JPH02189865A - Electrode of fuel battery and manufacture thereof, and fuel battery - Google Patents

Electrode of fuel battery and manufacture thereof, and fuel battery

Info

Publication number
JPH02189865A
JPH02189865A JP1008999A JP899989A JPH02189865A JP H02189865 A JPH02189865 A JP H02189865A JP 1008999 A JP1008999 A JP 1008999A JP 899989 A JP899989 A JP 899989A JP H02189865 A JPH02189865 A JP H02189865A
Authority
JP
Japan
Prior art keywords
electrode
metal
solid solution
fuel cell
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1008999A
Other languages
Japanese (ja)
Other versions
JPH0584031B2 (en
Inventor
Hideo Okada
秀夫 岡田
Satoshi Kuroe
黒江 聡
Yoshio Iwase
岩瀬 嘉男
Kazuo Iwamoto
岩本 一男
Masahito Takeuchi
将人 竹内
Toshikatsu Mori
利克 森
Hisao Yamashita
寿生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1008999A priority Critical patent/JPH02189865A/en
Publication of JPH02189865A publication Critical patent/JPH02189865A/en
Publication of JPH0584031B2 publication Critical patent/JPH0584031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent plastic deformation of an electrode and creeping, decreasing the contact resistance of the electrode with a current collecting plate, and provide stable operation for a long period of time by making the electrode porous, and forming metal composite oxide and solid solution layer on the particle surfaces of this porous electrode. CONSTITUTION:At first a metal powder 11 is used as a starting material and mixed with an organic binder 12, and the mixture is agitated 13, decompressed, deaerated 14, and viscosity adjusted 15 to produce specified slurry 16 as crude material. This slurry 16 is attached to wire meshing 20 of Ni, etc., in the forming/baking process 30, and the product is shaped 32 into specified thickness, dried 33, and reductive baked 34 in hydrogen atmosphere. Thus a porous electrode 35 is obtained. Then the electrode 35 is immersed in a material solution 41 for metal composite oxide solid solution in the metal composite oxide solid solution layer forming process 40 for impregnation 42 of its fine voids, followed by drying. After oxidation and baking 44 under oxidative atmosphere, reductive baking is made to yield an electrode 46 for fuel battery.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融炭酸塩型等の燃料電池に係り、特に電極
の塑性変形及びクリープ変形と電極材料の溶出を防止す
るために改良された電極並びにその製造方法及び燃料電
池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molten carbonate type fuel cell, etc., and particularly relates to a fuel cell that has been improved to prevent plastic deformation and creep deformation of electrodes and elution of electrode materials. This invention relates to an electrode, its manufacturing method, and a fuel cell.

〔従来の技術〕[Conventional technology]

例えば溶融炭酸塩型等の燃料電池では、電解質板の両側
にそれぞれ電極が配置され、この電極の外側にセパレー
タが配置されて単位電池が形成されている。この様な燃
料電池に用いられる電極としてニッケル金網又はステン
レス金網等にニッケル粉末を添着させたものが提案され
ている(特開昭57−3466号公報、特開昭52−1
36336号公報、特開昭57−4.0866号公報)
For example, in a molten carbonate type fuel cell, electrodes are arranged on both sides of an electrolyte plate, and a separator is arranged outside the electrodes to form a unit cell. As electrodes used in such fuel cells, electrodes in which nickel powder is attached to nickel wire mesh or stainless steel wire mesh have been proposed (Japanese Patent Laid-Open No. 57-3466, Japanese Patent Laid-Open No. 52-1).
36336, Japanese Patent Application Laid-open No. 57-4.0866)
.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の電極では、特にアノードにおいて電池の運転
中に経時的な塑性変形やクリープ変形をしたり、短時間
の使用で焼結が進行して比表面積が低下したり、電極細
孔容積が減少して燃料電池の性能低下につながるという
問題があった。一方、カン−1−においては、電極材料
が経時的に溶出し、それに伴なって電池性能が低下する
という問題があった。
In the conventional electrodes mentioned above, plastic deformation and creep deformation occurs over time during battery operation, especially at the anode, and sintering progresses after short-term use, resulting in a decrease in specific surface area and a decrease in electrode pore volume. There is a problem in that this leads to a decrease in the performance of the fuel cell. On the other hand, in KAN-1-, there was a problem in that the electrode material was eluted over time, and the battery performance deteriorated accordingly.

この様な問題を解決するため、従来においても、ニッケ
ル電極にセラミックス材料を混在させる方法(特開昭6
1−−−271749号公報、特開昭62−2455号
公報、特開昭61−−267267号公報、特開昭62
−5566号公報)やセラミックス粉末を電極材料でコ
ーティングする方法(特開昭59−107543号公報
)等が開示されている。
In order to solve these problems, a method of mixing ceramic materials with nickel electrodes (Japanese Unexamined Patent Publication No. 6
1----271749, JP 62-2455, JP 61-267267, JP 62-1988
JP-A-59-107543) and a method of coating ceramic powder with an electrode material (JP-A-59-107543).

ところが、セラミックス材料を混合した電極では、接触
抵抗が増大する一方、不活性物質の共存による電極活性
の低下をまねき、充分な電池性能が発揮できなくなる問
題がある。また、セラミックス粉末を電極材料でコーテ
ィングした電極では焼結性が悪く、電極製造工程におい
て亀裂や、そりが発生するという問題がある。
However, electrodes containing a mixture of ceramic materials have problems in that contact resistance increases and electrode activity decreases due to the coexistence of inert substances, making it impossible to exhibit sufficient battery performance. Further, electrodes made of ceramic powder coated with an electrode material have poor sintering properties, and there is a problem in that cracks and warpage occur during the electrode manufacturing process.

一 本発明の目的は、燃料電池の電極を安定化し、電池運転
中における電極の塑性変形及びクリープ変形を防止する
と共に、電極と集電板との接触抵抗が少なく、長期にわ
たって安定した電池性能を発揮させ、かつ電極材料の溶
出を防止するための電極並びにその製造方法と、その電
極を用いた燃料電池を提供することにある。
One object of the present invention is to stabilize the electrodes of a fuel cell, prevent plastic deformation and creep deformation of the electrodes during battery operation, and reduce contact resistance between the electrodes and the current collector plate, thereby achieving stable battery performance over a long period of time. An object of the present invention is to provide an electrode and a method for manufacturing the same, and a fuel cell using the electrode, for improving the performance of the electrode and preventing elution of the electrode material.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明に係る燃料電池の電極
は、金属の粒子又は金属酸化物の粒子を焼結して形成さ
れる燃料電池の電極において、前記電極は多孔質に形成
されていると共に、前記粒子表面に金属複合酸化物の固
溶体層が形成されているものである。
In order to achieve the above object, a fuel cell electrode according to the present invention is a fuel cell electrode formed by sintering metal particles or metal oxide particles, wherein the electrode is formed porous. In addition, a solid solution layer of a metal composite oxide is formed on the surface of the particles.

また、本発明は、金属の粒子又は金属酸化物の粒子を焼
結して形成される燃料電池の電極において、前記電極は
多孔質に形成されていると共に、前記粒子間に金属複合
酸化物の固溶体粒子が分散されているものである。ここ
で、金属又は金属酸化物の粒子径は、固溶体粒子の粒子
径より大きいものがよい。
The present invention also provides an electrode for a fuel cell formed by sintering metal particles or metal oxide particles, in which the electrode is formed porous and a metal composite oxide is formed between the particles. Solid solution particles are dispersed therein. Here, the particle size of the metal or metal oxide is preferably larger than the particle size of the solid solution particles.

また、本発明は、金属複合酸化物の固溶体にて多孔質に
形成されている燃料電池の電極である。
The present invention also provides a fuel cell electrode that is porous and made of a solid solution of a metal composite oxide.

前記電極において、金属複合体酸化物の固溶体は、AX
 B 1. x Oy (ここでA、Bは金属原子)か
らなる金属複合酸化物であるものが挙げられる。
In the electrode, the solid solution of metal composite oxide is AX
B1. Examples include metal composite oxides consisting of x Oy (where A and B are metal atoms).

ここで、金属原子Al:iMg、Al、Li、La。Here, metal atoms Al: iMg, Al, Li, La.

Ca、Ta、T]、Mo、Nbの少なくとも1つであり
、金属原子BはNi、Co、Cuから選ばれた]一つ以
上の成分であるものが挙げられる。ここで金属複合酸化
物の固溶体A、xB、xOyにおいてXの値は原子比で
0.01〜0.8の範囲にあり、yの値は1〜3の範囲
にあるものがよい。金属原子Δ及びBのイオン半径は0
.6〜0.7人とすることが望ましい。更に金属複合酸
化物固溶体は置換型金属酸化物固溶体が望ましい。各種
金属原子のイオン半径を下記に示す。
At least one of Ca, Ta, T], Mo, and Nb, and metal atom B is one or more components selected from Ni, Co, and Cu. Here, in the metal composite oxide solid solutions A, xB, and xOy, the value of X is preferably in the range of 0.01 to 0.8 in terms of atomic ratio, and the value of y is preferably in the range of 1 to 3. The ionic radius of metal atoms Δ and B is 0
.. It is desirable to have 6 to 0.7 people. Further, the metal composite oxide solid solution is preferably a substitutional metal oxide solid solution. The ionic radii of various metal atoms are shown below.

金属原子ΔとしてはMg2(6)0.66、  Ca’
 (6)0.62.Ta’ (6)0.68.Tj4 
(6)0.68゜Mo’ (6)0,62.  Nb”
“0.69.Lj (6)0.68゜All  (6)
0.51.  La  (8)1.18人であり、金属
原子BとしてはN12(4)0.65.Co2(4)0
.68 、 Cu”’(4)0.68人である。ここで
()は予想配位を示す。前記金属原子Aと金属原子Bに
おいてイオン半径の差が0.1人以内の組合せにおいて
金属複合酸化物固溶体を形成し易い。
The metal atom Δ is Mg2(6)0.66, Ca'
(6) 0.62. Ta' (6) 0.68. Tj4
(6) 0.68°Mo' (6) 0,62. Nb"
“0.69.Lj (6)0.68゜All (6)
0.51. La (8) is 1.18 people, and as metal atom B, N12 (4) is 0.65. Co2(4)0
.. 68, Cu"' (4) is 0.68 people. Here, () indicates the expected coordination. In the combination in which the difference in ionic radius between metal atom A and metal atom B is within 0.1 people, the metal composite is Easy to form oxide solid solution.

本発明に係る燃料電池の電極製造方法は、金属の粒子又
は金属酸化物の粒子を原料スラリーとして成形、焼成し
て多孔質の電極を形成する工程と、この電極を金属複合
酸化物固溶体原料溶液に浸漬して細孔内部に含浸させる
工程と、該電極を乾燥させた後で酸化雰囲気中で酸化焼
成して多孔質電極の粒子表面に金属複合酸化物固溶体層
を形成する工程と、を含むものである。
The method for producing electrodes for fuel cells according to the present invention includes a step of forming and firing metal particles or metal oxide particles as a raw material slurry to form a porous electrode, and forming the electrode with a metal composite oxide solid solution raw material solution. and a step of drying the electrode and then oxidizing it in an oxidizing atmosphere to form a metal composite oxide solid solution layer on the particle surface of the porous electrode. It is something that

すなわち、多孔質電極にMg、Ca、TarTi、Mo
、Nb、Liを含有する溶液を含浸し、乾燥した後、酸
化焼成することにより置換型の複合酸化物固溶体が形成
される。あるいは、マグネシウム(Mg)又はアルミニ
ウム(Allりと、ニッケル(Ni)、コハル1−(C
o)、銅(Cu)から選ばれた1つ以上の成分を用いて
混合溶液を作製し、これを多孔質電極に含浸して乾燥後
、酸化焼成することによって電極表面に金属複合酸化物
固溶体層を形成することもてきる。
That is, Mg, Ca, TarTi, Mo
A substitution type composite oxide solid solution is formed by impregnating a solution containing , Nb, and Li, drying, and then oxidizing and firing. Alternatively, magnesium (Mg) or aluminum (All), nickel (Ni), cohal 1-(C
o) Prepare a mixed solution using one or more components selected from copper (Cu), impregnate a porous electrode with this, dry it, and oxidize and bake it to form a metal composite oxide solid solution on the electrode surface. It can also form layers.

また、本発明に係る電極製造方法は、金属の粒子又は金
属酸化物の粒子表面に予め金属複合酸化物固溶体層を形
成する工程と、この工程後に成形、焼成して多孔質電極
を形成する工程と、を含むものである。
Further, the electrode manufacturing method according to the present invention includes a step of previously forming a metal composite oxide solid solution layer on the surface of metal particles or metal oxide particles, and a step of forming and firing after this step to form a porous electrode. It includes.

また、本発明に係る電極製造方法は、金属複合酸化物固
溶体の粒子に金属の粒子又は金属酸化物の粒子をコーテ
ィングする工程と、この工程後に成形、焼成して多孔質
電極を形成する工程と、を含むものである。これにより
接触抵抗の小さい電極を容易に製造できる。
Further, the electrode manufacturing method according to the present invention includes a step of coating particles of a metal composite oxide solid solution with metal particles or metal oxide particles, and a step of forming and firing after this step to form a porous electrode. , including. This makes it possible to easily manufacture electrodes with low contact resistance.

本発明に係る燃料電池は、電解質体と、この電解質体の
両側に配設されたカソード及びアノードと、このカッ−
Iへ及びアノ−1〜の外側に配設されたセパレータと、
を備えた単位電池にて形成される燃料電池において、前
記カソード及び/又はアノードは前記いずれかの電極に
て形成されているものである。
The fuel cell according to the present invention includes an electrolyte body, a cathode and an anode disposed on both sides of the electrolyte body, and a cathode and an anode disposed on both sides of the electrolyte body.
a separator disposed on the outside of the anno-1 and the anno-1;
In a fuel cell formed of a unit cell equipped with a fuel cell, the cathode and/or anode are formed of any of the electrodes described above.

〔作用〕[Effect]

金属または金属酸化物の粒子が部分焼結して構成される
多孔質電極の粒子表面に形成される金属複合酸化物固溶
体層は、還元雰囲気中においてもきわめて安定しており
、アノードとして水素雰囲気で使用しても多孔質電極の
シンタリングや塑性変形、クリープ変形を防止し、かつ
電気抵抗の増大も少なく高い電極活性を維持する。一方
、カソードとして使用する場合には、金属酸化物固溶体
層が電極材料の溶出を抑制する。これは、マグネシウム
(Mg)やリチウム(Li)が共存することにより、電
極の塩基性が高くなること、または金属複合酸化物を形
成するため耐アルカリ性が向上することもその因子であ
ると考えられる。
The metal composite oxide solid solution layer formed on the particle surface of a porous electrode composed of partially sintered metal or metal oxide particles is extremely stable even in a reducing atmosphere, and can be used as an anode in a hydrogen atmosphere. Even when used, it prevents sintering, plastic deformation, and creep deformation of the porous electrode, and maintains high electrode activity with little increase in electrical resistance. On the other hand, when used as a cathode, the metal oxide solid solution layer suppresses elution of the electrode material. This is thought to be due to the fact that the coexistence of magnesium (Mg) and lithium (Li) increases the basicity of the electrode, or that the alkali resistance improves due to the formation of metal composite oxides. .

〔実施例〕〔Example〕

以下本発明に係る電極について第1図により説明する。 The electrode according to the present invention will be explained below with reference to FIG.

多孔質電極は以下の工程により作成した。The porous electrode was created by the following steps.

最初に、金属スラリー製造工程10では、金属粉末11
を出発原料とし、有機バインダ12と混合撹拌13し、
次に減圧脱気14して粘度調整15し、所定の原料スラ
リー16を得る。
First, in the metal slurry manufacturing process 10, the metal powder 11
as a starting material, mixed and stirred 13 with an organic binder 12,
Next, the slurry is degassed under reduced pressure 14 and the viscosity is adjusted 15 to obtain a predetermined raw material slurry 16.

次に、この原料スラリー16を成形・焼成工程30でニ
ッケル等の金網20に添着させ、厚さ約1.0mmに成
形32した後、室温で乾燥33し、水素雰囲気中で75
0℃で1時間還元焼成34した。これにより多孔質電極
35を得た。
Next, this raw material slurry 16 is attached to a wire mesh 20 made of nickel or the like in a molding/firing step 30, molded to a thickness of approximately 1.0 mm (32), dried at room temperature (33), and heated to a temperature of 75% in a hydrogen atmosphere.
Reduction firing 34 was performed at 0° C. for 1 hour. As a result, a porous electrode 35 was obtained.

次に、この多孔質電極35を金属複合酸化物固溶体層形
成工程40で金属複合酸化物固溶体原料溶液41に浸漬
して多孔質電極の細孔内部に含浸42し、50〜150
°Cで5〜20時間乾燥43する。
Next, in a metal composite oxide solid solution layer forming step 40, this porous electrode 35 is immersed in a metal composite oxide solid solution raw material solution 41 to impregnate the inside of the pores of the porous electrode,
Dry 43 for 5-20 hours at °C.

次に酸化雰囲気中で400〜1000°Cの温度で1〜
1.0時間酸化焼成44したのち、600〜900℃の
温度で1〜10時間還時間酸して燃料電池用電極を得る
。酸化焼成温度が400°C以下では金属酸化物固溶体
層が十分に形成されない。
Then at a temperature of 400-1000°C in an oxidizing atmosphere
After oxidizing and calcining for 1.0 hour (44), the mixture is oxidized for 1 to 10 hours at a temperature of 600 to 900°C to obtain a fuel cell electrode. If the oxidation firing temperature is below 400°C, the metal oxide solid solution layer will not be sufficiently formed.

一方、1000°C以上ては電極細孔容積が著しく減少
して好しくない。また、還元焼成温度が600°C以下
では十分な活性が得られない。また90000以上では
電極のシンタリングが起り電極比表面積が低下し好まし
くない。
On the other hand, if the temperature exceeds 1000°C, the electrode pore volume will decrease significantly, which is not preferable. Furthermore, if the reduction firing temperature is below 600°C, sufficient activity cannot be obtained. Moreover, if it is more than 90,000, sintering of the electrode occurs and the specific surface area of the electrode decreases, which is not preferable.

多孔質電極の粒子表面に金属複合酸化物固溶体層を形成
するが、その固溶体層の厚さは、0.01〜1μmが良
い。0.01μm以下では電池運転時における電極の塑
性変形やクリープ変形を抑制できない。一方」−μm以
」二となると電極と染型板間の接触抵抗が増大し、電池
性能が低下するという問題が発生する。また金属複合酸
化物固溶体層を備えた電極をカソードに適用した場合、
その層の厚さが0.01μm以」二であれば電極材料の
溶出を抑制することができる。
A metal composite oxide solid solution layer is formed on the particle surface of the porous electrode, and the thickness of the solid solution layer is preferably 0.01 to 1 μm. If the thickness is less than 0.01 μm, plastic deformation or creep deformation of the electrode during battery operation cannot be suppressed. On the other hand, if the thickness is less than -μm, the contact resistance between the electrode and the dyeing plate increases, resulting in a problem that the battery performance deteriorates. Furthermore, when an electrode with a metal composite oxide solid solution layer is applied to the cathode,
If the thickness of the layer is 0.01 μm or more, elution of the electrode material can be suppressed.

金属複合酸化物固溶体としてはMg、Ca。Mg and Ca are used as the metal composite oxide solid solution.

Ta、Ti、Mo、Nb、Afl、 Li又はLaから
選ばれたA成分と、Nj、、Co、Cuから選ばれた1
種以上のB成分が、A x B1−、Oyの組成比であ
り、Xの原子比が0.01から0.8、yは1〜3の範
囲において置換型の複合酸化物固溶体を形成するのが好
ましい。第2図はM g / N i組成比と(200
)面のピーク変化の関係を示す図である。尚、ここで「
置換型」とは結晶格子の格子点のNjがMgと部分的に
入れ替わったものをいう。ここてXの値が0.01以下
の場合では、電極の塑性変形及びクリープ変形を抑制す
るには不十分であり、電極の厚みや、細孔容積が経時的
に減少し、電池性能の低下をまねく。一方、Xの値が0
.8以」二の場合では、電気抵抗が増大すると共に電極
活性が低下して好ましくない。
A component selected from Ta, Ti, Mo, Nb, Afl, Li or La, and 1 selected from Nj, Co, Cu.
The B component or more has a composition ratio of A x B1-, Oy, and the atomic ratio of X is in the range of 0.01 to 0.8, and y is in the range of 1 to 3, forming a substitution type complex oxide solid solution. is preferable. Figure 2 shows the Mg/Ni composition ratio and (200
) is a diagram showing the relationship of peak changes in the plane. In addition, here ``
"Substitution type" refers to one in which lattice points Nj of the crystal lattice are partially replaced with Mg. If the value of cause On the other hand, the value of X is 0
.. In the case of 8 or more, the electrical resistance increases and the electrode activity decreases, which is not preferable.

多孔質電極の出発原料がNj、Co、Cuのいずれかで
ある場合Mg、Ta、Ti、Mo、NtzLi、Al、
La含有溶液を含浸したあと乾燥し、酸化焼成し、次に
還元焼成して所望の燃料電極を得ることができる。
When the starting material of the porous electrode is any of Nj, Co, Cu, Mg, Ta, Ti, Mo, NtzLi, Al,
A desired fuel electrode can be obtained by impregnating with a La-containing solution, drying, oxidizing and firing, and then reducing and firing.

一方、多孔質電極の出発原料がN i 、 G o 。On the other hand, the starting materials for the porous electrode are N i and G o.

Cu以外の成分で作製される場合においては、あらかじ
めMg、Ta、Ti、Mo、Nb、Li。
In the case of manufacturing with components other than Cu, Mg, Ta, Ti, Mo, Nb, and Li are used in advance.

Al、Laから選ばれた1一つ以上とNj、Co及びC
uから選ばれた」一つ以上の混合溶液を作成し、]2− これを多孔質電極に含浸したあと、金属複合酸化物固溶
体層形成工程40に準じて作成することができる。
One or more selected from Al, La and Nj, Co and C
A mixed solution of one or more selected from u is prepared, and a porous electrode is impregnated with the mixed solution.

(実施例1) 電極の出発原料にニッケル粉末(平均粒子径2.5μm
)を用いて、これにカルボキシメチルセルロース(CM
C)0.2%溶液を加えて撹拌混合したあと、減圧脱気
し、スラリー粘度を約120ポイズに調整した。これを
原料スラリーとしてニッケル金属(20,メツシュ)に
厚さ1mmに添着して形成し、室温で約20時間乾燥し
たあと、70%水素−30%窒素混合ガス中で750℃
、1時間焼成して多孔質電極を作成した。得られた多孔
質電極の厚みは0.8mm、気孔率72VoQ%、比表
面積0.9m”/gであった。この多孔質電極を硝酸マ
グネシウム(Mg(NO3)2・6H20)492gを
蒸留水IQに溶解したマグネシウム溶液に浸漬して多孔
質電極細孔内にマグネシウムを含浸した。これを120
℃で約10時間乾燥したあと空気雰囲気中で600℃で
7時間酸化焼成した。次に70%水素−30%窒素雰囲
気中で800 ’Cて1時間還元焼成して本発明に係る
燃料電池用電極を得た。
(Example 1) Nickel powder (average particle size 2.5 μm) was used as the starting material for the electrode.
) and carboxymethyl cellulose (CM
C) After adding the 0.2% solution and stirring and mixing, the mixture was degassed under reduced pressure and the slurry viscosity was adjusted to about 120 poise. This was applied as a raw material slurry to nickel metal (20, mesh) to a thickness of 1 mm, dried at room temperature for about 20 hours, and then heated to 750°C in a mixed gas of 70% hydrogen and 30% nitrogen.
, and baked for 1 hour to create a porous electrode. The thickness of the obtained porous electrode was 0.8 mm, the porosity was 72 VoQ%, and the specific surface area was 0.9 m''/g. Magnesium was impregnated into the pores of the porous electrode by immersing it in a magnesium solution dissolved in IQ.
After drying at 600° C. for about 10 hours, it was oxidized and fired in an air atmosphere at 600° C. for 7 hours. Next, reduction firing was performed at 800'C for 1 hour in a 70% hydrogen-30% nitrogen atmosphere to obtain a fuel cell electrode according to the present invention.

得られた電極のX線回折パターンを第3図に示す。X線
回折ピークからマグネシウム−ニッケル複合酸化物固溶
体が形成していることが確認された。回折ピーク値から
求めた格子定数(200面)は4 、204人であり、
これによりMgxNilx。
The X-ray diffraction pattern of the obtained electrode is shown in FIG. It was confirmed from the X-ray diffraction peak that a magnesium-nickel composite oxide solid solution was formed. The lattice constant (200 planes) determined from the diffraction peak value is 4,204,
This results in MgxNilx.

のX値を求めたところ、X = 0 、7であった。こ
の結果より電極表面に形成された複合酸化物固溶体の結
晶構造式はMgo 、7 N ]。、30であることが
判った。
When the X value was calculated, it was found that X = 0, 7. From this result, the crystal structure formula of the composite oxide solid solution formed on the electrode surface is Mgo,7N]. , was found to be 30.

(実施例2) 実施例1で作成した多孔質電極に硝酸マグネシウム(M
 g (N 03)2・6H20)584gと硝酸ニッ
ケル(N](NO3)2・6H7○) 663gを蒸留
水1Ωに溶解した混合液に浸漬し、多孔質電極の細孔内
にマグネシウムとニッケルを同時含浸した。
(Example 2) Magnesium nitrate (M
Magnesium and nickel were immersed in a mixture of 584 g (N 03)2 6H20) and 663 g nickel nitrate (N](NO3)2 6H7○) dissolved in 1Ω distilled water to inject magnesium and nickel into the pores of the porous electrode. Impregnated at the same time.

これを実施例1と同し条件で乾燥、酸化焼成、還元焼成
をして燃料電池用電極を得た。この電極のX線回折結果
を第4図に示す。回折ピークから格子定数(200面)
を求めると4..193人であり、M gx N ]1
−v O(7) X値は0.5となり、ソノ複合酸化物
固溶体の結晶構造式はM g N j○2であることが
判った。
This was dried, oxidized and fired under the same conditions as in Example 1 to obtain a fuel cell electrode. The X-ray diffraction results of this electrode are shown in FIG. Lattice constant from diffraction peak (200 planes)
Find 4. .. 193 people, M gx N ]1
-v O(7) The X value was 0.5, and the crystal structure formula of the sonocomposite oxide solid solution was found to be M g N j○2.

(実施例3) 実施例1の中間工程で得られたニッケル多孔質電極(第
1図の多孔質電極35)並びに実施例1で得られた燃料
電池用電極、実施例2で得られた燃料電池用電極の各々
について塑性変形を厚み変化から測定した。実験条件に
は雰囲気ガスに80%水素−20%炭酸ガス、温度65
0℃で時間100h、電極に加えた荷重4kg/cm2
で行なった。その結果を第1表に示す。電極表面に複合
酸化物固溶体層を形成したことにより、厚み変形が大幅
に減少した。
(Example 3) The nickel porous electrode obtained in the intermediate step of Example 1 (porous electrode 35 in FIG. 1), the fuel cell electrode obtained in Example 1, and the fuel obtained in Example 2 Plastic deformation of each battery electrode was measured from thickness changes. Experimental conditions include atmospheric gas of 80% hydrogen-20% carbon dioxide and temperature of 65%.
100 hours at 0℃, load applied to the electrode 4kg/cm2
I did it. The results are shown in Table 1. By forming a composite oxide solid solution layer on the electrode surface, thickness deformation was significantly reduced.

(実施例4) 実施例3で試験した供試電極の比表面積を測定し、試験
前電極の比表面積と比較した。その結果を第2表に示す
。電極粒子表面に複合酸化物固溶体層を形成したことに
より、比表面積の減少が抑制される。
(Example 4) The specific surface area of the test electrode tested in Example 3 was measured and compared with the specific surface area of the electrode before the test. The results are shown in Table 2. By forming a composite oxide solid solution layer on the surface of the electrode particles, a decrease in specific surface area is suppressed.

を小型電池性能評価装置にセットして、アノードには8
0%水素−20%炭酸ガスの混合ガスを、カッ−1−に
は70%空気−30%炭酸ガスの混合ガスを用いて、温
度650℃で負荷電流密度150mA/cn?による連
続発電試験をした。その結果を第3表に示す。電極表面
に複合酸化物固溶体層を形成した実施例1の電極及び実
施例2の電極を適用した電池は、初期性能は若干低いが
、性能低下が非常に少なかった。
was set in a small battery performance evaluation device, and 8
Using a mixed gas of 0% hydrogen-20% carbon dioxide gas and a mixed gas of 70% air-30% carbon dioxide gas for cup-1, the temperature was 650°C and the load current density was 150 mA/cn? A continuous power generation test was conducted using The results are shown in Table 3. Although the initial performance of the batteries to which the electrode of Example 1 and the electrode of Example 2 in which a composite oxide solid solution layer was formed on the electrode surface was applied was slightly low, the deterioration in performance was very small.

(実施例5) 次に発電システムについて説明する。実施例3に用いた
供試電極をアノ−1(に適用し、カソードには酸化ニッ
ケルー銀電極を用い、電解質板にはりチウムアルミネー
1〜焼結板に炭酸塩電解質を45vOΩ%含浸させたも
のを用いて電極有効面積64cイ(8cm角)のm位電
池を組立てた。これ(実施例6) 第1図に示す電極製造方法において、その途中工程で得
られたニッケル多孔質電極並びに実施例1で得られた燃
料電池電極及び実施例2で得られた燃料電池電極を、そ
れぞれ空気雰囲気中700℃で5時間酸化焼成した。こ
の電極をカソードに適用し、アノードには実施例3で得
られた燃料電池電極を用いて単位電池を組立て、実施例
5と同様に連続試験を]000時間実施したあと、電池
を解体して酸化ニッケルの溶出量を調べた。溶出量は電
解質板を電極から完全に分離したあと、6規定塩酸溶液
に溶解し、原子吸光法で分析した。
(Example 5) Next, a power generation system will be explained. The test electrode used in Example 3 was applied to Anno-1 (a nickel oxide-silver electrode was used as the cathode, and the electrolyte plate was impregnated with 45vOΩ% carbonate electrolyte. A battery with an effective electrode area of 64 cm (8 cm square) was assembled using a nickel porous electrode obtained in an intermediate step in the electrode manufacturing method shown in FIG. 1 (Example 6). The fuel cell electrode obtained in Example 1 and the fuel cell electrode obtained in Example 2 were each oxidized and calcined at 700°C for 5 hours in an air atmosphere.This electrode was applied to the cathode, and the anode was applied to the anode in Example 3. A unit cell was assembled using the obtained fuel cell electrode, and a continuous test was conducted for 1,000 hours in the same manner as in Example 5. After that, the cell was disassembled and the amount of nickel oxide eluted was examined. After completely separating from the electrode, it was dissolved in 6N hydrochloric acid solution and analyzed by atomic absorption spectrometry.

その結果を第4表に示す。電極の粒子表面に複合酸化物
固溶体層を備えた実施例1の電極及び実施例2のニッケ
ル溶出量は非常に少ない。
The results are shown in Table 4. The amount of nickel eluted from the electrode of Example 1 and Example 2, both of which had a composite oxide solid solution layer on the particle surface of the electrode, was very small.

(実施例7) アノード用としてニッケル粉末(粒径3〜4μm)とコ
バ用1−粉末(粒径6〜8μm)を出発原料として、厚
さ0.7mmの多孔質焼結板を作製し、これに硝酸アル
ミニウム溶液を5 atom%含浸させたあと、120
℃で5時間乾燥し、次に空気雰囲気中で600°Cで1
時間、醸化焼成した。これを70%H2−30%N2雰
囲気中で750’C,1時間還元焼成した。
(Example 7) A porous sintered plate with a thickness of 0.7 mm was produced using nickel powder (particle size 3 to 4 μm) for the anode and 1-powder (particle size 6 to 8 μm) for the edge as starting materials, After impregnating this with 5 atom% of aluminum nitrate solution, 120
℃ for 5 hours, then 600℃ in an air atmosphere for 1 hour.
It was fermented and baked for an hour. This was reduced and fired at 750'C for 1 hour in a 70% H2-30% N2 atmosphere.

カン−1・にはニッケル粉末(粒径23〜4μm)を出
発原料として厚さ0.6mmの多孔質焼結板に作製し、
これに硝酸マグネシウム溶液を10atom%含浸させ
たあと、120°Cで5時間乾燥し、次に空気雰囲気中
で700 ’C10,5時間酸化焼成した。
For Can-1, a porous sintered plate with a thickness of 0.6 mm was prepared using nickel powder (particle size 23 to 4 μm) as a starting material.
This was impregnated with 10 atom % of magnesium nitrate solution, dried at 120° C. for 5 hours, and then oxidized and calcined at 700° C. for 5 hours in an air atmosphere.

電解質板はリチウムアルミネーhを出発原料として気孔
率60 v / v%の厚み1.2mmの多孔質板を作
製し、これに炭酸リチウム+炭酸カリウム(62:38
モル%)電解質を600 ’Cで含浸した。
For the electrolyte plate, a porous plate with a thickness of 1.2 mm and a porosity of 60 v/v% was prepared using lithium alumina h as a starting material, and lithium carbonate + potassium carbonate (62:38
(mol%) electrolyte was impregnated at 600'C.

これらのアノード、カン−1へ及び電解質板を用いて第
5図に示すごとくの積層セル(10セル積層)を組立て
た。同図において、1は電解質板、2はアノード、3は
カソード、4はセパレータ、5はアノード用反応カス流
れ、6はカソード用反応ガス流れを示す。このセルの有
効電極面積は3.600c+&である。アノードには7
0%水素20%炭酸ガスー10%水分を供給し、アノー
ドには70%空気−30%炭酸ガスを供給して発電試験
をした。
Using these anodes, can-1, and electrolyte plate, a laminated cell (10 cells laminated) as shown in FIG. 5 was assembled. In the figure, 1 is an electrolyte plate, 2 is an anode, 3 is a cathode, 4 is a separator, 5 is a flow of reaction waste for the anode, and 6 is a flow of reaction gas for the cathode. The effective electrode area of this cell is 3.600c+&. 7 for the anode
A power generation test was conducted by supplying 0% hydrogen, 20% carbon dioxide gas and 10% moisture, and supplying 70% air and 30% carbon dioxide gas to the anode.

その結果、初期において負荷電流密度150m A /
 afにおいて1セルあたり0.79Vの平均電圧が得
られた。また]、 OO0時間の連続試験後における電
池性能は同負荷電池密度における平均電圧が0.76V
であり、非常に安定した電池性能が得られた。
As a result, the initial load current density was 150mA/
An average voltage of 0.79 V per cell was obtained in af. In addition, the battery performance after continuous testing for 00 hours is that the average voltage at the same load battery density is 0.76V.
, and very stable battery performance was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明に係る電極によれば、金属の粒子または金属酸化
物の粒子から成る多孔質電極の粒子表面を被覆する、又
は粒子間に混合される金属複合酸化物の固溶体を設けた
ので、電池運転中における電極の塑性変形やクリープ変
形が抑制され、電池比表面積の低減を防止し長時間にわ
たって安定した電池性能が得られる。
According to the electrode according to the present invention, since a solid solution of a metal composite oxide is provided that coats the particle surface of the porous electrode made of metal particles or metal oxide particles or is mixed between the particles, battery operation is possible. Plastic deformation and creep deformation of the electrodes inside are suppressed, preventing reduction in battery specific surface area and providing stable battery performance over a long period of time.

一方、カソードとして使用した場合においては電極材料
の溶出を抑制し、電池寿命の向」−が図れる。
On the other hand, when used as a cathode, elution of the electrode material can be suppressed and the life of the battery can be improved.

また、本発明に係る電極製造方法によれば、簡単に上記
電極を製造することができる。
Moreover, according to the electrode manufacturing method according to the present invention, the above-mentioned electrode can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電極とその製造工程を示すフロー図、
第2図はM g / N 3組成比と(200)面のピ
ーク変化の関係図、第3図はニッケル多孔質電極にマグ
ネシウムを添加して作成した電極表面のX線回折パター
ン図、第4図はニッケル多孔質電極にマグネシウムとニ
ッケルを同時添着して作成した電極のX線回折パターン
図、第5図は、アノード及びカソードに金属酸化物固溶
体層を形成した電極を適用した燃料電池発電システムの
基本構造を示す斜視図である。 1・・電解質板、2・・アノ−1く、3・・カソード、
4・・セパレータ、5・アノ−1へ用反応ガス流れ、6
・・カソード用反応ガス流れ。
FIG. 1 is a flow diagram showing the electrode of the present invention and its manufacturing process;
Figure 2 is a diagram showing the relationship between the Mg/N3 composition ratio and the peak change of the (200) plane, Figure 3 is an X-ray diffraction pattern diagram of the electrode surface created by adding magnesium to a nickel porous electrode, and Figure 4 The figure shows an X-ray diffraction pattern of an electrode created by simultaneously impregnating magnesium and nickel on a nickel porous electrode. Figure 5 shows a fuel cell power generation system using an electrode with a metal oxide solid solution layer formed on the anode and cathode. FIG. 2 is a perspective view showing the basic structure of. 1. Electrolyte plate, 2. Anode 1, 3. Cathode,
4. Separator, 5. Reaction gas flow to anno-1, 6
...Reaction gas flow for cathode.

Claims (1)

【特許請求の範囲】 1、金属の粒子又は金属酸化物の粒子を焼結して形成さ
れる燃料電池の電極において、前記電極は多孔質に形成
されていると共に、前記粒子表面に金属複合酸化物の固
溶体層が形成されていることを特徴とする燃料電池の電
極。 2、金属の粒子又は金属酸化物の粒子を焼結して形成さ
れる燃料電池の電極において、前記電極は多孔質に形成
されていると共に、前記粒子間に金属複合酸化物の固溶
体粒子が分散されていることを特徴とする燃料電池の電
極。 3、請求項2において、金属又は金属酸化物の粒子径は
、固溶体粒子の粒子径より大きい燃料電池の電極。 4、金属複合酸化物の固溶体にて多孔質に形成されてい
る燃料電池の電極。 5、請求項1又は2において、金属複合酸化物の固溶体
は、AxB_1_−__xOy(ここでA、Bは金属原
子)からなる金属複合酸化物固溶体である燃料電池の電
極。 6、請求項5において、金属原子AはMg、Ca、Ta
、Ti、Mo、Nb、Al、Li、Laの少なくとも1
つであり、金属原子BはNi、Co、Cuから選ばれた
1つ以上の成分である燃料電池の電極。 7、請求項5において、xの値は原子比で0.01〜0
.8の範囲にあり、yの値は1〜3の範囲にある燃料電
池の電極。 8、金属の粒子又は金属酸化物の粒子を原料スラリーと
して成形、焼成して多孔質の電極を形成する工程と、こ
の電極を金属複合酸化物固溶体原料溶液に浸漬して細孔
内部に含浸させる工程と、該電極を乾燥させた後で酸化
雰囲気中で酸化焼成して多孔質電極の粒子表面に金属複
合酸化物固溶体層を形成する工程と、を含む燃料電池の
電極製造方法。 9、金属の粒子又は金属酸化物の粒子表面に予め金属複
合酸化物固溶体層を形成する工程と、この工程後に成形
、焼成して多孔質電極を形成する工程と、を含む燃料電
池の電極製造方法。 10、金属複合酸化物固溶体の粒子に金属の粒子又は金
属酸化物の粒子をコーティングする工程と、この工程後
に成形、焼成して多孔質電極を形成する工程と、を含む
燃料電池の電極製造方法。 11、電解質体と、この電解質体の両側に配設されたカ
ソード及びアノードと、このカソード及びアノードの外
側に配設されたセパレータと、を備えた単位電池を積層
して構成される燃料電池において、前記カソード及び/
又はアノードは請求項1、2又は4に記載の電極にて構
成されていることを特徴とする燃料電池。 12、請求項5において、前記金属原子A及びBのイオ
ン半径が0.6〜0.7Åからなる燃料電池の電極。 13、請求項5において、前記金属複合酸化物固溶体が
置換型金属酸化物固溶体からなる燃料電池の電極。
[Claims] 1. In a fuel cell electrode formed by sintering metal particles or metal oxide particles, the electrode is formed porous and a metal composite oxide is formed on the surface of the particle. A fuel cell electrode characterized in that a solid solution layer of a substance is formed. 2. In a fuel cell electrode formed by sintering metal particles or metal oxide particles, the electrode is formed porous, and solid solution particles of metal composite oxide are dispersed between the particles. A fuel cell electrode characterized by: 3. The fuel cell electrode according to claim 2, wherein the particle size of the metal or metal oxide is larger than the particle size of the solid solution particles. 4. A fuel cell electrode made of a porous solid solution of a metal composite oxide. 5. The fuel cell electrode according to claim 1 or 2, wherein the metal composite oxide solid solution is a metal composite oxide solid solution consisting of AxB_1_-__xOy (where A and B are metal atoms). 6. In claim 5, the metal atom A is Mg, Ca, Ta.
, Ti, Mo, Nb, Al, Li, and La.
and the metal atom B is one or more components selected from Ni, Co, and Cu. 7. In claim 5, the value of x is 0.01 to 0 in atomic ratio.
.. 8, and the value of y is in the range of 1 to 3. 8. Forming and firing metal particles or metal oxide particles as a raw material slurry to form a porous electrode, and immersing this electrode in a metal composite oxide solid solution raw material solution to impregnate the inside of the pores. A method for producing an electrode for a fuel cell, comprising the steps of: drying the electrode and then oxidizing and baking it in an oxidizing atmosphere to form a metal composite oxide solid solution layer on the particle surface of the porous electrode. 9. Manufacture of electrodes for fuel cells, including the steps of forming a metal composite oxide solid solution layer on the surface of metal particles or metal oxide particles in advance, and forming and firing a porous electrode after this step. Method. 10. A fuel cell electrode manufacturing method comprising the steps of coating metal composite oxide solid solution particles with metal particles or metal oxide particles, and forming and firing after this step to form a porous electrode. . 11. In a fuel cell configured by stacking unit cells each including an electrolyte body, a cathode and an anode disposed on both sides of the electrolyte body, and a separator disposed outside the cathode and anode. , the cathode and/or
Or a fuel cell, wherein the anode is constituted by the electrode according to claim 1, 2 or 4. 12. The fuel cell electrode according to claim 5, wherein the metal atoms A and B have an ionic radius of 0.6 to 0.7 Å. 13. The fuel cell electrode according to claim 5, wherein the metal composite oxide solid solution is a substitutional metal oxide solid solution.
JP1008999A 1989-01-18 1989-01-18 Electrode of fuel battery and manufacture thereof, and fuel battery Granted JPH02189865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008999A JPH02189865A (en) 1989-01-18 1989-01-18 Electrode of fuel battery and manufacture thereof, and fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008999A JPH02189865A (en) 1989-01-18 1989-01-18 Electrode of fuel battery and manufacture thereof, and fuel battery

Publications (2)

Publication Number Publication Date
JPH02189865A true JPH02189865A (en) 1990-07-25
JPH0584031B2 JPH0584031B2 (en) 1993-11-30

Family

ID=11708382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008999A Granted JPH02189865A (en) 1989-01-18 1989-01-18 Electrode of fuel battery and manufacture thereof, and fuel battery

Country Status (1)

Country Link
JP (1) JPH02189865A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314513B1 (en) * 1999-10-25 2001-11-30 박호군 An Alloy Anode for Molten Carbonate Fuel Cell and a Process for Production Thereof
US7222406B2 (en) 2002-04-26 2007-05-29 Battelle Memorial Institute Methods for making a multi-layer seal for electrochemical devices
JP2012033417A (en) * 2010-07-30 2012-02-16 Toshiba Corp Solid oxide fuel cell and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314513B1 (en) * 1999-10-25 2001-11-30 박호군 An Alloy Anode for Molten Carbonate Fuel Cell and a Process for Production Thereof
US7222406B2 (en) 2002-04-26 2007-05-29 Battelle Memorial Institute Methods for making a multi-layer seal for electrochemical devices
US7794894B2 (en) 2002-04-26 2010-09-14 Battelle Memorial Institute Multi-layer seal for electrochemical devices
US7832737B2 (en) 2002-04-26 2010-11-16 Battelle Memorial Institute Multi-layer seal for electrochemical devices
JP2012033417A (en) * 2010-07-30 2012-02-16 Toshiba Corp Solid oxide fuel cell and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0584031B2 (en) 1993-11-30

Similar Documents

Publication Publication Date Title
JP5430009B2 (en) Removal of impurity phase from electrochemical devices
AU2006239925B2 (en) Precursor infiltration and coating method
JP5167033B2 (en) Electrodes based on ceria and strontium titanate
JP5192944B2 (en) Electrodes based on ceria and stainless steel
JP5591526B2 (en) Solid oxide cell and solid oxide cell stack
US20060194097A1 (en) Nano-structured metal-carbon composite for electrode catalyst of fuel cell and process for preparation thereof
US4943496A (en) Fuel cell, electrode for the cell and method of preparation thereof
JP2009110934A5 (en)
JP2008519404A (en) Electrochemical cell structure and its manufacturing method by controlled powder method
JP2009110933A5 (en)
JP3827209B2 (en) Method for producing composite air electrode for solid oxide fuel cell
JPS6322023B2 (en)
JPH1021932A (en) Solid electrolyte type fuel cell and its manufacture
JP4534188B2 (en) Fuel cell electrode material and solid oxide fuel cell using the same
WO2020004333A1 (en) Electrode for solid oxide cells, and solid oxide cell using same
JPH02189865A (en) Electrode of fuel battery and manufacture thereof, and fuel battery
JP3323029B2 (en) Fuel cell
JP3730774B2 (en) Solid oxide fuel cell
JP3301199B2 (en) Method for producing conductive ceramic sintered body
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JPH0689723A (en) Fuel electrde fabrication method for fuel cell with solid electrolyte
JP7114555B2 (en) Electrodes for water vapor electrolysis
JP2023006322A (en) Electrode for proton-conducting ceramic cell, manufacturing method thereof, and proton-conducting ceramic cell using the same
CN114597462A (en) Symmetrical solid oxide cell
Savaniu et al. Intermediate temperature SOFC anode component based on A-site deficient La-doped SrTiO3

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees