JPS59151475A - Hetero-structure avalanche-photodiode with buffer layer - Google Patents

Hetero-structure avalanche-photodiode with buffer layer

Info

Publication number
JPS59151475A
JPS59151475A JP58025128A JP2512883A JPS59151475A JP S59151475 A JPS59151475 A JP S59151475A JP 58025128 A JP58025128 A JP 58025128A JP 2512883 A JP2512883 A JP 2512883A JP S59151475 A JPS59151475 A JP S59151475A
Authority
JP
Japan
Prior art keywords
layer
buffer layer
photodiode
inp
multiplication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58025128A
Other languages
Japanese (ja)
Inventor
Yuichi Matsushima
松島 裕一
Kazuo Sakai
堺 和夫
Shigeyuki Akiba
重幸 秋葉
Yukitoshi Kushiro
久代 行俊
Yukio Noda
野田 行雄
Katsuyuki Uko
宇高 勝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP58025128A priority Critical patent/JPS59151475A/en
Publication of JPS59151475A publication Critical patent/JPS59151475A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To give high-speed response property as well as low dark currents and a high multiplication factor by introducing an InGaAsP buffer layer between an InGaAs optical absorption layer and an InP multiplication layer. CONSTITUTION:An N type In0.53Ga0.47As optical absorption layer 22, an InGaAsP buffer layer 23, an InGaAsP buffer layer 24 and an N type InP multiplication layer 25 are grown on an N<+> type InP substrate 21, thus forming an avalanche- photodiode. In the photodiode, incident beams are absorbed by the layer 22, and electron-hole pairs are generated, but holes in the pairs are injected to the layer 25 through hetero interfaces 29, 28, 27. When the forbidden band width Eg of the layers 23, 24 is each made to be 0.85eV and 1.0eV, Eg of InP and In0.23Ga0.47As is each 1.35eV and 0.75eV. Consequently, the magnitude of barriers in the interfaces 27-29 is each 0.1eV, 0.15eV and 0.35eV, and the probability of which holes are accumulated in each barrier is reduced. Accordingly, the titled photodiode can display practically sufficient high-speed response property.

Description

【発明の詳細な説明】 本発明ぽ光通信装置等゛に用いられる高速、高感度で低
雑音のアバランシ・ホトダイオード(以下r’APDJ
と呼ぶ)の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A high-speed, high-sensitivity, low-noise avalanche photodiode (hereinafter referred to as r'APDJ) used in photonic communication equipment, etc. of the present invention.
It concerns the structure of

光通信システム等における高速、高感度の光検出□器と
tてAPDは極めて優れた性能を有していることは良く
知られている。石英系光ファイ・逆を用いた通信におい
て、伝送損失の少ない1.0〜1.7μmの波ッ域ア、
よ従来広2用、゛、らh−Cい木。1結、ヵ、らなるA
PDはその感度が低いため使用することかできない。
It is well known that APDs have extremely excellent performance as high-speed, high-sensitivity photodetectors in optical communication systems and the like. In communication using quartz-based optical fibers, the wave region of 1.0 to 1.7 μm with low transmission loss,
Conventional wide 2, ゛, ra h-C wood. 1 knot, ka, ranaru A
PD cannot be used because of its low sensitivity.

そこで■−■族化容物半導体結晶を用いて1μ−波長域
に高感度特性を有するAPDの開発が進められつつある
。波長1.0〜1.7μm域に感度を有する化合物半導
体として、InPと格子整合したI nO,HGao、
4yA8が注目され検討力゛1なさiてきている。しか
し。
Therefore, progress is being made in the development of APDs having high sensitivity characteristics in the 1 .mu.-wavelength region using ■-■ group compound semiconductor crystals. Compound semiconductors with sensitivity in the wavelength range of 1.0 to 1.7 μm include InO, HGao, which is lattice-matched to InP,
4yA8 is attracting attention and the ability to consider it is decreasing. but.

I n6.IIs G ao、4y A s結晶内にp
−n接合を設けて光を吸収しホトキャリヤを生成する機
能と発生したホトキャリヤを増倍する機能を負わせると
、I no、5sGa、、、、rAllは禁制帯幅が小
さいため逆方向電圧印加時に空乏層内でのトンネル電流
の成分が大きくなり、低暗電流・高僧倍率を得るのは困
難であることが明らかになつhoそこで、上述の欠点を
克服する目的で光吸収領域と増倍領域を分離し、p−n
接合は光吸収層であるInojs Ga(L4? As
  に連接する禁制帯幅の大きなInP内に設は兎へテ
ロ構造APD(以下rHAPDJと呼ぶ)が提!された
(特願昭53−86130号、特願昭55−11,26
72号参照)。
I n6. IIs G ao, 4y A s p in the crystal
When a −n junction is provided to absorb light and generate photocarriers, and to multiply the generated photocarriers, I no, 5sGa,..., rAll has a small forbidden band width, so when reverse voltage is applied, It became clear that the tunnel current component within the depletion layer became large, making it difficult to obtain low dark current and high magnification. Therefore, in order to overcome the above-mentioned drawbacks, we developed a light absorption region and a multiplication region. Separate, p-n
The junction is made of Inojs Ga (L4?As), which is a light absorption layer.
A rabbit heterostructure APD (hereinafter referred to as rHAPDJ) is created in the InP with a large forbidden band connected to the ! (Japanese Patent Application No. 1986-86130, Patent Application No. 11/26/1982)
(See No. 72).

HAPDの基本的な一例を第1図(alに示す。図中に
おいて、11はn生型InP基板、12はn型I n 
o、5sGa6Ay As光吸収層、13は12と14
のへテロ界面、14はn型InP増幅層、15はp串型
InP層、16はp−n接合、17は表面保護膜、18
.19は金属電極である。
A basic example of HAPD is shown in Figure 1 (al). In the figure, 11 is an n-type InP substrate, 12 is an n-type InP
o, 5sGa6AyAs light absorption layer, 13 is 12 and 14
14 is an n-type InP amplification layer, 15 is a p-type InP layer, 16 is a p-n junction, 17 is a surface protective film, 18
.. 19 is a metal electrode.

APDとして動作させるため降伏電圧近傍まで逆方向電
圧を印加したときのバンド構造を模式的に第2図(bl
 K示す。i中の番号iま各々第1図と同様であり、■
は正孔、○は電子;h・は□入射光を示す。□この第2
′図(b)ヤi徴的にのはヘテ・界面13において価電
子帯に不連続ΔE・が存在することでする・、。
Figure 2 schematically shows the band structure when a reverse voltage is applied close to the breakdown voltage to operate as an APD.
Show K. The numbers in i are the same as in Figure 1, and ■
indicates a hole, ◯ indicates an electron; h• indicates □ incident light. □This second
'The characteristic of Figure (b) is that there is a discontinuity ΔE in the valence band at the interface 13.

このようなHAPDにおいては、確かIc Ino、s
s Gao、マAs内における電界は低下し暗電流は減
少し、大きな増倍率を得ることは可能であるが、他方、
APDk要求されるもう一つの条件である高速応答特性
を考えた場合、第2図1blのへテロ界面の影響が問題
となる。実験結果によると(アプライド・フィジックス
・レターズ第41巻、 p、95 、1982年参照)
、このへ4テp界而に藁積された正孔、が価電子帯のへ
テロ障壁ΔEvを乗り越える必要があり、そのため第1
図(clに示されるように100 n6の入射光パルス
に対して検出波形に数100nsの顕著なすそ引きτが
出てくる。このような応答パルスにおけるすそ引きは高
速光通信において誤り率を増大させる大きな要因となる
In such a HAPD, Ic Ino, s
s Gao, the electric field in As decreases, the dark current decreases, and it is possible to obtain a large multiplication factor, but on the other hand,
When considering high-speed response characteristics, which is another condition required for APDk, the influence of the hetero interface shown in FIG. 2, 1bl, becomes a problem. According to experimental results (see Applied Physics Letters Vol. 41, p. 95, 1982)
, the holes accumulated in this 4-tep world need to overcome the heterobarrier ΔEv of the valence band, so the first
As shown in the figure (cl), for an incident optical pulse of 100 n6, a noticeable trailing τ of several 100 ns appears in the detected waveform. Such trailing in the response pulse increases the error rate in high-speed optical communications. This is a major factor in

木登明番1、低暗電祠・高増倍率特性を有すると向時に
構造としそ適“当がバッファ層を導入することKより上
述の欠点を克服し高速敲答を可能ならしめたバッファ層
付きへチル構造アバランシ・ホトダイオードを提供する
シのである。   、次に本発明の詳細を第2図に示す
実施例にもと、1でいモ説明する。声12兜、FCおい
て、21はn生型InP基板、22はn型Inn、5s
Gao、4yAs、23は禁制帯幅E、gが0.8 <
 Eg< 0.9 eVとなる。jn、−uGauAs
vP、−vバッファ層、24はEgが0.9りKg<1
.OeVとなるInt−u’Gao’Asv’ P+−
v’バッファ層、25はn型InP増幅層、26はp串
型InP層、27 、28 、29は各層間の、ヘテロ
界面、30はp−n接合1.31は表面保護膜、32.
33は金属電極である。
Kinoto Akiban 1: A buffer that overcomes the above-mentioned drawbacks by introducing a buffer layer and makes high-speed retrieval possible. This invention provides an avalanche photodiode with a layered hetyl structure.Next, the details of the present invention will be explained in detail based on the embodiment shown in FIG. is an n-type InP substrate, 22 is an n-type Inn, 5s
Gao, 4yAs, 23 has forbidden band width E, g is 0.8 <
Eg<0.9 eV. jn, -uGauAs
vP, -v buffer layer, 24 has Eg of 0.9 and Kg<1
.. Int-u'Gao'Asv' P+- which becomes OeV
v' buffer layer, 25 is an n-type InP amplification layer, 26 is a p-type InP layer, 27, 28, 29 are hetero interfaces between each layer, 30 is a p-n junction 1.31 is a surface protective film, 32.
33 is a metal electrode.

また、受光面下において、p−n接合30とへテロ界面
29の距離は1〜2μm1 各層の厚さの一例としては
、光吸収層22が約3μm、バッファ層23. 、24
が各々約0.5μmである。キャリヤ濃度は光吸収層2
2が約5 X 10”m−”、バッファ層23 、24
と1.nPP2S51〜2 X 10” 6R’である
。このプレーナ型バッファ層付きHAPDは液相成長法
、気相成長法または分子線成長法を用いて21 、22
 、23 、24 、25の各層を製作し、適当な表面
保護膜31としてSi3N4またはSiO・を付けた後
・2“やCdを一択芒散し・電極32・33を形成する
ことKより得ることが可能である。
Further, below the light-receiving surface, the distance between the p-n junction 30 and the hetero interface 29 is 1 to 2 μm1. As an example of the thickness of each layer, the light absorption layer 22 is about 3 μm, the buffer layer 23. , 24
are approximately 0.5 μm each. Carrier concentration is light absorption layer 2
2 is approximately 5 x 10"m-", buffer layers 23, 24
and 1. nPP2S51~2 x 10"6R'. This HAPD with a planar buffer layer can be grown using liquid phase growth, vapor phase growth, or molecular beam growth21,22
, 23, 24, and 25, and after attaching Si3N4 or SiO as a suitable surface protection film 31, selectively scattering 2" or Cd, and forming electrodes 32 and 33. Obtained from K. Is possible.

このHAP Dにたとえば元ファイバ、の最低損失域で
ある波長1.5〜1.6μmの光を入射させ、降伏電圧
近 5 − 傍まで電圧を印加した場合のバンド構造を第2図(bl
に示す。ここで、hνは入射光、■は正孔、θは電子を
各々示し、図中の番号は各々第2図(atと同様である
。入射寒は光吸収層22で吸収され、電子−正孔対な発
生させるが、この内圧孔かヘテロ界面29.28.27
を経て増倍領域となる25に注入される。ヘテロ界面に
おける価電子帯の不連続による正孔に対する障壁の大き
さが第1図(blにおいてはΔE=0.6eVとなり正
孔が障壁に蓄積されてしまう。しかし、一方、本発明の
一例である第2図(blにおいてJ1GaAsPバッフ
ァ層23 、24の禁制帯幅をたとえば各々Eg = 
0.85 eV 、 Eg = 1.OeVとするとI
nP 、 In6.ss Ga、、、、Asの禁制帯幅
は各々1.35 eV 。
The band structure is shown in Figure 2 (bl
Shown below. Here, hν is incident light, ■ is a hole, and θ is an electron, and the numbers in the figure are the same as in Figure 2 (at). A hole pair is generated, but this internal pressure hole or hetero interface 29.28.27
After that, it is injected into the multiplication region 25. The size of the barrier to holes due to the discontinuity of the valence band at the hetero interface is ΔE = 0.6 eV in Figure 1 (bl), and holes are accumulated on the barrier.However, on the other hand, in one example of the present invention In a certain FIG.
0.85 eV, Eg = 1. If OeV is I
nP, In6. The forbidden band widths of ss Ga, ..., and As are each 1.35 eV.

0.75eVであるのでヘテロ界面27.28.29F
Cおける障壁の大きさはそれぞれ0.1 eV 、 0
.15 eV 、 0.35eVとなり、各障壁におい
て正孔が蓄積される確率は減少することKなる。なお、
ヘテロ障壁を等分するようにバッファ層の組成を選択す
れば、特に効果が発揮される。本発明に従って、バッフ
ァ層を導入することKより光吸収層I noJa Ga
 O,4? Asと増倍層InP間のへテロ障壁の大き
さを実効的に減少させることが可能となり、実用上十分
な高速応答特性を発揮するHAPDを得ることができる
。第3図(clにはこのHAPDを用いた時の光パルス
応答を模式的に示すが、第1図(cl Kみられたすそ
引きは見られなくなる。
Since it is 0.75eV, the hetero interface is 27.28.29F.
The barrier magnitudes at C are 0.1 eV and 0, respectively.
.. 15 eV and 0.35 eV, and the probability that holes are accumulated in each barrier decreases. In addition,
Particular effects can be achieved if the composition of the buffer layer is selected so as to equally divide the heterobarrier. According to the invention, by introducing a buffer layer, the light absorbing layer I noJa Ga
O, 4? It becomes possible to effectively reduce the size of the heterobarrier between As and the multiplication layer InP, and it is possible to obtain a HAPD that exhibits high-speed response characteristics sufficient for practical use. Figure 3 (cl) schematically shows the optical pulse response when this HAPD is used, but the hem pull seen in Figure 1 (cl) is no longer seen.

実際に、InP基板上に液相成長法によりIno、1s
Ga6.、、 As光吸収層、InGaAiP (Eg
 = 0.8 eV)、InGaAsP (Eg= 0
.95 eV)バッファ層、InP増倍層を成長させ、
5i、N、膜を用いたZnの選択拡散たより製作した第
2図(alと同様の構造のHAPDの高速応答特性を入
射光波長1.53μm1パルス幅2〜100nsecの
光パルスで調べた結果、パルス応答波形に第1図(cl
 I/C示されたようなすそ引きは識別し難い程度であ
った。この実験結果からも、本発明によるInGaAs
Pバッファ層を導入したInGaAs/InPHAPD
は低暗電流・高増倍率と同時に高速応答特性を有するこ
とが確認された。
In fact, 1 s of Ino was deposited on an InP substrate using the liquid phase growth method.
Ga6. , As light absorption layer, InGaAiP (Eg
= 0.8 eV), InGaAsP (Eg = 0
.. 95 eV) Grow a buffer layer and an InP multiplication layer,
The high-speed response characteristics of a HAPD with a structure similar to that shown in Figure 2 (al) was fabricated using selective diffusion of Zn using a 5i, N, film. The pulse response waveform is shown in Figure 1 (cl
The hem draw as shown in the I/C was difficult to discern. This experimental result also shows that the InGaAs according to the present invention
InGaAs/InPHAPD with P buffer layer introduced
It was confirmed that it has low dark current, high multiplication factor, and fast response characteristics.

本例ではプレーナ型素子構造を示したが、メサ型素子に
おいても、またp串型InPを基板としてその上に増倍
層、バッファ層、光吸収層を順次成長させた素子構造に
おいても本発明を適用できることは言うまでもない。ま
た、バッファ層は適当な膜厚以内であれば1層でもかま
わない。I¥jI/C液相成長法においては本例で示し
たバッファ層は成長時において問題となるメルトバック
を防止する役目をも同時に担うことができる。
Although this example shows a planar type element structure, the present invention can also be applied to a mesa type element or an element structure in which a multiplier layer, a buffer layer, and a light absorption layer are sequentially grown on a p-type InP substrate. Needless to say, it can be applied. Further, the buffer layer may be one layer as long as the thickness is within an appropriate thickness. In the I\jI/C liquid phase growth method, the buffer layer shown in this example can simultaneously play the role of preventing meltback, which is a problem during growth.

以上説明したよ1m%本発明によれば、InGaAsP
バッファ層を導入することkより低暗電流・高増倍率と
同時に高速応答特性をも有するInGaAs/InPの
HAPDを得ることが可能となり、高速光通信などの応
用分野においてその実用的価値は極めて大である。
As explained above, according to the present invention, InGaAsP
By introducing a buffer layer, it is possible to obtain an InGaAs/InP HAPD that has low dark current, high multiplication rate, and high-speed response characteristics, and its practical value is extremely high in application fields such as high-speed optical communications. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alは75177層を持たないInGaAsP
 InPのHAPDの一例を示す断面図、第1図(bl
は逆バイアス印加時における素子のバンド構造の模式図
、第1図(clはこの素子の光パルス応答特性を模式的
に心した図、第2図(alは本発明によるバッファ層を
有するInGaAs/InPのHAPDの一例を示す断
面図、第2図(bl 、 (clはそのバンド構造、お
よび光パルス応答特性をそれぞれ模式的に示した図であ
る。 11 、21− n生型InP基板、  12 、22
− n型I no、5sGao、4yA’光吸収層、 
 13 、27 、28 、29 ・・・ペテロ界面、
  14 、25− n型InP増倍層、  16 、
30−・・p−n接合、 15 、26− p’型In
P層、23− Inl−uGawAllvPl−wバッ
ファ層、24 ”自In1−u’Gau’Asv’ P
(−v’バy ファ層s17.31・・・表面保護膜、
  18 、32・・・p側金属電極、19.33・・
・n側金属電極。 特許出願人  国際電信電話株式会社 代理人大塚 学 外1名  9− 暦 1  図 も 第 2 図 ネ。
Figure 1 (al is InGaAsP without 75177 layers)
A cross-sectional view showing an example of InP HAPD, Figure 1 (bl
1 is a schematic diagram of the band structure of the device when a reverse bias is applied; FIG. 1 is a diagram schematically showing the optical pulse response characteristics of this device; FIG. A cross-sectional view showing an example of InP HAPD, FIG. 2 (bl, (cl) are diagrams schematically showing the band structure and optical pulse response characteristics, respectively. , 22
- n-type I no, 5sGao, 4yA' light absorption layer,
13, 27, 28, 29... Peter interface,
14, 25- n-type InP multiplication layer, 16,
30-... p-n junction, 15, 26- p' type In
P layer, 23-Inl-uGawAllvPl-w buffer layer, 24 ``SelfIn1-u'Gau'Asv' P
(-v'by Far layer s17.31... surface protective film,
18, 32... p-side metal electrode, 19.33...
・N-side metal electrode. Patent applicant International Telegraph and Telephone Co., Ltd. Agent Otsuka 1 person from outside the university 9- Calendar 1 Figure is also Figure 2.

Claims (1)

【特許請求の範囲】 InP基板上に所望の光を吸収して光励起キャリヤを発
生するI no、u G”o、HAs光吸収層と前記光
キャリヤを増倍するためp−n接合を設けたInP増倍
層を備えたベテロ構造アバランシ・ホトダイオードにお
いて、前記光吸収層と前記増倍層との間のへテロ障壁の
大きさが実効的に減少するように前記光吸収層と前記増
倍層の間に半導体バッファ層として禁制帯幅Egが08
≦Eg< ’1.OeVのIn、−、Ga。 AsyPl−vの層を少くとも一層備えていることを特
徴とするバッファ層付きへテロ構造アバランシ・ホトダ
イオード。
[Claims] An InP substrate is provided with an I no, u G"o, HAs light absorption layer that absorbs desired light and generates photoexcited carriers, and a p-n junction for multiplying the light carriers. In the beta structure avalanche photodiode with an InP multiplication layer, the light absorption layer and the multiplication layer are arranged such that the size of the heterobarrier between the light absorption layer and the multiplication layer is effectively reduced. The forbidden band width Eg is 08 as a semiconductor buffer layer between
≦Eg<'1. OeV In, -, Ga. A heterostructure avalanche photodiode with a buffer layer, characterized in that it comprises at least one layer of AsyPl-v.
JP58025128A 1983-02-17 1983-02-17 Hetero-structure avalanche-photodiode with buffer layer Pending JPS59151475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025128A JPS59151475A (en) 1983-02-17 1983-02-17 Hetero-structure avalanche-photodiode with buffer layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025128A JPS59151475A (en) 1983-02-17 1983-02-17 Hetero-structure avalanche-photodiode with buffer layer

Publications (1)

Publication Number Publication Date
JPS59151475A true JPS59151475A (en) 1984-08-29

Family

ID=12157309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025128A Pending JPS59151475A (en) 1983-02-17 1983-02-17 Hetero-structure avalanche-photodiode with buffer layer

Country Status (1)

Country Link
JP (1) JPS59151475A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618257A1 (en) * 1987-07-17 1989-01-20 Rca Inc PHOTODIODE AT AVALANCHE.
JPS6435525A (en) * 1987-07-31 1989-02-06 Nippon Telegraph & Telephone Quantum well type optical modulator
US4974061A (en) * 1987-08-19 1990-11-27 Nec Corporation Planar type heterostructure avalanche photodiode
JPH036871A (en) * 1989-06-02 1991-01-14 Mitsubishi Electric Corp Photodetecting element
FR2721439A1 (en) * 1994-06-03 1995-12-22 Mitsubishi Electric Corp Optical semiconductor elements and methods of manufacturing thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2618257A1 (en) * 1987-07-17 1989-01-20 Rca Inc PHOTODIODE AT AVALANCHE.
JPS6435525A (en) * 1987-07-31 1989-02-06 Nippon Telegraph & Telephone Quantum well type optical modulator
US4974061A (en) * 1987-08-19 1990-11-27 Nec Corporation Planar type heterostructure avalanche photodiode
JPH036871A (en) * 1989-06-02 1991-01-14 Mitsubishi Electric Corp Photodetecting element
FR2721439A1 (en) * 1994-06-03 1995-12-22 Mitsubishi Electric Corp Optical semiconductor elements and methods of manufacturing thereof

Similar Documents

Publication Publication Date Title
JPS6328506B2 (en)
Campbell et al. Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes
JP2998375B2 (en) Avalanche photodiode
JPH0821727B2 (en) Avalanche photodiode
US5432361A (en) Low noise avalanche photodiode having an avalanche multiplication layer of InAlAs/InGaAlAs
US4203124A (en) Low noise multistage avalanche photodetector
Watanabe et al. Gain-bandwidth product analysis of InAlGaAs-InAlAs superlattice avalanche photodiodes
JPH08111541A (en) Semiconductor device
JPS5984589A (en) Semiconductor photodetector
JPS59151475A (en) Hetero-structure avalanche-photodiode with buffer layer
US5656831A (en) Semiconductor photo detector
JPS63955B2 (en)
US4729004A (en) Semiconductor photo device
CA1182200A (en) High sensitivity photon feedback photodetectors
JPH05121777A (en) Photodetector
Osaka et al. Electron and hole ionization coefficients in (100) oriented Ga0. 33In0. 67As0. 70P0. 30
JPH051629B2 (en)
JPS6157716B2 (en)
JPH0265279A (en) Semiconductor photodetecting element
Campbell et al. High-speed InP/InGaAsP/InGaAs avalanche photodiodes
JPH0389566A (en) Superlattice avalanche photodiode
JP2671555B2 (en) Superlattice avalanche photodiode
JP2754652B2 (en) Avalanche photodiode
JPS60105281A (en) Semiconductor photodetector
JP2995751B2 (en) Semiconductor light receiving element