogen overvoltage before and after the test were measured. The results are shown in Table 2. Note that the hydrogen overvoltage before the test was approximately 0.07V. Comparative Examples 3 to 9 Membrane-electrode assemblies were manufactured in the same manner as in the example except that the composition of the alloy powder was changed to Comparative Examples 3 to 9 in Table 2. Table 2 shows the results of a short circuit test conducted in the same manner as in the examples. The hydrogen overvoltages before the short circuit test were 0.17V, 0.18V, 0.20V, 0.16V, and 0.16V for Comparative Examples 3 to 9, respectively.
It was 0.09V, 0.08V, 0.09V.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、X=Ni又はCo、Y=Al又はZn、Z
=Ti又はSnの3成分からなるダイヤグラムで点
A,B,C,D,Eで囲まれる範囲の組成は本発
明の膜接合用電極触媒活性粒子の組成を示す。第
2図は、X=Ni又はCo、Y=Al又はZn、Z=Ti
又はSnの3成分からなるダイヤグラムで点A′,
B′,C′,D′,E′で囲まれる範囲の組成は、本発明
方法に使用される電極活性粒子の組成範囲を示
す。
Figure 1 shows X=Ni or Co, Y=Al or Zn, Z
The composition in the range surrounded by points A, B, C, D, and E in the diagram consisting of the three components =Ti or Sn indicates the composition of the electrode catalyst active particles for membrane bonding of the present invention. Figure 2 shows X=Ni or Co, Y=Al or Zn, Z=Ti
Or point A′ in the diagram consisting of the three components of Sn,
The composition range surrounded by B', C', D', and E' indicates the composition range of the electrode active particles used in the method of the present invention.

Claims (1)

【特許請求の範囲】 1 ニツケル及び/又はコバルトからなる成分
X、アルミニウム、亜鉛、シリコンマグネシウム
から選ばれる成分Y、及び周期律表第族金属か
ら選ばれる成分Zが、第1図の点A,B,C,D
及びEで囲まれる範囲にある合金電極触媒からな
る電極活性金属粒子が陰極としてイオン膜に接合
されてなるイオン交換膜、電極接合体。 2 ニツケル及び/又はコバルトからなる成分
X、アルミニウム、亜鉛、マグネシウムシリコン
から選ばれる成分Y及び周期律表第族金属から
選ばれる成分Zが、第2図の点A′,B′,C′,
D′及びE′で囲まれる範囲にある合金からなる電極
活性金属粒子を陰極としてイオン膜に圧着せしめ
て接合することを特徴とするイオン交換膜、電極
接合体の製造法。
[Scope of Claims] 1 Component X consisting of nickel and/or cobalt, component Y selected from aluminum, zinc, silicon magnesium, and component Z selected from group metals of the periodic table are located at point A in FIG. B, C, D
An ion exchange membrane and an electrode assembly in which electrode active metal particles made of an alloy electrode catalyst in the range surrounded by and E are bonded to an ion membrane as a cathode. 2 Component X consisting of nickel and/or cobalt, component Y selected from aluminum, zinc, magnesium silicon, and component Z selected from group metals of the periodic table are located at points A', B', C',
A method for producing an ion exchange membrane and an electrode assembly, characterized in that electrode active metal particles made of an alloy in the range surrounded by D' and E' are used as a cathode and are pressure-bonded to and bonded to an ion membrane.
JP57180037A 1982-10-15 1982-10-15 Joined body consisting of ion exchange membrane and electrode and its manufacture Granted JPS5970785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180037A JPS5970785A (en) 1982-10-15 1982-10-15 Joined body consisting of ion exchange membrane and electrode and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180037A JPS5970785A (en) 1982-10-15 1982-10-15 Joined body consisting of ion exchange membrane and electrode and its manufacture

Publications (2)

Publication Number Publication Date
JPS5970785A JPS5970785A (en) 1984-04-21
JPH021919B2 true JPH021919B2 (en) 1990-01-16

Family

ID=16076370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180037A Granted JPS5970785A (en) 1982-10-15 1982-10-15 Joined body consisting of ion exchange membrane and electrode and its manufacture

Country Status (1)

Country Link
JP (1) JPS5970785A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6326397B2 (en) * 2015-11-20 2018-05-16 株式会社健明 Hydrogen generator and hot water supply system
JP7199080B2 (en) * 2018-07-19 2023-01-05 グローバル・リンク株式会社 Electrolyzer and electrode manufacturing method

Also Published As

Publication number Publication date
JPS5970785A (en) 1984-04-21

Similar Documents

Publication Publication Date Title
US4498962A (en) Anode for the electrolysis of water
JPS6136591B2 (en)
EP0255099A2 (en) Cathode bonded to ion exchange membrane for use in electrolyzers for electrochemical processes and relevant method for conducting electrolysis
US4935110A (en) Electrode structure and process for fabricating the same
US5035790A (en) Highly durable cathode with low hydrogen overvoltage and method for producing the same
RU2383659C2 (en) Method of producing surface of nickel oxide of enhanced conductivity
JPH021919B2 (en)
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
JPS6145711B2 (en)
JPS5993892A (en) Joined body of ion exchange membrane to electrode and its production
JPS5943552B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JPH02263989A (en) Electrode for generating chlorine and production thereof
JPS5967381A (en) Anode for water electrolysis and its production
JPS6012429B2 (en) How to electrolyze water
KR20190018967A (en) Method for activating reduction electrode
JPS6145713B2 (en)
JPS5925940A (en) Low overvoltage cathode having high durability and its production
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
SU1584752A3 (en) Method of producing chlorine and sodium hydroxide
JPH0681182A (en) Production of alkali hydroxide
JPS63145790A (en) Highly durable low-hydrogen overvoltage cathode and its production
JPS58133387A (en) Cathode having low hydrogen overvoltage and preparation thereof
JP4100079B2 (en) Method for producing low hydrogen overvoltage cathode
JP3367551B2 (en) Manufacturing method of low hydrogen overvoltage cathode
JPS58167788A (en) Highly durable cathode with low hydrogen overvoltage and preparation thereof