JPH0584031B2 - - Google Patents

Info

Publication number
JPH0584031B2
JPH0584031B2 JP1008999A JP899989A JPH0584031B2 JP H0584031 B2 JPH0584031 B2 JP H0584031B2 JP 1008999 A JP1008999 A JP 1008999A JP 899989 A JP899989 A JP 899989A JP H0584031 B2 JPH0584031 B2 JP H0584031B2
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
metal
solid solution
components selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1008999A
Other languages
Japanese (ja)
Other versions
JPH02189865A (en
Inventor
Hideo Okada
Satoshi Kuroe
Yoshio Iwase
Kazuo Iwamoto
Masahito Takeuchi
Toshikatsu Mori
Hisao Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1008999A priority Critical patent/JPH02189865A/en
Publication of JPH02189865A publication Critical patent/JPH02189865A/en
Publication of JPH0584031B2 publication Critical patent/JPH0584031B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融炭酸塩型等の燃料電池に係り、
特に電極の塑性変形及びクリープ変形と電極材料
の溶出を防止するために改良された電極並びにそ
の製造方法及び燃料電池に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a molten carbonate type fuel cell, etc.
In particular, the present invention relates to an electrode improved to prevent plastic deformation and creep deformation of the electrode and elution of electrode material, a manufacturing method thereof, and a fuel cell.

〔従来の技術〕[Conventional technology]

例えば溶融炭酸塩型等の燃料電池では、電解質
板の両側にそれぞれ電極が配置され、この電極の
外側にスパレータが配置されて単位電池が形成さ
れている。この様な燃料電池に用いられる電極と
してニツケル金網又はステンレス金網等にニツケ
ル粉末を添着させたものが提案されている(特開
昭57−3466号報、特開昭52−136336号公報、特開
昭57−40866号公報)。
For example, in a molten carbonate type fuel cell, electrodes are arranged on both sides of an electrolyte plate, and a spallator is arranged outside the electrodes to form a unit cell. As electrodes used in such fuel cells, electrodes in which nickel powder is impregnated with nickel wire mesh or stainless steel wire mesh have been proposed (Japanese Patent Laid-Open No. 57-3466, JP-A No. 52-136336, JP-A No. 52-136336, Publication No. 57-40866).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の電極では、特にアノードにおいて電
池の運転中に経時的な塑性変形やクリープ変形を
したり、短時間の使用で焼結が進行して比表面積
が低下したり、電極細孔容積が減少して燃料電池
の性能低下につながるという問題があつた。一
方、カソードにおいては、電極材料が経時的に溶
出し、それに伴なつて電池性能が低下するという
問題があつた。
In the conventional electrodes mentioned above, plastic deformation and creep deformation occurs over time during battery operation, especially at the anode, and sintering progresses after short-term use, resulting in a decrease in specific surface area and a decrease in electrode pore volume. There was a problem that this led to a decrease in the performance of the fuel cell. On the other hand, in the cathode, there was a problem in that the electrode material eluted over time, and battery performance deteriorated accordingly.

この様な問題を解決するため、従来において
も、ニツケル電極にセラミツクス材料を混在させ
る方法(特開昭61−271749号公報、特開昭62−
2455号公報、特開昭61−267267号公報、特開昭62
−5566号公報)やセラミツクス粉末を電極材料で
コーテイングする方法(特開昭59−107543号公
報)等が開示されている。
In order to solve such problems, conventional methods have been proposed in which ceramic materials are mixed with nickel electrodes (Japanese Patent Application Laid-Open No. 61-271749, Japanese Patent Application Laid-open No. 62-271,
Publication No. 2455, JP-A-61-267267, JP-A-62
5566) and a method of coating ceramic powder with an electrode material (Japanese Patent Application Laid-open No. 107543/1983).

ところが、セラミツクス材料を混合した電極で
は、接触抵抗が増大する一方、不活性物質の共存
による電極活性の低下をまねき、充分な電池性能
が発揮できなくなる問題がある。また、セラミツ
クス粉末を電極材料でコーテイングした電極では
焼結性が悪く、電極製造工程において亀裂や、そ
りが発生するという問題がある。
However, electrodes containing ceramic materials have problems in that contact resistance increases and electrode activity decreases due to coexistence of inert substances, making it impossible to exhibit sufficient battery performance. Further, electrodes made of ceramic powder coated with an electrode material have poor sinterability, and there is a problem in that cracks and warpage occur during the electrode manufacturing process.

本発明の目的は、燃料電池の電極を安定化し、
電池運転中における電極の塑性変形及びクリープ
変形を防止すると共に、電極と集電板との接触抵
抗が少なく、長期にわたつて安定した電池性能を
発揮させ、かつ電極材料の溶出を防止するための
電極並びにその製造方法と、その電極を用いた燃
料電池を提供することにある。
The purpose of the present invention is to stabilize the electrodes of fuel cells,
In order to prevent plastic deformation and creep deformation of the electrode during battery operation, to have low contact resistance between the electrode and current collector plate, to exhibit stable battery performance over a long period of time, and to prevent elution of electrode materials. An object of the present invention is to provide an electrode, a method for manufacturing the same, and a fuel cell using the electrode.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明に係る燃料電
池の電極は、金属の粒子を焼結して形成される燃
料電池の電極において、前記電極は多孔質に形成
されていると共に、前記粒子表面に金属複合酸化
物の固溶体層が形成されているものである。
In order to achieve the above object, a fuel cell electrode according to the present invention is a fuel cell electrode formed by sintering metal particles, in which the electrode is formed porous and the surface of the particle is A solid solution layer of metal composite oxide is formed.

また、本発明は、金属の粒子を焼結して形成さ
れる燃料電池の電極において、前記電極は多孔質
に形成されていると共に、前記粒子間に金属複合
酸化物の固溶体粒子が分散されているものであ
る。ここで、金属の粒子径は、固溶体粒子の粒子
径より大きいものがよい。
The present invention also provides an electrode for a fuel cell formed by sintering metal particles, in which the electrode is porous and solid solution particles of a metal composite oxide are dispersed between the particles. It is something that exists. Here, the particle size of the metal is preferably larger than the particle size of the solid solution particles.

前記金属複合酸化物は、Mg,Ca,Ta,Ti,
Mo,Nb,Al,Li,Laから選ばれた1つ以上の
成分と、Ni,Co,Cuから選ばれた1つ以上の成
分を含むものである。
The metal composite oxide includes Mg, Ca, Ta, Ti,
It contains one or more components selected from Mo, Nb, Al, Li, and La, and one or more components selected from Ni, Co, and Cu.

前記電極において、金属複合酸化物の固溶体
は、AxB1-xOy(ここでA,Bは金属原子)から
なる金属複合酸化物であるものが挙げられる。こ
こで、金属原子AはMg,Al,Li,La,Ca,
Ta,Ti,Mo,Nbの少なくとも1つであり、金
属原子BはNi,Co,Cuから選ばれた1つ以上の
成分であるものが挙げられる。ここで金属複合酸
化物の固溶体AxB1-xOyにおいてxの値は原子比
で0.01〜0.8の範囲にあり、yの値は1〜3の範
囲にあるものがよい。金属原子A及びBのイオン
半径は0.6〜0.7Åとすることが望ましい。更に金
属複合酸化物固溶体は置換型金属酸化物固溶体が
望ましい。各種金属原子のイオン半径を下記に示
す。
In the electrode, the metal composite oxide solid solution may be a metal composite oxide consisting of AxB 1-x Oy (where A and B are metal atoms). Here, metal atoms A are Mg, Al, Li, La, Ca,
Examples include at least one of Ta, Ti, Mo, and Nb, and the metal atom B is one or more components selected from Ni, Co, and Cu. In the metal composite oxide solid solution AxB 1-x Oy, the value of x is preferably in the range of 0.01 to 0.8 in terms of atomic ratio, and the value of y is preferably in the range of 1 to 3. The ionic radius of metal atoms A and B is preferably 0.6 to 0.7 Å. Further, the metal composite oxide solid solution is preferably a substitutional metal oxide solid solution. The ionic radii of various metal atoms are shown below.

金属原子AとしてはMg2+(6)0.66,Ca3+(6)0.62,
Ta5+(6)0.68,Ti4+(6)0.68,Mo6+(6)0.62,Nb3+
0.69,Li+(6)0.68,Al3+(6)0.51,La3+(8)1.18Åであ
り、 金属原子BとしてはNi2+(4)0.65,Co2+(4)0.68,
Cu2+(4)0.68Åである。ここで( )は予想配位を
示す。前記金属原子Aと金属原子Bにおいてイオ
ン半径の差が0.1Å以内の組合せにおいて金属複
合酸化物固溶体を形成し易い。
As metal atom A, Mg 2+ (6)0.66, Ca 3+ (6)0.62,
Ta 5+ (6)0.68, Ti 4+ (6)0.68, Mo 6+ (6)0.62, Nb 3+
0.69, Li + (6)0.68, Al 3+ (6)0.51, La 3+ (8)1.18Å, and the metal atoms B are Ni 2+ (4)0.65, Co 2+ (4)0.68,
Cu 2+ (4) is 0.68 Å. Here, ( ) indicates the predicted configuration. A metal composite oxide solid solution is likely to be formed in a combination in which the difference in ionic radius between the metal atoms A and the metal atoms B is within 0.1 Å.

本発明に係る燃料電池の電極製造方法は、金属
の粒子を原料スラリーとして成形、焼成して多孔
質の電極を形成する工程と、この電極を金属複合
酸化物固溶体原料溶液に浸漬して細孔内部に含浸
させる工程と、該電極を乾燥させた後で酸化雰囲
気中で酸化焼成して多孔質電極の粒子表面に金属
複合酸化物固溶体層を形成する工程と、を含むも
のである。
The fuel cell electrode manufacturing method according to the present invention includes the steps of forming and firing metal particles as a raw material slurry to form a porous electrode, and immersing this electrode in a metal composite oxide solid solution raw material solution to form a porous electrode. The process includes a step of impregnating the inside of the porous electrode, and a step of drying the electrode and then oxidizing and baking it in an oxidizing atmosphere to form a metal composite oxide solid solution layer on the particle surface of the porous electrode.

多孔質電極がNi,Co,Cuのいずれかであると
きはMg,Ca,Ta,Ti,Mo,Nb,Al,Li,La
から選ばれた1つ以上の成分を含有する溶液を前
記孔内に含浸させ、乾燥した後、酸化焼成するこ
とにより置換型の複合酸化物固溶体が形成され
る。また、多孔質電極がNi,Co,Cu以外である
ときは、前記Mg,Ca,Al等と、ニツケル
(Ni)、コバルト(Co)、銅(Cu)から選ばれた
1つ以上の成分を用いて混合溶液を作製し、これ
を多孔質電極に含浸して乾燥後、酸化焼成するこ
とによつて電極表面に金属複合酸化物固溶体層を
形成することもできる。
When the porous electrode is made of Ni, Co, or Cu, Mg, Ca, Ta, Ti, Mo, Nb, Al, Li, La
A substitution type composite oxide solid solution is formed by impregnating the pores with a solution containing one or more components selected from the above, drying, and then oxidizing and firing. In addition, when the porous electrode is made of materials other than Ni, Co, and Cu, one or more components selected from the above-mentioned Mg, Ca, Al, etc., and nickel (Ni), cobalt (Co), and copper (Cu) are used. It is also possible to form a metal composite oxide solid solution layer on the electrode surface by preparing a mixed solution using a porous electrode, drying it, and oxidizing it.

また、本発明に係る電極製造方法は、金属の粒
子表面に予め金属複合酸化物固溶体層を形成する
工程と、この工程後に成形、焼成して多孔質電極
を形成する工程と、を含むものである。
Further, the electrode manufacturing method according to the present invention includes a step of forming a metal composite oxide solid solution layer on the surface of metal particles in advance, and a step of forming and firing a porous electrode after this step.

また、本発明に係る電極製造方法は、金属複合
酸化物固溶体の粒子に金属の粒子をコーテイング
する工程と、この工程後に成形、焼成して多孔質
電極を形成する工程と、を含むものである。これ
により接触抵抗の小さい電極を容易に製造でき
る。
Further, the electrode manufacturing method according to the present invention includes a step of coating particles of a metal composite oxide solid solution with metal particles, and a step of forming and firing after this step to form a porous electrode. This makes it possible to easily manufacture electrodes with low contact resistance.

本発明に係る燃料電池は、電解質体と、この電
解質体の両側に配設されたカソード及びアノード
と、このカソード及びアノードの外側に配設され
たセパレータと、を備えた単位電池にて形成され
る燃料電池において、前記カソード及び又は/又
はアノードは前記いずれかの電極にて形成されて
いるものである。
The fuel cell according to the present invention is formed of a unit cell including an electrolyte body, a cathode and an anode disposed on both sides of the electrolyte body, and a separator disposed outside the cathode and anode. In the fuel cell, the cathode and/or anode are formed of any of the electrodes described above.

〔作用〕[Effect]

金属の粒子が部分焼結して構成される多孔質電
極の粒子表面に形成される金属複合酸化物固溶体
層又は前記金属粒子間に分散された金属複合酸化
物の固溶体粒子は、還元雰囲気中においてもきわ
めて安定しており、アノードとして水素雰囲気で
使用しても多孔質電極のシンタリングや塑性変
形、クリープ変形を防止し、かつ電気抵抗の増大
も少なく高い電極活性を維持する。一方、カソー
ドとして使用する場合には、金属複合酸化物固溶
体層が電極材料の溶出を抑制する。これは、マグ
ネシウム(Mg)やリチウム(Li)が共存するこ
とにより、電極の塩基性が高くなること、または
金属複合酸化物を形成するため耐アルカリ性が向
上することもその因子であると考えられる。
A metal composite oxide solid solution layer formed on the particle surface of a porous electrode formed by partially sintering metal particles or a metal composite oxide solid solution particle dispersed between the metal particles is heated in a reducing atmosphere. It is also extremely stable, and even when used as an anode in a hydrogen atmosphere, it prevents sintering, plastic deformation, and creep deformation of the porous electrode, and maintains high electrode activity with little increase in electrical resistance. On the other hand, when used as a cathode, the metal composite oxide solid solution layer suppresses elution of the electrode material. This is thought to be due to the fact that the coexistence of magnesium (Mg) and lithium (Li) increases the basicity of the electrode, or that the alkali resistance improves due to the formation of metal composite oxides. .

〔実施例〕〔Example〕

以下本発明に係る電極について第1図により説
明する。多孔質電極は以下の工程により作成し
た。最初に、金属スラリー製造工程10では、金
属粉末11を出発原料とし、有機バインダ12と
混合攪拌13し、次に減圧脱気14して粘度調整
15し、所定の原料スラリー16を得る。
The electrode according to the present invention will be explained below with reference to FIG. The porous electrode was created by the following steps. First, in a metal slurry manufacturing process 10, a metal powder 11 is used as a starting material, mixed with an organic binder 12 and stirred 13, and then degassed under reduced pressure 14 and viscosity adjusted 15 to obtain a predetermined raw material slurry 16.

次に、この原料スラリー16を成形・焼成工程
30でニツケル等の金網20に添着させ、厚さ約
1.0mmに成形32した後、室温で乾燥33し、水
素雰囲気中で750℃で1時間還元焼成34した。
これにより多孔質電極35を得た。
Next, this raw material slurry 16 is attached to a wire mesh 20 made of nickel or the like in a molding/firing step 30, and the thickness is approximately
After molding 32 to 1.0 mm, it was dried 33 at room temperature and reduced and calcined 34 at 750° C. for 1 hour in a hydrogen atmosphere.
As a result, a porous electrode 35 was obtained.

次に、この多孔質電極35を金属複合酸化物固
溶体層形成工程40で金属複合酸化物固溶体原料
溶液41に浸漬して多孔質電極の細孔内部に含浸
42し、50〜150℃で5〜20時間乾燥43する。
Next, in a metal composite oxide solid solution layer forming step 40, this porous electrode 35 is immersed in a metal composite oxide solid solution raw material solution 41 to impregnate the inside of the pores of the porous electrode for 5 to 50 minutes at 50 to 150°C. Dry for 20 hours 43.

次に酸化雰囲気中で400〜1000℃の温度で1〜
10時間酸化焼成44したのち、600〜900℃の温度
で1〜10時間還元焼成して燃料電池用電極を得
る。酸化焼成温度400℃以下では金属酸化物固溶
体層が十分に形成されない。一方、1000℃以上で
は電極細孔容積が著しく減少して好しくない。ま
た、還元焼成温度が600℃以下では十分な活性が
得られない。また900℃以上では電極のシンタリ
ングが起り電極比表面積が低下し好ましくない。
Next, in an oxidizing atmosphere at a temperature of 400 to 1000℃,
After oxidation firing 44 for 10 hours, reduction firing is performed for 1 to 10 hours at a temperature of 600 to 900°C to obtain a fuel cell electrode. If the oxidation firing temperature is below 400°C, the metal oxide solid solution layer will not be sufficiently formed. On the other hand, if the temperature exceeds 1000°C, the electrode pore volume will decrease significantly, which is not preferable. Further, if the reduction firing temperature is 600°C or lower, sufficient activity cannot be obtained. Moreover, at temperatures above 900° C., sintering of the electrode occurs and the specific surface area of the electrode decreases, which is not preferable.

多孔質電極の粒子表面に金属複合酸化物固溶体
層を形成するが、その固溶体層の厚さは、0.01〜
1μmが良い。0.01μm以下では電池運転時におけ
る電極の塑性変形やクリープ変形を抑制できな
い。一方1μm以上となると電極と集電板間の接
触抵抗が増大し、電池性能が低下するという問題
が発生する。また金属複合酸化物固溶体層を備え
た電極をカソードに適用した場合、その層の厚さ
が0.01μm以上であれば電極材料の溶出を抑制す
ることができる。また、前記固溶体原料溶液41
の濃度、酸化焼成および還元焼成の条件等を適宜
変えることにより、前記粒子間に金属複合酸化物
の固溶体粒子が分散される。
A metal composite oxide solid solution layer is formed on the particle surface of the porous electrode, and the thickness of the solid solution layer is 0.01~
1μm is good. If the thickness is less than 0.01 μm, plastic deformation and creep deformation of the electrode during battery operation cannot be suppressed. On the other hand, if the thickness is 1 μm or more, the contact resistance between the electrode and the current collector plate increases, causing a problem that the battery performance deteriorates. Further, when an electrode including a metal composite oxide solid solution layer is applied to the cathode, elution of the electrode material can be suppressed if the thickness of the layer is 0.01 μm or more. Further, the solid solution raw material solution 41
The solid solution particles of the metal composite oxide are dispersed between the particles by appropriately changing the concentration of , the conditions of oxidation calcination and reduction calcination, and the like.

また、第1図に示した製造工程とは別に、予め
金属の粒子表面に金属複合酸化物固溶体層を形成
し、それから成形、焼成して多孔質電極を形成し
ても同様の電極を製造できる。あるいは、金属複
合酸化物固溶体の粒子に金属の粒子をコーテイン
グし、それから成形、焼成して多孔質電極を形成
してもよい。
In addition, apart from the manufacturing process shown in Figure 1, a similar electrode can also be manufactured by forming a metal composite oxide solid solution layer on the surface of metal particles in advance, and then forming and firing to form a porous electrode. . Alternatively, a porous electrode may be formed by coating particles of a metal composite oxide solid solution with metal particles, followed by molding and firing.

金属複合酸化物固溶体としてはMg,Ca,Ta,
Ti,Mo,Nb,Al,Li又はLaから選ばれたA成
分と、Ni,Co,Cuから選ばれた1種以上のB成
分が、AxB1-xOyの組成比であり、Xの原子比が
0.01から0.8,yは1〜3の範囲において置換型
の複合酸化物固溶体を形成するのが好ましい。第
2図はMg/Ni組成比と(200)面のピーク変化
の関係を示す図である。尚、ここで「置換型」と
は結晶格子の格子点のNiがMgと部分的に入れ替
わつたものをいう。ここでxの値が0.01以下の場
合では、電極の塑性変形及びクリープ変形を抑制
するには不十分であり、電極の厚みや、細孔容積
が経時的に減少し、電池性能の低下をまねく。一
方、xの値が0.8以上の場合では、電気抵抗が増
大すると共に電極活性が低下して好ましくない。
Metal composite oxide solid solutions include Mg, Ca, Ta,
The A component selected from Ti, Mo, Nb, Al, Li, or La and one or more B components selected from Ni, Co, and Cu have a composition ratio of AxB 1-x Oy, and the X atoms The ratio is
It is preferable that a substitution type complex oxide solid solution is formed in the range of 0.01 to 0.8, and y is in the range of 1 to 3. FIG. 2 is a diagram showing the relationship between the Mg/Ni composition ratio and the peak change of the (200) plane. Here, the term "substitution type" refers to one in which Ni at the lattice points of the crystal lattice is partially replaced with Mg. If the value of x is less than 0.01, it is insufficient to suppress plastic deformation and creep deformation of the electrode, and the electrode thickness and pore volume decrease over time, leading to a decrease in battery performance. . On the other hand, when the value of x is 0.8 or more, electrical resistance increases and electrode activity decreases, which is not preferable.

多孔質電極の出発原料がNi,Co,Cuのいずれ
かである場合Mg,Ta,Ti,Mo,Nb,Li,Al,
La含有溶液を含浸したあと乾燥し、酸化焼成し、
次に還元焼成して所望の燃料電極を得ることがで
きる。
When the starting material for the porous electrode is Ni, Co, or Cu, Mg, Ta, Ti, Mo, Nb, Li, Al,
After impregnating with a La-containing solution, it is dried, oxidized and fired,
Next, a desired fuel electrode can be obtained by reduction firing.

一方、多孔質電極の出発原料がNi,Co,Cu以
外の成分で作製される場合においては、あらかじ
めMg,Ta,Ti,Mo,Nb,Li,Al,Laから選
ばれた1つ以上とNi,Co及びCuから選ばれた1
つ以上の混合溶液を作成し、これを多孔質電極に
含浸したあと、金属複合酸化物固溶体層形成工程
40に準じて作成することができる。
On the other hand, when the starting material of the porous electrode is made of components other than Ni, Co, and Cu, one or more selected from Mg, Ta, Ti, Mo, Nb, Li, Al, and La and Ni , Co and Cu selected from
After creating a mixed solution of three or more and impregnating the porous electrode with this, the metal composite oxide solid solution layer can be created according to the metal composite oxide solid solution layer forming step 40.

実施例 1 電極の出発原料にニツケル粉末(平均粒子径
2.5μm)を用いて、これにカルボキシメチルセル
ロース(CMC)0.2%溶液を加えて攪拌混合した
あと、減圧脱気し、スラリー粘度を約120ポイズ
に調整した。これを原料スラリーとしてニツケル
金属(20メツシユ)に厚さ1mmに添着して形成
し、室温で約20時間乾燥したあと、70%水素−30
%窒素混合ガス中で750℃、1時間焼成して多孔
質電極を作成した。得られた多孔質電極の厚みは
0.8mm、気孔率72Vol%、比表面積0.9m2/gであ
つた。この多孔質電極を硝酸マグネシウム{Mg
(NO32・6H2O}492gを蒸留水1に溶解した
マグネシウム溶液に浸漬して多孔質電極細孔内に
マグネシウムを含浸した。これを120℃で約10時
間乾燥したあと空気雰囲気中で600℃で7時間酸
化焼成した。次に70%水素−30%室素雰囲気中で
800℃で1時間還元焼成して本発明に係る燃料電
池用電極を得た。
Example 1 Nickel powder (average particle size
A 0.2% carboxymethyl cellulose (CMC) solution was added thereto and mixed with stirring, followed by deaeration under reduced pressure and the slurry viscosity was adjusted to about 120 poise. This was applied as a raw material slurry to a nickel metal (20 mesh) to a thickness of 1 mm, and after drying at room temperature for about 20 hours, 70% hydrogen-30
% nitrogen mixed gas at 750° C. for 1 hour to prepare a porous electrode. The thickness of the obtained porous electrode is
It had a porosity of 0.8 mm, a porosity of 72 Vol%, and a specific surface area of 0.9 m 2 /g. This porous electrode was made of magnesium nitrate {Mg
(NO 3 ) 2 ·6H 2 O}492 g was immersed in a magnesium solution prepared by dissolving 1 part of distilled water to impregnate the pores of the porous electrode with magnesium. This was dried at 120°C for about 10 hours and then oxidized and calcined at 600°C for 7 hours in an air atmosphere. Next, in a 70% hydrogen-30% room atmosphere
Reduction firing was performed at 800° C. for 1 hour to obtain a fuel cell electrode according to the present invention.

得られた電極のX線回折パターンを第3図に示
す。X線回折ピークからマグネシウム−ニツケル
複合酸化物固溶体が形成していることが確認され
た。回折ピーク値から求めた格子定数(200面)
は4.204Åであり、これによりMgxNii-xOのX値
を求めたところ、X=0.7であつた。この結果よ
り電極表面に形成された複合酸化物固溶体の結晶
構造式はMg0
The X-ray diffraction pattern of the obtained electrode is shown in FIG. It was confirmed from the X-ray diffraction peak that a magnesium-nickel composite oxide solid solution was formed. Lattice constant determined from diffraction peak value (200 planes)
was 4.204 Å, and when the X value of MgxNi ix O was calculated from this, it was found that X = 0.7. From this result, the crystal structure formula of the composite oxide solid solution formed on the electrode surface is Mg 0

Claims (1)

【特許請求の範囲】 1 金属の粒子を焼結して形成される燃料電池の
電極において、前記電極は多孔質に形成されてい
ると共に、前記金属粒子表面に、Mg,Ca,Ta,
Ti,Mo,Nb,Al,Li,Laから選ばれた1つ以
上の成分と、Ni,Co,Cuから選ばれた1つ以上
の成分からなる金属複合酸化物の固溶体層が形成
されていることを特徴とする燃料電池の電極。 2 金属の粒子を焼結して形成される燃料電池の
電極において、前記電極は多孔質に形成されてい
ると共に、前記金属粒子間に、Mg,Ca,Ta,
Ti,Mo,Nb,Al,Li,Laから選ばれた1つ以
上の成分と、Ni,Co,Cuから選ばれた1つ以上
の成分からなる金属複合酸化物の固溶体粒子が分
散されていることを特徴とする燃料電池の電極。 3 請求項2において、金属の粒子径は、固溶体
粒子の粒子径より大きい燃料電池の電極。 4 金属の粒子を焼結して形成される燃料電池の
電極において、前記電極は多孔質に形成されてい
ると共に、前記金属粒子表面に、Mg,Ca,Ta,
Ti,Mo,Nb,Al,Li,Laから選ばれた1つ以
上の成分と、Ni,Co,Cuから選ばれた1つ以上
の成分からなる金属複合酸化物の固溶体層が0.01
〜1μmの厚みで形成されていることを特徴とす
る燃料電池の電極。 5 請求項1、2又は4において、金属複合酸化
物の固溶体は、AxB1-xOy(ここでA,Bは金属原
子)からなり、金属原子AはMg,Ca,Ta,Ti,
Mo,Nb,Al,Li,Laから選ばれた1つ以上の
成分であり、金属原子BはNi,Co,Cuから選ば
れた1つ以上の成分であり、xの値は原子比で
0.01〜0.8の範囲にあり、yの値は1〜3の範囲
にある燃料電池の電極。 6 請求項5において、前記金属原子A及びBの
イオン半径が0.6〜0.7Åからなる燃料電池の電
極。 7 請求項5において、前記金属複合酸化物固溶
体が置換型金属酸化物固溶体からなる燃料電池の
電極。 8 金属の粒子を原料スラリーとして成形、焼成
して多孔質の電極を形成する工程と、この電極を
Mg,Ca,Ta,Ti,Mo,Nb,Al,Li,Laから
選ばれた1つ以上の成分と、Ni,Co,Cuから選
ばれた1つ以上の成分からなる金属複合酸化物固
溶体原料溶液に浸漬して細孔内部に含浸させる工
程と、該電極を乾燥させた後で酸化雰囲気中で酸
化焼成して多孔質電極の金属粒子表面に金属複合
酸化物固溶体層を形成する工程と、を含む燃料電
池の電極製造方法。 9 金属の粒子表面に、予めMg,Ca,Ta,Ti,
Mo,Nb,Al,Li,Laから選ばれた1つ以上の
成分と、Ni,Co,Cuから選ばれた1つ以上の成
分からなる金属複合酸化物固溶体層を形成する工
程と、この工程後に成形、焼成して多孔質電極を
形成する工程と、を含む燃料電池の電極製造方
法。 10 Mg,Ca,Ta,Ti,Mo,Nb,Al,Li,
Laから選ばれた1つ以上の成分と、Ni,Co,Cu
から選ばれた1つ以上の成分からなる金属複合酸
化物固溶体の粒子に金属の粒子をコーテイングす
る工程と、この工程後に成形、焼成して多孔質電
極を形成する工程と、を含む燃料電池の電極製造
方法。 11 電解質体と、この電解質体の両側に配設さ
れたカソード及びアノードと、このカソード及び
アノードの外側に配設されたセパレータと、を備
えた単位電池を積層して構成される燃料電池にお
いて、前記カソード及び/又はアノードは請求項
1、2又は4に記載の電極にて構成されているこ
とを特徴とする燃料電池。
[Claims] 1. In a fuel cell electrode formed by sintering metal particles, the electrode is formed porous, and the surface of the metal particles contains Mg, Ca, Ta,
A solid solution layer of metal composite oxide is formed consisting of one or more components selected from Ti, Mo, Nb, Al, Li, and La and one or more components selected from Ni, Co, and Cu. A fuel cell electrode characterized by: 2. In a fuel cell electrode formed by sintering metal particles, the electrode is formed porous, and between the metal particles, Mg, Ca, Ta,
Solid solution particles of a metal composite oxide consisting of one or more components selected from Ti, Mo, Nb, Al, Li, and La and one or more components selected from Ni, Co, and Cu are dispersed. A fuel cell electrode characterized by: 3. The fuel cell electrode according to claim 2, wherein the particle size of the metal is larger than the particle size of the solid solution particles. 4. In a fuel cell electrode formed by sintering metal particles, the electrode is formed porous, and Mg, Ca, Ta,
A solid solution layer of a metal composite oxide consisting of one or more components selected from Ti, Mo, Nb, Al, Li, and La and one or more components selected from Ni, Co, and Cu is 0.01
A fuel cell electrode characterized by being formed with a thickness of ~1 μm. 5. In claim 1, 2 or 4, the solid solution of metal composite oxide consists of A x B 1-x O y (where A and B are metal atoms), and metal atom A is Mg, Ca, Ta, Ti. ,
One or more components selected from Mo, Nb, Al, Li, and La, metal atom B is one or more components selected from Ni, Co, and Cu, and the value of x is an atomic ratio.
A fuel cell electrode in the range of 0.01 to 0.8, with the value of y in the range of 1 to 3. 6. The fuel cell electrode according to claim 5, wherein the metal atoms A and B have an ionic radius of 0.6 to 0.7 Å. 7. The fuel cell electrode according to claim 5, wherein the metal composite oxide solid solution is a substitutional metal oxide solid solution. 8 The process of forming and firing metal particles as a raw material slurry to form a porous electrode, and the process of forming this electrode.
Metal composite oxide solid solution raw material consisting of one or more components selected from Mg, Ca, Ta, Ti, Mo, Nb, Al, Li, La and one or more components selected from Ni, Co, Cu a step of immersing the electrode in a solution to impregnate it inside the pores; a step of drying the electrode and then oxidizing it in an oxidizing atmosphere to form a metal composite oxide solid solution layer on the surface of the metal particles of the porous electrode; A fuel cell electrode manufacturing method including: 9 Mg, Ca, Ta, Ti,
A step of forming a metal composite oxide solid solution layer consisting of one or more components selected from Mo, Nb, Al, Li, and La and one or more components selected from Ni, Co, and Cu; and this step. A method for producing an electrode for a fuel cell, including a step of subsequently forming and firing a porous electrode. 10 Mg, Ca, Ta, Ti, Mo, Nb, Al, Li,
One or more components selected from La and Ni, Co, Cu
A process of coating metal particles on particles of a metal composite oxide solid solution consisting of one or more components selected from the above, and a process of forming and firing after this process to form a porous electrode. Electrode manufacturing method. 11. A fuel cell configured by stacking unit cells each including an electrolyte body, a cathode and an anode disposed on both sides of the electrolyte body, and a separator disposed outside the cathode and anode, 5. A fuel cell, wherein the cathode and/or anode are comprised of the electrodes according to claim 1, 2, or 4.
JP1008999A 1989-01-18 1989-01-18 Electrode of fuel battery and manufacture thereof, and fuel battery Granted JPH02189865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1008999A JPH02189865A (en) 1989-01-18 1989-01-18 Electrode of fuel battery and manufacture thereof, and fuel battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1008999A JPH02189865A (en) 1989-01-18 1989-01-18 Electrode of fuel battery and manufacture thereof, and fuel battery

Publications (2)

Publication Number Publication Date
JPH02189865A JPH02189865A (en) 1990-07-25
JPH0584031B2 true JPH0584031B2 (en) 1993-11-30

Family

ID=11708382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1008999A Granted JPH02189865A (en) 1989-01-18 1989-01-18 Electrode of fuel battery and manufacture thereof, and fuel battery

Country Status (1)

Country Link
JP (1) JPH02189865A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100314513B1 (en) * 1999-10-25 2001-11-30 박호군 An Alloy Anode for Molten Carbonate Fuel Cell and a Process for Production Thereof
US7222406B2 (en) 2002-04-26 2007-05-29 Battelle Memorial Institute Methods for making a multi-layer seal for electrochemical devices
JP5971672B2 (en) * 2010-07-30 2016-08-17 株式会社東芝 Solid oxide fuel cell and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02189865A (en) 1990-07-25

Similar Documents

Publication Publication Date Title
JP4663125B2 (en) Method for producing anode for solid oxide fuel cell
RU2403655C2 (en) Parent material infiltration and coating process
US3964933A (en) Carbon article including electrodes and methods of making the same
US4943496A (en) Fuel cell, electrode for the cell and method of preparation thereof
JP2005529464A5 (en)
US5312582A (en) Porous structures from solid solutions of reduced oxides
KR20090023255A (en) Ceria and stainless steel based electrodes
US11923548B2 (en) Electro catalyst composition with redox buffer metal oxides for bi-functional air electrode
CA2038408C (en) Carbonate fuel cell anodes
US4136213A (en) Carbon article including electrodes and methods of making the same
JP3079098B2 (en) Method for producing positive electrode for molten carbonate fuel cell
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
US4752500A (en) Process for producing stabilized molten carbonate fuel cell porous anodes
JPH0584031B2 (en)
JP2001332257A (en) Non-baking type positive electrode for alkaline battery, its manufacturing method and the alkaline battery using the non-baking type positive electrode
JP3323029B2 (en) Fuel cell
EP0324479B1 (en) Method of producing a Fuel Cell
JP3667297B2 (en) Solid oxide fuel cell and method for producing the same
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JP2548859B2 (en) Fuel cell electrode and method for manufacturing the same
JPH11233121A (en) Air electrode material for molten carbonate fuel cell and its manufacture
JP2023180753A (en) ceramic porous body
JPS59230261A (en) Fuel cell
JPS6044967A (en) Molten carbonate fuel cell
JPH04206155A (en) Manufacture of fuel electrode for molten carbonate fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees