JPH02189984A - Avalanche photodiode - Google Patents

Avalanche photodiode

Info

Publication number
JPH02189984A
JPH02189984A JP1010583A JP1058389A JPH02189984A JP H02189984 A JPH02189984 A JP H02189984A JP 1010583 A JP1010583 A JP 1010583A JP 1058389 A JP1058389 A JP 1058389A JP H02189984 A JPH02189984 A JP H02189984A
Authority
JP
Japan
Prior art keywords
band discontinuity
discontinuity
layer
conduction band
periodic structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1010583A
Other languages
Japanese (ja)
Inventor
Toshitaka Torikai
俊敬 鳥飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1010583A priority Critical patent/JPH02189984A/en
Publication of JPH02189984A publication Critical patent/JPH02189984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enhance sensitivity by making valence band discontinuity amount in the band discontinuous part of an oblique type periodic structure larger than a conduction band discontinuity amount. CONSTITUTION:A semiconductor material in which conduction band discontinuity DELTAEv is increased larger than conduction band discontinuity DELTAEc in an oblique type periodic structure such as InGaAs, GaAsSb/InP is selected. Thus, since large DELTAEv is provided so that hole carrier generated by an incident light is obtained excessively by DELTAEv in the valance electrons discontinuity part, ionization more easily occurs. On the contrary, since electron carrier loses small DELTAEc or by DELTAEc of energy in a conduction band discontinuity part, ionization scarcely occurs. Thus, sensitivity can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光通信等に用いられる高感度受光素子に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-sensitivity light-receiving element used in optical communications and the like.

〔従来の技術〕[Conventional technology]

波長1〜1.6μm域の光通信用受光素子としてInP
/InGaAsへテロ接合型アバランシェ・フォトダイ
オード(以下APDと略記)が実用化されつつある。こ
のヘテロ接合型APDの構造断面図を第2図に示す。図
において1′は< ]、 OO>方位InP基板、2は
InPバッファ層、3はI n 0.5SG a o、
 47A S光吸収層、3′はI n G a A s
 P中間層、4′はInPアバランシェ増倍層、5はp
+導電領域、6は表面保護膜、7.8は各々p側電極、
n側電極である。入射光はI n o、 53G a 
0347A S光吸収層で吸収されフォトキャリヤを発
生する力板そのうち正孔キャリヤはInPアバランシェ
増倍層4′へ注入され、アバランシェ増倍が生じる。A
PDの高感度化のためには正孔のイオン化率βと電子の
イオン化率αが大きく異なる(β)α或いはα)β)事
が望ましいが、第2図の構造におけるInPアバランシ
工増倍層4′ではβ/α−L−2であり、高感度化には
制限がある。
InP as a light receiving element for optical communication in the wavelength range of 1 to 1.6 μm
/InGaAs heterojunction type avalanche photodiodes (hereinafter abbreviated as APD) are being put into practical use. A cross-sectional view of the structure of this heterojunction APD is shown in FIG. In the figure, 1' is < ], OO> oriented InP substrate, 2 is InP buffer layer, 3 is In 0.5SG ao,
47A S light absorption layer, 3' is InGaAs
P intermediate layer, 4' is InP avalanche multiplication layer, 5 is p
+ conductive region, 6 is a surface protective film, 7.8 is each p-side electrode,
This is the n-side electrode. The incident light is I no, 53G a
0347A S The hole carriers, which are absorbed by the light absorption layer and generate photocarriers, are injected into the InP avalanche multiplication layer 4', causing avalanche multiplication. A
In order to increase the sensitivity of PD, it is desirable that the hole ionization rate β and the electron ionization rate α be significantly different (β)α or α)β). 4' is β/α-L-2, and there is a limit to increasing the sensitivity.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

APDの高感度化を達成するためにはイオン化率比を人
工的に制御する事が必要であり、エフ・カパッソ(F、
Capasso)はアイ1〜リプルイー 1ヘランザク
シヨン オンエレクトロチハイセス(TEEETran
s Electron Devices) 、E D 
−30巻 381〜390ページ(1983)において
、禁制帯幅か周期的に変化する半導体周期構造をアバラ
ンシェ増倍層として用い、伝導帯不連続△Ecにおいて
電子のエネルギーを△Ecだけ持ち上げてイオン化が生
じ易くする事を提案している。即ちα)βとなる様に周
期構造を設けている。しかしながら、現在最も結晶成長
技術の完成度の高いInGaAsP長波長材料ではほと
んとのInGaAsP組成域においてβ〉αであるため
、彼らの提案は(α)β)はInGaAsP系へは適用
する事がてきない。そこで本発明はβ)αとなる様な高
感度APDを提供する事である。
In order to achieve high sensitivity of APD, it is necessary to artificially control the ionization rate ratio, and F. Capasso (F.
Capasso) is eye 1~repurui 1 hellanxion on electrochiheises (TEEETran)
s Electron Devices), E D
-Volume 30, pages 381-390 (1983), using a semiconductor periodic structure whose forbidden band width changes periodically as an avalanche multiplication layer, ionization is achieved by increasing the energy of electrons by ΔEc at the conduction band discontinuity ΔEc. We are proposing ways to make this more likely to occur. That is, a periodic structure is provided so that α)β is satisfied. However, in the InGaAsP long-wavelength material, which currently has the most complete crystal growth technology, β>α in most of the InGaAsP composition range, so their proposal (α)β) cannot be applied to the InGaAsP system. do not have. Therefore, the object of the present invention is to provide a highly sensitive APD that satisfies β)α.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、キャリア増倍に与るアバランシェ増倍領域が
形成される半導体層(アバランシェ増倍層)を少くとも
含んだ1層または多層から成る半導体層を備えたアバラ
ンシェ・フォトダイオードにおいて、前記アバランシェ
増倍層が、層厚方向に禁制帯幅か除々に変化している半
導体層を< 1. ]、 ]、 >結晶方位に多層積層
して周期的に禁制帯幅を変化せしめた傾斜型周期構造か
ら成り、かつ当該傾斜型周期構造のバンド不連続部にお
ける価電子帯不連続量が伝導帯不連続量よりも大きい事
を特徴とする構成になっている。
The present invention provides an avalanche photodiode including a semiconductor layer consisting of one layer or multiple layers including at least a semiconductor layer in which an avalanche multiplication region that participates in carrier multiplication (avalanche multiplication layer) is formed, and the avalanche photodiode is provided with an avalanche photodiode. The multiplication layer is a semiconductor layer whose forbidden band width gradually changes in the layer thickness direction.<1. ], ], > Consists of a tilted periodic structure in which the forbidden band width is periodically changed by laminating multiple layers in the crystal orientation, and the amount of valence band discontinuity at the band discontinuity of the tilted periodic structure is the conduction band. The configuration is characterized by being larger than the discontinuous amount.

〔作用〕[Effect]

本発明の作用・原理を第1図(a>及び第3図を用いて
説明する。第1図(a)は本発明のアバランシェ増倍領
域のバンド図である。傾斜型周期構造において価電子帯
不連続△Evを伝導帯不連続△Ecよりも大きくとる半
導体材料、例えはI nGaAs系、GaAsSb/I
nP系を選択する。大きな△Evを有する事により、光
入射によって生じた正孔キャリヤは価電子不連続部にお
いて△Evなけ余分にエネルギーを得るので、よりイオ
ン化が生し易くなる。それに対し電子キャリヤは伝導帯
不連続部において△Ecは小さい、或いは八Ecたけエ
ネルギーを失うためにイオン化は生じ難くなる。即ち本
発明の構造はβ)αを促進する働きがある。
The operation and principle of the present invention will be explained using FIG. 1 (a) and FIG. 3. FIG. 1 (a) is a band diagram of the avalanche multiplication region of the present invention. Semiconductor materials with band discontinuity △Ev larger than conduction band discontinuity △Ec, such as InGaAs series, GaAsSb/I
Select nP system. By having a large ΔEv, hole carriers generated by light incidence gain energy in excess of ΔEv in the valence electron discontinuity, making ionization more likely to occur. On the other hand, electron carriers have a small ΔEc at the conduction band discontinuity, or lose energy by 8 Ec, so that ionization becomes difficult to occur. That is, the structure of the present invention has the function of promoting β)α.

更に< 11. ]、 >方位結晶を用いて、フォトキ
ャリヤを< 111 >方位に走行させる事により、電
子キャリヤのイオン化を抑える事が可能である。
Furthermore < 11. Ionization of electron carriers can be suppressed by making photocarriers travel in the <111> direction using a crystal with a <111> orientation.

即ち、第3図に化合物半導体の一般的なエネルギーバン
ド図を示すが、< 111. >方向(L答方向)へ電
子キャリヤを加速した場合、通常の< 100 >方向
に比べて「−■−谷間の障壁がPX谷間の障壁に比べて
小さいために、電子キャリヤの多くはL谷へ遷移する事
になる。電子のイオン化現象はエネルギーと運動量の双
方がイオン化の前後で等しくなる条件化で生じているが
、L谷へ遷移している場合はこの保存則が成立しなくな
り、イオン化は起り難い。即ち< 111 >方位に電
子を走行させればαを抑制する働きがあり、よりβ)α
を助長する。
That is, FIG. 3 shows a general energy band diagram of a compound semiconductor, and <111. When electron carriers are accelerated in the > direction (L direction), many of the electron carriers are The ionization phenomenon of electrons occurs under the condition that both energy and momentum are equal before and after ionization, but when the electron transitions to the L valley, this law of conservation no longer holds, and the ionization is unlikely to occur.In other words, if electrons travel in the <111> direction, there is a function to suppress α, and β)α
encourage

上記2つの作用により、本発明はβ)αが期待でき、高
感度化が達成できる。
Due to the above two effects, the present invention can be expected to achieve β) and α, and can achieve high sensitivity.

〔実施例〕〔Example〕

第1図(a>に示すようなバンド構造のアバランシェ増
倍領域をInPに格子整合するInGaAsP系で実現
した。即ち最も禁制帯幅の狭いI n O,53G a
 O,4゜Asから最も禁制帯幅の広いInPまで組成
を徐々に変化させて傾斜状に禁制帯幅を変化させた。△
E■は0.4eV程度である。ハイドライドVPE法に
より<111>方位n+−InP基板1の上に700℃
で、n−InPバッファ層(厚さ〜1μm)2.n−−
InGaAs光吸収層(厚さ〜2μm、キャリヤ濃度〜
5 X 1015cm−’) 3 、周期が800〜1
000人の傾斜型周期構造(5周期)アバランシェ増倍
層(キャリヤ濃度〜3〜1016cm−3)4,102
表面層5′を積層した。VERによって完成したこのウ
ェーハに通常の露光技術を用いてマスクを作成し、該マ
スクを通して選択的にp”導電領域5をZnの熱拡散に
よって形成した。p+導電領域の面積はほぼ100μm
φに相当する。表面保護膜6はプラスマCVD法による
SiNx膜(厚さ〜2000人)である。p側電極7.
n側電極8は各々、通常の蒸着法て作成したAuZn、
AuGeである。以」二のようにして完成さぜなAPD
のp側電極側に開けられた窓から波長06371m、]
、、55μrnの光を入射させ各々、p+導電領域5.
n  −InGaAs層3てフォトキャリヤを発生させ
、p +1接合フロントへ電子注入し、正孔注入を行っ
た。これにより、電子のイオン化率、正孔のイオン化率
を測定し、その比を見積るとβ/α=10が実現された
An avalanche multiplication region with a band structure as shown in Figure 1 (a) was realized using an InGaAsP system lattice-matched to InP. That is, InGaAsP, which has the narrowest forbidden band width,
The composition was gradually changed from O,4°As to InP, which has the widest forbidden band width, and the forbidden band width was changed in a gradient manner. △
E■ is about 0.4 eV. 700℃ on <111> orientation n+-InP substrate 1 by hydride VPE method.
and n-InP buffer layer (thickness ~1 μm)2. n--
InGaAs light absorption layer (thickness ~2 μm, carrier concentration ~
5 x 1015cm-') 3, period is 800~1
000-person graded periodic structure (5 periods) avalanche multiplication layer (carrier concentration ~3-1016 cm-3) 4,102
A surface layer 5' was laminated. A mask was created on this wafer completed by VER using a conventional exposure technique, and a p'' conductive region 5 was selectively formed through the mask by thermal diffusion of Zn.The area of the p+ conductive region was approximately 100 μm.
Corresponds to φ. The surface protection film 6 is a SiNx film (thickness: 2000 mm) formed by plasma CVD. p-side electrode 7.
The n-side electrode 8 is made of AuZn made by a normal vapor deposition method,
It is AuGe. The APD is completed as shown in step 2.
Wavelength 06371m from the window opened on the p-side electrode side of
, , 55 μrn of light is incident on each p+ conductive region 5.
Photocarriers were generated in the n-InGaAs layer 3, and electrons and holes were injected into the p+1 junction front. As a result, when the ionization rate of electrons and the ionization rate of holes were measured and the ratio thereof was estimated, β/α=10 was realized.

〔発明の効果〕〔Effect of the invention〕

従来のI n P / I n G a A、 sへテ
ロ接合APDのβ/α比は約2であった事から、本発明
のβ/αz10は明らかに効果が発揮されている。これ
により、従来に比べてより高感度か達成できる。
Since the β/α ratio of the conventional InP/InGaA,s heterojunction APD was about 2, the β/αz10 of the present invention is clearly effective. As a result, higher sensitivity can be achieved than in the past.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は本発明の一実施例を示ず図て、
(a)はバンド図、(b)は構造断面図である。第2図
は従来例、第3図は化合物半導体結晶のエネルキーバン
ド図である。 図において、 ]、1′・・・基板、2・・・バッファ層、3・・・光
吸収層、3′・・中間層、4,4′・・・アバランシェ
増倍層、5・・・p゛導電領域、5′ ・・表面層、6
・・・表面保護膜、7・・・p側電極、8・・・rl側
電極である。
FIGS. 1(a) and 1(b) do not show one embodiment of the present invention.
(a) is a band diagram, and (b) is a structural sectional view. FIG. 2 is an energy band diagram of a conventional example, and FIG. 3 is an energy band diagram of a compound semiconductor crystal. In the figure, ], 1'...substrate, 2... buffer layer, 3... light absorption layer, 3'... intermediate layer, 4, 4'... avalanche multiplication layer, 5... p゛Conductive region, 5'...Surface layer, 6
. . . surface protective film, 7 . . . p-side electrode, 8 . . . rl-side electrode.

Claims (1)

【特許請求の範囲】[Claims] キャリア増倍に与るアバランシェ増倍領域が形成される
半導体層(アバランシェ増倍層)を少くとも含んだ1層
または多層から成る半導体層を備えたアバランシェ・フ
ォトダイオードにおいて、前記アバランシェ増倍層が、
層厚方向に禁制帯幅が除々に変化している半導体層を<
111>結晶方位に多層積層して周期的に禁制帯幅を変
化せしめた傾斜型周期構造から成り、かつ当該傾斜型周
期構造のバンド不連続部における価電子帯不連続量が伝
導帯不連続量よりも大きい事を特徴とするアバランシェ
・フォトダイオード。
In an avalanche photodiode, the avalanche photodiode includes a semiconductor layer consisting of one or more layers including at least a semiconductor layer (avalanche multiplication layer) in which an avalanche multiplication region that participates in carrier multiplication is formed, wherein the avalanche multiplication layer is ,
A semiconductor layer whose forbidden band width gradually changes in the layer thickness direction is
111> Consists of a tilted periodic structure in which the forbidden band width is periodically changed by laminating multiple layers in the crystal orientation, and the amount of valence band discontinuity at the band discontinuity of the tilted periodic structure is the amount of conduction band discontinuity. Avalanche photodiode is characterized by being larger than the .
JP1010583A 1989-01-18 1989-01-18 Avalanche photodiode Pending JPH02189984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1010583A JPH02189984A (en) 1989-01-18 1989-01-18 Avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1010583A JPH02189984A (en) 1989-01-18 1989-01-18 Avalanche photodiode

Publications (1)

Publication Number Publication Date
JPH02189984A true JPH02189984A (en) 1990-07-25

Family

ID=11754271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1010583A Pending JPH02189984A (en) 1989-01-18 1989-01-18 Avalanche photodiode

Country Status (1)

Country Link
JP (1) JPH02189984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870239B1 (en) * 2003-04-04 2005-03-22 Solid State Scientific Corporation Avalanche photodiode having an extrinsic absorption region
JP2011171367A (en) * 2010-02-16 2011-09-01 Nec Corp Semiconductor light receiving element and semiconductor light receiving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6870239B1 (en) * 2003-04-04 2005-03-22 Solid State Scientific Corporation Avalanche photodiode having an extrinsic absorption region
JP2011171367A (en) * 2010-02-16 2011-09-01 Nec Corp Semiconductor light receiving element and semiconductor light receiving device

Similar Documents

Publication Publication Date Title
JP3141847B2 (en) Avalanche photodiode
JPS6328506B2 (en)
US5539221A (en) Staircase avalanche photodiode
JPS5854685A (en) Avalanche photodiode and manufacture thereof
WO2018189898A1 (en) Semiconductor light-receiving element
JPH02189984A (en) Avalanche photodiode
JPH08274366A (en) Semiconductor light receiving device
JPH04342174A (en) Semiconductor photoelectric receiving element
JPS59151475A (en) Hetero-structure avalanche-photodiode with buffer layer
JP2754652B2 (en) Avalanche photodiode
JPH01144687A (en) Semiconductor photodetector
JPS63281480A (en) Semiconductor photodetector and manufacture thereof
JPS60198786A (en) Semiconductor photo receiving element
JPH01149486A (en) Semiconductor photodetector
JPH0265279A (en) Semiconductor photodetecting element
JPH01205477A (en) Photo diode
JPH0480973A (en) Semiconductor photodetector
JPH04263474A (en) Manufacture of semiconductor photodetective element
JP2995751B2 (en) Semiconductor light receiving element
JPS61101085A (en) Manufacture of group iii-v semiconductor light-receiving element
JPS6025280A (en) Avalanche photo diode type light-receiving element
JPH0389566A (en) Superlattice avalanche photodiode
JPS6130085A (en) Photoconductivity detecting element
JPH03248482A (en) Avalanche photodiode
JPS59119772A (en) Semiconductor photo detector