JPH02190043A - Sampling phase error detection circuit - Google Patents

Sampling phase error detection circuit

Info

Publication number
JPH02190043A
JPH02190043A JP1009217A JP921789A JPH02190043A JP H02190043 A JPH02190043 A JP H02190043A JP 1009217 A JP1009217 A JP 1009217A JP 921789 A JP921789 A JP 921789A JP H02190043 A JPH02190043 A JP H02190043A
Authority
JP
Japan
Prior art keywords
output
multiplier
absolute value
signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1009217A
Other languages
Japanese (ja)
Other versions
JPH0624352B2 (en
Inventor
Haruya Iwasaki
玄弥 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1009217A priority Critical patent/JPH0624352B2/en
Publication of JPH02190043A publication Critical patent/JPH02190043A/en
Publication of JPH0624352B2 publication Critical patent/JPH0624352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

PURPOSE:To detect a phase error with high accuracy by obtaining an absolute value of a signal at a signal point with a phase error detected at it and obtaining the mean value and the absolute value so as to extract an output by both adjacent points of the signal point only and including the signal information before and after the signal point to the said extracted output. CONSTITUTION:An input signal string to detect its phase error is inputted to a shift register 1, an absolute value (b) of a data (a) of the 2nd stage of the shift register 1 is obtained by an absolute value circuit 2, a means value (c) is obtained by an averaging circuit 3 and a subtractor 4 obtains a difference (d) between the absolute value (b) and the mean value (c). On the other hand, the data (a) of the 2nd stage of the shift register 1 is multiplied with the data of the 1st stage by a multiplier 5, its product is inputted to a multiplier 6, where the said product is multiplied with the difference (d) outputted from the subtractor 4, and the resulting product (e) is inputted to an output control circuit 8. Moreover, the data of the 1st stage of the shift register 1 is multiplied with the data of the 3rd stage at a multiplier 7, its product is inputted to an output control circuit 8, an output (e) of the multiplier 6 is outputted to an output side according to the product or interrupted therefrom. Thus, a clock phase error is detected with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はデジタル通信用復調装置におけるサンプリング
クロツタの位相誤差検出回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a phase error detection circuit for a sampling clock in a demodulator for digital communications.

〔従来の技術〕[Conventional technology]

従来、デジタル通信用復調装置等において必要とされる
サンプリングクロックの位相誤差を検出する回路として
、信号が+1から=1に変化するときのゼロクロス点、
つまり信号の中間点のデータにその両側の信号点の符号
から得られる情報を演算することにより、該ゼロクロス
点の位相を求め、ここから信号点の位相を推定する方式
の回路が提供されている。
Conventionally, as a circuit for detecting the phase error of a sampling clock required in a demodulator for digital communication, etc., a zero cross point when a signal changes from +1 to =1,
In other words, a circuit is provided that calculates the phase of the zero-crossing point by calculating information obtained from the signs of the signal points on both sides of the data at the midpoint of the signal, and estimates the phase of the signal point from this. .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のサンプリング位相誤差検出回路では、ダ
ブルサンプリングを行い、クロックとゼロクロス点の位
相差から信号点の位相差を推定している。そのため、フ
ィルタの不完全性等により信号のアイパターンが歪んで
いた場合には、第4図に示したように、推定された信号
点の位相がずれてしまうという問題がある。
The conventional sampling phase error detection circuit described above performs double sampling and estimates the phase difference between signal points from the phase difference between the clock and the zero-crossing point. Therefore, if the eye pattern of the signal is distorted due to imperfections in the filter or the like, there is a problem in that the phase of the estimated signal point shifts as shown in FIG.

本発明はこのような問題を解消し、位相誤差を高精度に
検出することを可能にしたサンプリング位相誤差検出回
路を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sampling phase error detection circuit that solves these problems and makes it possible to detect phase errors with high precision.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のサンプリング位相誤差検出回路は、人力信号列
を蓄積する3段構成のシフトレジスタと、このシフトレ
ジスタの2段目のデータの絶対値をとる絶対値回路と、
この絶対値回路の出力の平均値をとる平均回路と、前記
絶対値回路の出力と平均値回路の出力との差を求める減
算器と、前記シフトレジスタの1段目と2段目の各デー
タを乗算する第1乗算器と、この第1乗算器と前記減算
器の各出力を乗算する第2乗算器と、前記シフトレジス
タの2段目と3段目の各データを乗算する第3乗算器と
、前記第2乗算器の出力を第3乗算器の出力に応じて通
過或いは遮断させる出力制御回路とを備えている。
The sampling phase error detection circuit of the present invention includes a three-stage shift register that accumulates a human input signal sequence, an absolute value circuit that takes the absolute value of the data in the second stage of this shift register,
an averaging circuit that takes the average value of the output of the absolute value circuit; a subtracter that calculates the difference between the output of the absolute value circuit and the output of the average value circuit; and each data in the first and second stages of the shift register. a first multiplier that multiplies the outputs of the subtracter, a second multiplier that multiplies each output of the first multiplier and the subtracter, and a third multiplier that multiplies each data of the second and third stages of the shift register. and an output control circuit that passes or blocks the output of the second multiplier depending on the output of the third multiplier.

〔作用〕[Effect]

上述した構成では、位相誤差を検出する信号点における
信号の絶対値を求め、かつその平均値と該絶対値の差を
求めることで、信号点の両隣のみによる出力が抽出でき
、かつこの抽出した出力に信号点の前後の信号情報を加
味することで、常に位相のずれに対して等しく信号を、
両隣の信号が逆符号のときにのみ得ることができ、高精
度な位相誤差の検出を実現する。
In the configuration described above, by finding the absolute value of the signal at the signal point where the phase error is detected and finding the difference between the average value and the absolute value, it is possible to extract the output only from both sides of the signal point. By adding the signal information before and after the signal point to the output, the signal is always equal to the phase shift.
This can be obtained only when the signals on both sides have opposite signs, realizing highly accurate phase error detection.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例のブロック図であり、第2図
は第1図a ”−eの各部の信号波形図である。
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a signal waveform diagram of each part of FIG. 1 a'' to e.

第1図において、位相誤差が検出される入力信号列は3
段に構成したシフトレジスタ1に入力される。そして、
このシフトレジスタ1の2段目のデータaの絶対値すを
絶対値回路2において求め、かつ平均回路3において平
均化して平均値Cを得る。そして、減算器4において絶
対値回路2の出力すと平均回路3の平均値Cとの差dを
求める。
In Figure 1, the input signal sequence for which the phase error is detected is 3.
The signal is input to a shift register 1 configured in stages. and,
The absolute value of the data a in the second stage of the shift register 1 is determined in an absolute value circuit 2, and averaged in an averaging circuit 3 to obtain an average value C. Then, in the subtracter 4, the difference d between the output of the absolute value circuit 2 and the average value C of the averaging circuit 3 is determined.

一方、前記シフトレジスタ1の2段目のデータを、1段
目のデータと第1乗算器5において乗算し、その積を第
2乗算器6に入力させる。そして、この第2乗算器6に
おいて、前記減算器4から出力される差dと乗算し、そ
の積eを出力制御回路8に入力させる。
On the other hand, the second stage data of the shift register 1 is multiplied by the first stage data in the first multiplier 5, and the product is inputted to the second multiplier 6. The second multiplier 6 then multiplies the difference d output from the subtracter 4 and inputs the product e to the output control circuit 8 .

また、前記シフトレジスタ1の1段目のデータと3段目
のデータを第3乗算器7において乗算し、その積を前記
出力制御回路8にゲート信号として人力し、この値に応
じて前記乗算器6の出力eを出力側に通過させ、或いは
遮断するように構成している。
Further, the data in the first stage and the data in the third stage of the shift register 1 are multiplied in a third multiplier 7, the product is manually inputted to the output control circuit 8 as a gate signal, and the multiplier is multiplied according to this value. It is configured to allow the output e of the device 6 to pass through to the output side or to block it.

ここで位相誤差を検出しようとする信号の一例を第3図
に示す。この図においては、簡略化のために、信号の中
心から1ビット以上の広がりは小さいので無視している
。また、実際に出力される波形は、図中の破線のように
、各波形の重ね合わせとなるが、個々のインパルス波形
を実線で示した。
FIG. 3 shows an example of a signal whose phase error is to be detected. In this figure, for the sake of simplification, the spread beyond one bit from the center of the signal is ignored because it is small. Furthermore, although the waveform actually output is a superposition of each waveform as shown by the broken line in the figure, the individual impulse waveforms are shown by solid lines.

図中の点Aの信号点について考える。クロック位相がず
れていた場合、実際のサンプル点は点への左右いずれか
にずれる。点Aを中心とする信号の波形は点Aに対して
対称的なので、この信号からはクロック位相を推定する
ことは不可能である。
Consider the signal point at point A in the figure. If the clocks are out of phase, the actual sample point will be shifted to the left or right of the point. Since the waveform of the signal centered at point A is symmetrical with respect to point A, it is impossible to estimate the clock phase from this signal.

これは図中の他の点B、C,Dにおいても同様である。This also applies to other points B, C, and D in the figure.

そこで、各信号点の両隣の信号の影響、即ち符号量干渉
を考える必要がある。しかし、点A、  Cのように両
隣の信号の符号が等しいときは、これら両隣の信号によ
る波形はやはり信号点に対して線対称になるから、やは
りクロック位相を推定することはできない。点B、Dの
場合のように、両隣の信号の符号が逆のときには、両隣
の信号による波形は信号点に対して点対称になる。した
がって、このような場合のみ位相の推定が可能となる。
Therefore, it is necessary to consider the influence of signals on both sides of each signal point, that is, code amount interference. However, when the signals on both sides have the same sign as at points A and C, the waveforms of the signals on both sides are line-symmetrical with respect to the signal point, so it is still impossible to estimate the clock phase. As in the case of points B and D, when the signs of the signals on both sides are opposite, the waveforms of the signals on both sides become point symmetrical with respect to the signal point. Therefore, phase estimation is possible only in such cases.

そこで、両隣の信号の符号が逆のときに、その両隣の信
号による波形のみを抽出するような回路を実現すればよ
いことが判る。
Therefore, it can be seen that it is sufficient to realize a circuit that extracts only the waveforms of the signals on both sides when the signs of the signals on both sides are opposite.

したがって、第1図の回路において、先ず、両隣の信号
が逆符号となる全ての組合せ(1,1,1) (1゜−
1,−1) (−1,−1,1) (−1,1,1)に
よる4種の波形を信号点の前後±Tの範囲で第2図のa
に示す。Tは信号の周期である。そして、3段構成のシ
フトレジスタ1は、サンプル点の前後サンプルの信号の
情報を保存しておくことができ、2段目の出力点をサン
プル点とする。このサンプル点の信号は絶対値回路2に
おいて絶対値すがとられ、同図すの信号となる。
Therefore, in the circuit of FIG. 1, first, all combinations (1, 1, 1) (1°-
1, -1) (-1, -1, 1) (-1, 1, 1) in the range of ±T before and after the signal point as shown in Figure 2 a.
Shown below. T is the period of the signal. The three-stage shift register 1 can store signal information of samples before and after a sample point, and uses the output point of the second stage as a sample point. The absolute value of the signal at this sample point is taken by the absolute value circuit 2, resulting in the signal shown in the figure.

第2図のaから、±T/2の範囲では、サンプル点にお
ける信号の符号は信号点における信号の符号と等しいた
め、サンプル点での信号の絶対値をとると、信号点の信
号による出力だけについてみても、常に絶対値をとって
いることになる。したがって、この絶対値回路2の出力
を平均回路3で平均すれば、両隣の信号による出力値は
平均化されてゼロになり、同図Cのように、信号点の信
号のみによる出力が得られる。
From a in Figure 2, in the range of ±T/2, the sign of the signal at the sample point is equal to the sign of the signal at the signal point, so if we take the absolute value of the signal at the sample point, the output due to the signal at the signal point is Even if we look at it alone, it always takes the absolute value. Therefore, if the output of the absolute value circuit 2 is averaged by the averaging circuit 3, the output values due to the signals on both sides will be averaged and become zero, and the output based on only the signal at the signal point will be obtained as shown in C in the same figure. .

そこで、この平均回路3の出力を絶対値回路2から減算
器4において引けば、第2図のdのように、両隣の信号
のみによる出力が抽出できる。しかし、この出力dでは
、まだ2種類の波形が存在しているので、サンプル点の
符号とその1サンプル前の符号の積を第1乗算器5で求
め、その値を減算器4の出力に第2乗算器6で乗じてや
ると、その出力は同図eのようになり、常に位相のずれ
に対して等しい出力を行うようになり、高精度のサンプ
リング位相誤差を検出することが可能となる。ここで、
時間間隔Tが位相2πに相当する。
Therefore, by subtracting the output of the averaging circuit 3 from the absolute value circuit 2 in the subtracter 4, it is possible to extract outputs based on only the adjacent signals on both sides, as shown in d of FIG. However, in this output d, there are still two types of waveforms, so the first multiplier 5 calculates the product of the sign of the sample point and the sign of the previous sample, and the value is sent to the output of the subtracter 4. When multiplied by the second multiplier 6, the output becomes as shown in the figure e, and the output is always equal to the phase shift, making it possible to detect the sampling phase error with high precision. Become. here,
The time interval T corresponds to the phase 2π.

但し、両隣の信号が逆符号のときのみ出力を行うように
するため、第3乗算器7でサンプル点の前後の符号の積
を求め、その値が負のときのみ出力制御回路8のゲート
を開いて第2乗算器6の出力を出力させるようになって
いる。
However, in order to output only when the signals on both sides have opposite signs, the third multiplier 7 calculates the product of the signs before and after the sample point, and only when the value is negative, the gate of the output control circuit 8 is activated. It is opened to output the output of the second multiplier 6.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、信号点の位相を直接求め
ることができるので、フィルタの不完性のためアイパタ
ーンが歪んでいる場合でも高精度にクロック位相誤差を
検出することができる効果がある。
As explained above, since the phase of a signal point can be directly determined, the present invention has the advantage of being able to detect clock phase errors with high accuracy even when the eye pattern is distorted due to imperfections in the filter. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は第1
図の各部a −eの信号波形を示す図、第3図は位相誤
差を検出しようとする信号の波形図、第4図は従来の検
出回路における問題を説明するためのアイパターンであ
る。 ■・・・シフトレジスタ、2・・・絶対値回路、3・・
・平均回路、4・・・減算器、5・・・第1乗算器、6
・・・第2乗算器、7・・・第3乗算器、8・・・出力
制御回路。 第1図 r  −−−−−ど′“″ ニ 第2 図 第3 図 第4 図
FIG. 1 is a block diagram of one embodiment of the present invention, and FIG. 2 is a block diagram of an embodiment of the present invention.
FIG. 3 is a waveform diagram of a signal whose phase error is to be detected, and FIG. 4 is an eye pattern for explaining problems in a conventional detection circuit. ■...Shift register, 2...Absolute value circuit, 3...
- Average circuit, 4... Subtractor, 5... First multiplier, 6
. . . second multiplier, 7 . . . third multiplier, 8 . . . output control circuit. Figure 1 r -------d'"'' D Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1、入力信号列を蓄積する3段構成のシフトレジスタと
、このシフトレジスタの2段目のデータの絶対値をとる
絶対値回路と、この絶対値回路の出力の平均値をとる平
均回路と、前記絶対値回路の出力と平均値回路の出力と
の差を求める減算器と、前記シフトレジスタの1段目と
2段目の各データを乗算する第1乗算器と、この第1乗
算器と前記減算器の各出力を乗算する第2乗算器と、前
記シフトレジスタの2段目と3段目の各データを乗算す
る第3乗算器と、前記第2乗算器の出力を第3乗算器の
出力に応じて通過或いは遮断させる出力制御回路とを備
えることを特徴とするサンプリング位相誤差検出回路。
1. A three-stage shift register that accumulates an input signal string, an absolute value circuit that takes the absolute value of the data in the second stage of this shift register, and an averaging circuit that takes the average value of the output of this absolute value circuit, a subtracter that calculates the difference between the output of the absolute value circuit and the output of the average value circuit; a first multiplier that multiplies each data in the first and second stages of the shift register; a second multiplier that multiplies each output of the subtracter; a third multiplier that multiplies each data in the second and third stages of the shift register; and a third multiplier that multiplies the output of the second multiplier. 1. A sampling phase error detection circuit comprising: an output control circuit that passes or cuts off the output depending on the output of the sampling phase error detection circuit.
JP1009217A 1989-01-18 1989-01-18 Sampling phase error detection circuit Expired - Lifetime JPH0624352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1009217A JPH0624352B2 (en) 1989-01-18 1989-01-18 Sampling phase error detection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009217A JPH0624352B2 (en) 1989-01-18 1989-01-18 Sampling phase error detection circuit

Publications (2)

Publication Number Publication Date
JPH02190043A true JPH02190043A (en) 1990-07-26
JPH0624352B2 JPH0624352B2 (en) 1994-03-30

Family

ID=11714279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009217A Expired - Lifetime JPH0624352B2 (en) 1989-01-18 1989-01-18 Sampling phase error detection circuit

Country Status (1)

Country Link
JP (1) JPH0624352B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120229A (en) * 1980-02-27 1981-09-21 Nec Corp Phase detecting circuit
JPS60251742A (en) * 1984-05-29 1985-12-12 Nec Corp Timing synchronizing circuit
JPS6171736A (en) * 1984-09-17 1986-04-12 Nec Corp Differential coefficient discriminating circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120229A (en) * 1980-02-27 1981-09-21 Nec Corp Phase detecting circuit
JPS60251742A (en) * 1984-05-29 1985-12-12 Nec Corp Timing synchronizing circuit
JPS6171736A (en) * 1984-09-17 1986-04-12 Nec Corp Differential coefficient discriminating circuit

Also Published As

Publication number Publication date
JPH0624352B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
KR910003726B1 (en) Sample transfer circuit for digital data
FI106748B (en) Method and apparatus for measuring the phase accuracy and amplitude profile of a uniform phase modulated signal
JPH06188870A (en) Clock regenerator
CN101184255A (en) System and method for performing digital demodulation to frequency modulated signal in digital wireless intercom system
KR970060707A (en) How to generate a data synchronizer lock detector and lock detection signal
JPS5915231B2 (en) Initial phase measurement method in synchronous data transmission system
US6794857B2 (en) Apparatus and method for measuring a phase delay characteristic
JPH02190043A (en) Sampling phase error detection circuit
JP2001094531A (en) Method for generating synchronizing pulses representing symbol border of ofdm signal and method for receiving ofdm signal
JPS61240706A (en) Phase detecting circuit
JPH0413851Y2 (en)
JPH05183593A (en) Delay detection circuit
JP3332074B2 (en) Clock phase detector and clock phase detection method
CN104833848B (en) Measure the method and system of pulse frequency
JPH10308785A (en) Tdma data receiver
KR20020066292A (en) Apparatus and method for detecting timing synchronization and ommunication device employing the same
CN1109229A (en) Asynchronous digital threshold detector for a digital data storage channel
JPS61184993A (en) Correcting device for speed error
SU1545332A1 (en) Demodulator of phase-manipulated signals with interference compensation
JP3353331B2 (en) Clock extraction method and clock extraction circuit
RU2255343C2 (en) Group delay time measuring unit
KR960016304A (en) Digital carrier synchronizer
JPH01265740A (en) Bit synchronization system
JPS58172559A (en) Measuring system of signal power to noise power ratio
JPS63283248A (en) Method for sampling bit synchronization