JP4100079B2 - Method for producing low hydrogen overvoltage cathode - Google Patents
Method for producing low hydrogen overvoltage cathode Download PDFInfo
- Publication number
- JP4100079B2 JP4100079B2 JP2002212754A JP2002212754A JP4100079B2 JP 4100079 B2 JP4100079 B2 JP 4100079B2 JP 2002212754 A JP2002212754 A JP 2002212754A JP 2002212754 A JP2002212754 A JP 2002212754A JP 4100079 B2 JP4100079 B2 JP 4100079B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- plating
- nickel
- hydrogen overvoltage
- low hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Electroplating Methods And Accessories (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は低い水素過電圧を示す陰極、特にアルカリ金属水酸化物、アルカリ金属炭酸化物、その他アルカリ溶液中において優れた低水素過電圧を示す、主として電解のための水素発生用陰極に関し、電解運転中に起こる劣化を防止した陰極に関するものである。
【0002】
【従来の技術】
電解により苛性ソーダ、塩素および水素を製造するクロルアルカリ工業においては、使用される電力が大きいため、電解電圧の低減が望まれてきており、その一環として陰極の水素過電圧を減少させることが提唱されている。
低水素過電圧陰極に関しては、従来より各種材料の電極が検討されており、本発明者等は先に炭素質からなる微粒子を分散させたニッケルを含むめっき浴を用いて、電極基材に電気めっきを施す分散めっき法により炭素質からなる微粒子をめっき層中に分散・担持された低水素過電圧陰極(以下「分散めっき法活性陰極」と称する。)を製造する方法を提案した(例えば、特開昭57−35689、特開昭57−89491、特開昭60−29487および特開昭61−41785等)。
【0003】
【発明が解決しようとする課題】
前記分散めっき法活性陰極は、優れた低水素過電圧を示し、その活性の持続性にも優れ、かつ製造コストも安いという優れた電極である。しかしながら、電解に使用した場合に該陰極は運転初期に若干の劣化を起こすため、水素過電圧が上昇し、その結果、電解槽の運転電圧が上昇し、電力消費量が増大するという問題を有していた。そのため、分散めっき法活性陰極の持つ前記劣化を防止する方法が強く望まれていた。
【0004】
一般に、イオン交換膜法塩化アルカリ水溶液の電解に使用される陰極は、以下に示す種々の原因によって劣化すると考えられている。すなわち、▲1▼高濃度かつ高温度のアルカリ溶液(通常の食塩電解における陰極室中の苛性ソーダ濃度は、32重量%で、温度は約80℃になる。)にさらされるため腐食し、触媒成分が溶解すること。▲2▼シャットダウン時の逆電流によって表面が酸化され、それにより劣化すること。あるいは、▲3▼陰極表面で発生する水素原子の吸蔵によって劣化すること等である。
【0005】
前記分散めっき法活性陰極は、これら劣化原因のうち、▲1▼触媒成分の溶解および▲2▼逆電流による酸化に関しては問題がないものであった。そこで本発明者等は陰極表面で発生する水素の影響について研究し、劣化の少ない陰極を得ることを目的として鋭意検討を行なった。
【0006】
【課題を解決するための手段】
その結果、炭素質からなる微粒子が分散され、かつニッケルまたは主たる金属成分がニッケルであるめっき浴中に特定の金属酸化物を添加して分散めっきを行なうと、金属酸化物を電極表面に含有した陰極が製造でき、その金属酸化物の影響によって陰極の劣化が防げることを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は、ガリウム、インジウム、マンガン、スズまたはチタンの酸化物、並びに炭素質からなる微粒子を分散させたニッケルまたは主たる金属成分がニッケルであるめっき浴を用い、電極基材に電気めっきを施すことにより、前記電極基材にニッケル主体のめっき層を形成させることを特徴とする低水素過電圧陰極の製造方法である。
【0008】
【発明の実施の形態】
従来の分散めっき法活性陰極を、電極表面で発生した水素による劣化の起き難い陰極に改良するために、本発明は炭素質からなる微粒子を分散させたニッケルまたは主たる金属成分がニッケルであるめっき浴中に、特定の金属の酸化物を配合し分散させ、電極基材に電気めっきを施すことで、特定の金属酸化物を電極表面に担持させた陰極を得るものである。
電極の劣化を抑えるために添加する金属酸化物としては、ガリウム、インジウム、マンガン、スズまたはチタンから選ばれた1種または2種以上の金属の酸化物である。
【0009】
また、金属酸化物にはいろいろな結晶構造のものが存在するが、本発明に使用される金属酸化物は結晶構造によらず、どの構造のものも使用できる。例えば三酸化アンチモンは立方晶と斜方晶の形態があるが、どちらも高い添加効果を示す。
該金属酸化物は細かいもの程有利であるが、100μm以下が好ましい。100μmを超えるとめっき層中に担持され難くなる。
電極表面に担持される金属酸化物の量としては、めっき層中の金属濃度換算として0.5〜5重量%が好ましく、より好ましくは1〜3.5重量%である。0.5重量%未満では、添加効果が乏しく、また金属酸化物自体は水素発生の触媒としての機能を有しないため、5重量%を超えて添加すると、逆に水素過電圧を上げる結果になる。前記添加量は、めっき浴中に分散させる金属酸化物の濃度によって制御することができる。
【0010】
本発明で使用する電極基材としては、鉄、ニッケル、銅およびステンレス等の前記金属の合金、あるいは鉄上にニッケル、銅、クロム等をめっきしたもの、更にバルブ金属に特定の金属をめっきしたもの等が挙げられる。
【0011】
めっき浴中に分散させる炭素質からなる微粒子としては、木炭、石炭、骨炭等の炭素類、あるいは黒鉛、活性炭、カーボンブラックまたはコークス等の微粒子を挙げることができ、特に木材、ヤシガラ等を源流とした活性炭が性能がよくまた経済的であり好ましい。
炭素質からなる微粒子は細かいもの程有利であるが、100μm以下、特に10μm以下が好ましい。
めっき浴中にかかる微粒子を分散させる場合、その濃度は0.1〜100g/リットルが好ましく、より好ましくは1〜20g/リットルである。
【0012】
炭素質からなる微粒子および特定の金属酸化物をめっき浴中に分散させるには適当な攪拌を行えばよく、その具体的方法としては、ガス吹き込みによる方法、液循環による方法、攪拌機を用いる方法等が挙げられる。
【0013】
めっき浴に用いる金属成分としては、ニッケルを必須とするものであるが、これ以外に、コバルト、鉄、銀、銅、リン、タングステン、モリブテン、マグネシウム、チタン、ベリリウム、クロム、鉛、マンガン、錫、亜鉛、ビスマス、白金、ロジウム、イリジウムまたはパラジウム等を併用することができる。
ニッケルと他の金属との組成比については特に制限はなく、めっき条件を考慮して、形成した電極基材表面の合金成分として、ニッケルが優位量で存在すればよい。
【0014】
めっきを行うに際しては、めっき条件、すなわちめっき浴組成、めっき温度、めっき電流密度、めっき液pH、相手極の金属組成等を適宜選択することにより目的とするめっき物を得ることができる。
めっきの厚みは純ニッケルに換算して数μm以上、好ましくは20μm以上が陰極寿命等の点で好適である。
【0015】
【作用】
本発明により得られる低水素過電圧陰極が、電解運転中に劣化を起し難い理由については定かではないが、次のように推測される。
電解時に陰極で水素ガスが発生するメカニズムとしては、まず陰極表面に吸着水素原子が生成し、次工程としてそれら原子の結合あるいは反応によって水素ガスが生成すると考えられている。この時、吸着水素原子の一部は水素ガス生成反応には使用されず、陰極内に吸蔵されるものもあると考えられる。陰極内に吸蔵された水素原子がどのような機構で陰極の劣化を起こしているのかについては詳しくはわかっていないが、分散めっき法活性陰極の表面の主な構成物質であるニッケルと水素化物を形成し、それによって陰極の活性を低下させているのではないかと考えられる。
【0016】
本発明により得られる陰極は、表面に金属酸化物を担持しているので、陰極表面で水素化物の生成を抑えることができ、陰極の性能劣化を防ぐことができていると考えられる。しかしながら特定の金属酸化物のみが特異な効果を有する理由は不明である。またここで担持した金属酸化物は、吸蔵水素によって金属まで還元されるが、定期修理時等にシャットダウンすることによって発生する逆電流によって元の金属酸化物まで酸化され、次のスタート時には再び金属酸化物を含有した陰極として稼動することができるため、長期間にわたってその効果が持続するものと考えられる。
【0017】
【実施例】
以下実施例を挙げて、本発明をより詳細に説明する。
実施例1
ニッケル丸棒を使用し、各種金属酸化物を配合したかまたは配合していない、下記組成の分散めっき浴を用いて、アセトン脱脂→水洗→エッチング→分散めっき→水洗の工程を経て陰極を作成した。
その後苛性ソーダ中で分極させて加速試験を実施し、分極前後の陰極電位変化を調べた。めっき浴組成、めっき条件および加速試験の条件は次のとおり。
【0018】
<めっき浴組成>
硫酸ニッケル:84g/リットル
塩化ニッケル:30g/リットル
塩化アンモニウム:4.5g/リットル
塩化カリウム:6g/リットル
ほう酸:30g/リットル
硫酸銅:0.4g/リットル
活性炭:15g/リットル
各種金属酸化物:5g/リットル
<分散めっき条件>
めっき温度:40℃
電流密度:7.5A/dm2
めっき時間:15分
pH:3.0±0.5
<加速試験条件>
電解液:32重量%の苛性ソーダ
液温度:80℃
電流密度:100A/dm2
反応時間:250時間
【0019】
試験結果を表1に示す。加速試験の結果、本発明により得られた特定の金属酸化物を担持した低水素過電圧陰極は、他の金属酸化物を担持した陰極や金属酸化物を担持していない陰極に比べて劣化し難いことがわかった。
【0020】
【表1】
【0021】
【発明の効果】
本発明により得られる低水素過電圧陰極は、電解運転中の劣化が従来の分散めっき法活性陰極より少なく、かつ低水素過電圧の性能を長期間維持できるという特長を有する。また、該陰極は、従来の分散めっき法活性陰極の作成時に使用されるめっき浴に、特定の金属酸化物を分散させた浴でめっきすれば簡単に得ることができるため、大幅な設備投資は不要という特長も有するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cathode for low hydrogen overvoltage, particularly a cathode for hydrogen generation mainly for electrolysis, which exhibits excellent low hydrogen overvoltage in alkali metal hydroxides, alkali metal carbonates and other alkaline solutions. The present invention relates to a cathode that prevents deterioration from occurring.
[0002]
[Prior art]
In the chloralkali industry, which produces caustic soda, chlorine and hydrogen by electrolysis, it is desired to reduce the electrolysis voltage because of the large amount of power used, and as part of this, it has been proposed to reduce the hydrogen overvoltage of the cathode. Yes.
With regard to the low hydrogen overvoltage cathode, electrodes of various materials have been studied conventionally, and the present inventors have previously electroplated the electrode substrate using a plating bath containing nickel in which fine particles of carbonaceous matter are dispersed. A method of manufacturing a low hydrogen overvoltage cathode (hereinafter referred to as “dispersion plating method active cathode”) in which fine particles made of carbon are dispersed and supported in a plating layer by a dispersion plating method is applied (for example, JP, A JP-A-57-35689, JP-A-57-89491, JP-A-60-29487 and JP-A-61-41785).
[0003]
[Problems to be solved by the invention]
The dispersion plating method active cathode is an excellent electrode that exhibits excellent low hydrogen overvoltage, is excellent in sustainability of its activity, and is low in manufacturing cost. However, when used for electrolysis, the cathode causes a slight deterioration at the beginning of operation, so that the hydrogen overvoltage rises. As a result, the operation voltage of the electrolytic cell rises and the power consumption increases. It was. Therefore, there has been a strong demand for a method for preventing the deterioration of the dispersion plating method active cathode.
[0004]
In general, it is considered that a cathode used for electrolysis of an alkali chloride aqueous solution by an ion exchange membrane method is deteriorated due to various causes described below. That is, the catalyst component is corroded because it is exposed to (1) high concentration and high temperature alkaline solution (caustic soda concentration in the cathode chamber is 32% by weight and temperature is about 80 ° C. in ordinary salt electrolysis). To dissolve. (2) The surface is oxidized by the reverse current at the time of shutdown, thereby deteriorating. Alternatively, (3) deterioration due to occlusion of hydrogen atoms generated on the cathode surface.
[0005]
Among the causes of deterioration, the dispersion plating method active cathode had no problems with respect to (1) dissolution of catalyst components and (2) oxidation due to reverse current. Therefore, the present inventors have studied the influence of hydrogen generated on the cathode surface, and have intensively studied for the purpose of obtaining a cathode with little deterioration.
[0006]
[Means for Solving the Problems]
As a result, when a specific metal oxide was added to a plating bath in which fine particles made of carbonaceous matter were dispersed and nickel or the main metal component was nickel, the metal oxide was contained on the electrode surface. The present inventors have found that a cathode can be produced, and that the deterioration of the cathode can be prevented by the influence of the metal oxide, and the present invention has been completed.
[0007]
That is, the present invention uses a plating bath in which fine particles made of gallium, indium, manganese, tin or titanium, and fine particles made of carbon are dispersed, or a main metal component is nickel. By applying, a method for producing a low hydrogen overvoltage cathode is characterized in that a nickel-based plating layer is formed on the electrode substrate.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In order to improve a conventional dispersion plating method active cathode to a cathode which is hardly deteriorated by hydrogen generated on the electrode surface, the present invention is a plating bath in which fine particles made of carbon are dispersed or a main metal component is nickel. A cathode having a specific metal oxide supported on the electrode surface is obtained by blending and dispersing an oxide of the specific metal therein and electroplating the electrode substrate.
The metal oxide added to suppress the deterioration of the electrode is an oxide of one or more metals selected from gallium, indium, manganese, tin or titanium.
[0009]
In addition, there are various crystal structures of metal oxides, but the metal oxide used in the present invention can be of any structure regardless of the crystal structure. For example, antimony trioxide has cubic and orthorhombic forms, both of which have a high additive effect.
A finer metal oxide is more advantageous, but is preferably 100 μm or less. When it exceeds 100 μm, it becomes difficult to be supported in the plating layer.
The amount of the metal oxide supported on the electrode surface is preferably 0.5 to 5% by weight, more preferably 1 to 3.5% by weight in terms of metal concentration in the plating layer. If the amount is less than 0.5% by weight, the effect of addition is poor, and the metal oxide itself does not have a function as a catalyst for hydrogen generation. Therefore, if the amount exceeds 5% by weight, the hydrogen overvoltage is increased. The addition amount can be controlled by the concentration of the metal oxide dispersed in the plating bath.
[0010]
As an electrode base material used in the present invention, an alloy of the above metals such as iron, nickel, copper and stainless steel, or a material obtained by plating nickel, copper, chromium or the like on iron, and a specific metal on a valve metal And the like.
[0011]
Examples of the carbonaceous fine particles dispersed in the plating bath include carbons such as charcoal, coal, and bone charcoal, and fine particles such as graphite, activated carbon, carbon black, or coke. Activated carbon is preferred because it has good performance and is economical.
Finer particles of carbonaceous material are more advantageous, but are preferably 100 μm or less, particularly preferably 10 μm or less.
When dispersing such fine particles in the plating bath, the concentration is preferably 0.1 to 100 g / liter, more preferably 1 to 20 g / liter.
[0012]
In order to disperse the carbonaceous fine particles and the specific metal oxide in the plating bath, appropriate stirring may be performed. Specific methods include gas blowing, liquid circulation, and a stirrer. Is mentioned.
[0013]
As a metal component used in the plating bath, nickel is essential, but besides this, cobalt, iron, silver, copper, phosphorus, tungsten, molybdenum, magnesium, titanium, beryllium, chromium, lead, manganese, tin Zinc, bismuth, platinum, rhodium, iridium or palladium can be used in combination.
The composition ratio between nickel and another metal is not particularly limited, and it is sufficient that nickel is present in a dominant amount as an alloy component on the surface of the formed electrode substrate in consideration of plating conditions.
[0014]
When plating is performed, a desired plated product can be obtained by appropriately selecting plating conditions, that is, a plating bath composition, a plating temperature, a plating current density, a plating solution pH, a metal composition of a counter electrode, and the like.
The thickness of the plating is several μm or more, preferably 20 μm or more in terms of the cathode life in terms of pure nickel.
[0015]
[Action]
The reason why the low hydrogen overvoltage cathode obtained by the present invention hardly deteriorates during the electrolysis operation is not clear, but is presumed as follows.
As a mechanism for generating hydrogen gas at the cathode during electrolysis, it is considered that firstly adsorbed hydrogen atoms are generated on the surface of the cathode, and hydrogen gas is generated by bonding or reaction of these atoms as the next step. At this time, it is considered that some of the adsorbed hydrogen atoms are not used in the hydrogen gas generation reaction but are stored in the cathode. Although it is not known in detail how the hydrogen atoms occluded in the cathode cause the cathode to deteriorate, nickel and hydride, which are the main constituent materials on the surface of the active cathode by the dispersion plating method, are not known. It is considered that the cathode activity is reduced due to the formation.
[0016]
Since the cathode obtained by the present invention carries a metal oxide on the surface, it is considered that the generation of hydride on the cathode surface can be suppressed and the performance deterioration of the cathode can be prevented. However, the reason why only a specific metal oxide has a unique effect is unknown. The metal oxide supported here is reduced to metal by occluded hydrogen, but it is oxidized to the original metal oxide by the reverse current generated by shutting down during periodic repairs, etc., and again at the next start. Since it can be operated as a cathode containing an object, it is considered that the effect lasts for a long period of time.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
Example 1
Using a nickel round bar, a cathode was prepared through the steps of acetone degreasing, water washing, etching, dispersion plating, water washing using a dispersion plating bath with or without various metal oxides. .
Thereafter, the sample was polarized in caustic soda and subjected to an acceleration test, and the cathode potential change before and after the polarization was examined. The plating bath composition, plating conditions, and accelerated test conditions are as follows.
[0018]
<Plating bath composition>
Nickel sulfate: 84 g / liter Nickel chloride: 30 g / liter Ammonium chloride: 4.5 g / liter Potassium chloride: 6 g / liter Boric acid: 30 g / liter Copper sulfate: 0.4 g / liter Activated carbon: 15 g / liter Various metal oxides: 5 g / Liter <dispersion plating conditions>
Plating temperature: 40 ° C
Current density: 7.5 A / dm 2
Plating time: 15 minutes pH: 3.0 ± 0.5
<Acceleration test conditions>
Electrolyte: 32% by weight Caustic soda solution Temperature: 80 ° C
Current density: 100 A / dm 2
Reaction time: 250 hours
The test results are shown in Table 1. As a result of the acceleration test, the low hydrogen overvoltage cathode carrying a specific metal oxide obtained by the present invention is less likely to deteriorate than a cathode carrying another metal oxide or a cathode not carrying a metal oxide. I understood it.
[0020]
[Table 1]
[0021]
【The invention's effect】
The low hydrogen overvoltage cathode obtained by the present invention has the characteristics that the deterioration during the electrolysis operation is less than that of the conventional dispersion plating active cathode and the performance of the low hydrogen overvoltage can be maintained for a long time. In addition, since the cathode can be easily obtained by plating with a bath in which a specific metal oxide is dispersed in a plating bath used in the preparation of a conventional dispersion plating method active cathode, It also has the feature that it is unnecessary.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002212754A JP4100079B2 (en) | 2002-07-22 | 2002-07-22 | Method for producing low hydrogen overvoltage cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002212754A JP4100079B2 (en) | 2002-07-22 | 2002-07-22 | Method for producing low hydrogen overvoltage cathode |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13449898A Division JP3367551B2 (en) | 1998-04-28 | 1998-04-28 | Manufacturing method of low hydrogen overvoltage cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003041389A JP2003041389A (en) | 2003-02-13 |
JP4100079B2 true JP4100079B2 (en) | 2008-06-11 |
Family
ID=19195928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002212754A Expired - Fee Related JP4100079B2 (en) | 2002-07-22 | 2002-07-22 | Method for producing low hydrogen overvoltage cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4100079B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1392168B1 (en) * | 2008-12-02 | 2012-02-22 | Industrie De Nora Spa | ELECTRODE SUITABLE FOR USE AS CATHODE FOR HYDROGEN EVOLUTION |
-
2002
- 2002-07-22 JP JP2002212754A patent/JP4100079B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003041389A (en) | 2003-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7959774B2 (en) | Cathode for hydrogen generation | |
JP4673628B2 (en) | Cathode for hydrogen generation | |
US3480523A (en) | Deposition of platinum-group metals | |
JP5307270B2 (en) | Cathode for hydrogen generation used for salt electrolysis | |
JPS62501219A (en) | Methods of manufacturing electrodes and their use in electrochemical processes | |
US4354915A (en) | Low overvoltage hydrogen cathodes | |
WO2010061766A1 (en) | Method for producing active cathode for electrolysis | |
JP4578348B2 (en) | Electrode for hydrogen generation | |
JP2006083462A (en) | Electrode for electrolysis, and method for producing aqueous solution of quaternary ammonium hydroxide with the use of the electrode | |
US4414064A (en) | Method for preparing low voltage hydrogen cathodes | |
JPS6047911B2 (en) | Manufacturing method of cathode for hydrogen generation | |
JP4100079B2 (en) | Method for producing low hydrogen overvoltage cathode | |
NL8004057A (en) | PROCESS FOR MANUFACTURING CATHODES WITH LOW HYDROGEN SPAN. | |
JP3367551B2 (en) | Manufacturing method of low hydrogen overvoltage cathode | |
JP6753195B2 (en) | Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode | |
JPH11229170A (en) | Activated cathode | |
JP2021520450A (en) | Active layer composition of reducing electrode for electrolysis and reducing electrode derived from it | |
JP2787992B2 (en) | Ni-W alloy plating method | |
JP6926782B2 (en) | Hydrogen generation electrode and its manufacturing method and electrolysis method using hydrogen generation electrode | |
JP3664519B2 (en) | Method for producing active cathode | |
JP3236682B2 (en) | Electrolytic cathode and method for producing the same | |
JPH1136099A (en) | Plating device and plating method thereby | |
JPS63130791A (en) | Production of low-hydrogen overvoltage cathode | |
JPS5867883A (en) | Manufacture of low hydrogen overvoltage cathode | |
US20240209531A1 (en) | Electrode for generating chlorine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080226 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080310 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110328 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120328 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120328 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130328 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140328 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |