JPH02189808A - Conductive paste and manufacture thereof - Google Patents

Conductive paste and manufacture thereof

Info

Publication number
JPH02189808A
JPH02189808A JP717189A JP717189A JPH02189808A JP H02189808 A JPH02189808 A JP H02189808A JP 717189 A JP717189 A JP 717189A JP 717189 A JP717189 A JP 717189A JP H02189808 A JPH02189808 A JP H02189808A
Authority
JP
Japan
Prior art keywords
powder
metal powder
organic vehicle
conductive paste
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP717189A
Other languages
Japanese (ja)
Inventor
Kazutaka Asabe
和孝 阿佐部
Mutsuo Nakanishi
中西 睦夫
Toshihiko Kubo
敏彦 久保
Fumio Ishimoto
史雄 石本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP717189A priority Critical patent/JPH02189808A/en
Publication of JPH02189808A publication Critical patent/JPH02189808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To enhance the degree of sintering and also secure excellent adaptability for printing without addition of organic vehicles by using base powder of normal grain size as metal powder and two kinds of powders of extra fine grain size against the base powder. CONSTITUTION:A conductive paste for forming a thick film conductor is substantially formed from metal powder, binder powder and organic vehicle as functional components. The grain size constitution of the metal powder is: 10 to 30 parts by weight of powders of grain size less than 0.1mum and those of grain size 1 to 10mum for the rest. To manufacture the conductive paste, organic vehicle and metal powder of grain size less than 0.1 are uniformly kneaded and then the material kneaded, metal powder and binder powder both having a grain size of 1 to 10mum are kneaded. The degree of sintering is thus enhanced and also excellent adaptability for printing is secured without addition of organic vehicles, thereby enabling both enhancement of conductivity and low-temperature burning.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、バイブリソ1.’ I C等の電子回路にお
ける導電材や、セラミックコンデンサ、センサー等の電
極材として多用されている厚膜導体形成用の導電ペース
トおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to Vibriso 1. ' The present invention relates to a conductive paste for forming a thick film conductor, which is frequently used as a conductive material in electronic circuits such as ICs, and as an electrode material in ceramic capacitors, sensors, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

このような導電ペーストは、基本的に機能成分としての
金属粉末、バインダー粉末および有機ビヒクルから構成
されている。
Such conductive pastes basically consist of metal powder, binder powder and organic vehicle as functional components.

金属粉末は、導電性発現のための物質であり、焼成後に
所定の導電性を発現させる。材質としてはAg、Ni、
Cu等が用いられ、最近はCuがその経済性、導電性を
生かして注目されている。
The metal powder is a substance for developing electrical conductivity, and exhibits a predetermined electrical conductivity after firing. Materials include Ag, Ni,
Cu and the like are used, and recently Cu has been attracting attention due to its economic efficiency and conductivity.

バインダーは、焼成過程で金属粉末を基板」二に固着さ
せるためのもので、ガラス、酸化物またはこれらの混合
物からなる。
The binder is used to fix the metal powder to the substrate during the firing process, and is made of glass, oxide, or a mixture thereof.

有機ビヒクルは、金属粉末とバインダー粉末とに適当な
粘性を与え、印刷可能なペース1〜とする物質で、通常
は炭化水素系有機物と溶剤とからなる。
The organic vehicle is a substance that imparts appropriate viscosity to the metal powder and binder powder to form a printable paste, and usually consists of a hydrocarbon-based organic substance and a solvent.

このような導電ペーストに求められる性能は、主に次の
5種類である。■:焼成後の導電性、■;二基板の印刷
性、■二基板との接着強度、■:耐マイグレーション、
■:はんだ濡れ、はんだ食われ性。
The following five types of performance are mainly required for such a conductive paste. ■: Conductivity after firing, ■: Printability of two substrates, ■ Adhesive strength between two substrates, ■: Migration resistance,
■: Solder wetness, solder erodibility.

これらの性能のうち、■の導電性は、金属粉末の種類と
その焼結性に依存する。■の印刷性は、金属粉末の粒径
および形状ならびに有機ヒビクルの粘性および量から決
定される。換言すれば、使用される金属粉末の粒径およ
び形状から、最適の印刷性を得るための有機ビヒクルの
粘性および量が決定されている。また、■の接着強度は
、バインダー粉末の量および種類によりほぼ決定され、
■■については、金属粉末の種類によりほぼ決定される
Among these performances, the conductivity (1) depends on the type of metal powder and its sinterability. (2) Printability is determined from the particle size and shape of the metal powder and the viscosity and amount of the organic vehicle. In other words, the particle size and shape of the metal powder used determines the viscosity and amount of organic vehicle for optimum printability. In addition, the adhesive strength of ■ is almost determined by the amount and type of binder powder,
■■ is almost determined by the type of metal powder.

市販の導電ペーストにおいては、このような諸国子を考
慮することにより、Cuペーストの場合、Cu粉末の粒
径が1〜5μmに調整され、ペースト中の有機ビヒクル
量は18重量%に調整されている。
In commercially available conductive pastes, by taking these factors into consideration, in the case of Cu paste, the particle size of Cu powder is adjusted to 1 to 5 μm, and the amount of organic vehicle in the paste is adjusted to 18% by weight. There is.

(発明が解決しようとする課題〕 この市販のCuペーストは、900’CX10分のN2
雰囲気焼成で、155mΩ/口の抵抗を示すが、最近で
は更に低温の焼成が要求されるようになっており、また
パターンの微細化、配線延長に対処するために、導電性
の向上も要求されている。
(Problem to be solved by the invention) This commercially available Cu paste is
When fired in an atmosphere, it shows a resistance of 155 mΩ/hole, but recently, even lower firing temperatures are required, and improved conductivity is also required to cope with finer patterns and longer wiring. ing.

低温での焼成を可能にするためには、金属粉末の焼結性
を向上させる必要がある。これには金属粉末の微細化が
有効である。また、導電性は、前述したように金属粉末
の焼結性に依存するので、これを向上させるのにも金属
粉末の微細化は有効である。
In order to enable firing at low temperatures, it is necessary to improve the sinterability of metal powder. Refinement of metal powder is effective for this purpose. Further, since the conductivity depends on the sinterability of the metal powder as described above, it is effective to make the metal powder finer to improve this.

ところが、金属粉末を微細化すると、印刷性を確保する
ために必要な有機ビヒクルを増量せざるを得なくなる。
However, if the metal powder is made finer, the amount of organic vehicle required to ensure printability must be increased.

有機ビヒクルは、常温での粘性確保を目的としたもので
、焼成時には速やかに除去されなければならないが、こ
れが増量されると焼成時に不均一焼結を発生させる原因
になり、極端な場合はヒビ割れを発生させ、導電性を低
下させる結果になる。
The purpose of the organic vehicle is to ensure viscosity at room temperature, and it must be quickly removed during firing, but if the amount is increased, it can cause uneven sintering during firing, and in extreme cases, it can cause cracks. This results in cracking and reduced conductivity.

従って、低温焼成および導電性向上は、現状では新規成
分の開発でもない限り、極めて困難とされている。
Therefore, low-temperature firing and improvement of conductivity are currently extremely difficult unless new components are developed.

本発明は、斯かる状況に12なされたもので、新規成分
に頼ることなく現状の成分組成のままでも、低温焼成お
よび導電性向上が可能な導電ペーストおよびその製造方
法を提供することを目的とする。
The present invention was made in this situation, and an object of the present invention is to provide a conductive paste that can be fired at a low temperature and improve conductivity even with the current composition of ingredients without relying on new ingredients, and a method for manufacturing the same. do.

〔課題を解決するだめの手段〕[Failure to solve the problem]

低温焼成および導電性向上に対しては、前述したように
金属粉末の細粒化が効果的である。しかし、この細粒化
は一方で有機ビヒクルの増量をともなう。有機ビヒクル
の増量をともなうことなく、金属粉末の細粒化効果を発
現させるために、本発明者らは金属粉末の粒度構成に着
目し、種々の実験検耐を行った結果、次の知見を得た。
As mentioned above, making the metal powder finer is effective for low-temperature firing and improved conductivity. However, this grain refinement is accompanied by an increase in the amount of organic vehicle. In order to achieve the effect of refining the metal powder without increasing the amount of organic vehicle, the present inventors focused on the particle size structure of the metal powder, and as a result of various experiments and tests, the following findings were made. Obtained.

金属粉末の粒径を、ヘースとなる1〜10μmのものと
、このヘースに対して極細粒の0.1μm以下のものと
の両極に2分し、0.1〜1μm程度の中間的な細粒を
排除する。こうすることにより、有機ビヒクル量は、ヘ
ースとなる1〜10μmの粒径のものに支配されて、増
加の必要がなくなる。
The particle size of the metal powder is divided into two extremes: 1 to 10 μm, which is the heath, and 0.1 μm or less, which is extremely fine to the heath. Eliminate grains. By doing so, the amount of organic vehicle is dominated by particles having a particle size of 1 to 10 μm, which becomes the haze, and there is no need to increase the amount of organic vehicle.

一方、0.1μm以下の極細粒微粉末は少量でも、著し
い焼結性の向上をもたらす。この極細粒粉末による焼結
性向上効果は、偏析の少ないほど大きくなる。
On the other hand, even a small amount of ultrafine powder of 0.1 μm or less brings about a remarkable improvement in sinterability. The effect of improving sinterability by this ultra-fine powder becomes greater as segregation decreases.

本発明は、これらの知見に基づきなされたもので、機能
成分としての金属粉末、バインダー粉末および有機ビヒ
クルから実質的になる厚膜導体形成用の導電ペーストで
あって、前記金属粉末の粒度構成が0.1μm以下10
〜30重量%、残部1〜10μmであることを特徴とす
る導電ペーストを要旨とする。
The present invention has been made based on these findings, and is a conductive paste for forming a thick film conductor consisting essentially of a metal powder, a binder powder, and an organic vehicle as functional components, wherein the particle size structure of the metal powder is 0.1μm or less10
The gist of the present invention is a conductive paste characterized by having a content of 30% by weight and a balance of 1 to 10 μm.

また、本発明の製造方法は、上記導電ペーストを製造す
るだめのもので、有機ビヒクルと粒径が0.1μm以下
の金属粉末とを均一に混練した後、該混練物質と粒径が
1〜10μmの金属粉末およびバインダー粉末とを混練
することを特徴としている。
Further, the manufacturing method of the present invention is for manufacturing the above-mentioned conductive paste, and after uniformly kneading an organic vehicle and a metal powder with a particle size of 0.1 μm or less, the kneaded material and a metal powder with a particle size of 1 to 1 μm are mixed. It is characterized by kneading 10 μm metal powder and binder powder.

〔作  用] 本発明の導電ペーストにおいては、その金属粉末の粒度
構成により、有機ビヒクルを増量させずに印刷性が確保
され、かつ焼結性が向上して低温焼結および導電性の向
」−が可能になる。本発明の導電ペース1〜におりる金
属粉末の粒度構成限定理由は、以下のとおりである。
[Function] In the conductive paste of the present invention, printability is ensured without increasing the amount of organic vehicle due to the particle size structure of the metal powder, and sinterability is improved to improve low-temperature sintering and conductivity. − becomes possible. The reason for limiting the particle size structure of the metal powder in conductive pastes 1 to 1 of the present invention is as follows.

ヘースとして粒径1〜101ノmのものを使用するのは
、1μm未満のものかヘースとして使用されると、有機
ビヒクルの増量を余儀無くされ、また10μmを超える
ものを使用した場合は有機ビヒクル量の低減につながら
ないばかりか、焼結性を悪化させる危険があるからであ
る。
If a particle size of 1 to 101 nm is used as a hese, it is necessary to increase the amount of organic vehicle if the particle size is less than 1 μm or used as a hese. This is because not only does it not lead to a reduction in the amount, but there is a risk of worsening sinterability.

該ヘース粉宋に粒径0.171m以下の粉末を10〜3
0重量%の割合で含有さゼるのは、粒径について0.1
μmを超える場合は含有量が増加し、それにともなって
有機ビヒクルの増量が必要になるからである。0.1μ
m以下の粉末は焼結性の著しい向」二をもたらし、少量
でも焼結助剤としての十分な機能を果たす。含有量につ
いては、10重量%未満では焼結性の向上、導電性の向
上は認められず、30重量%超では有機ビヒクル量を増
加させなければならず、焼成中の大きな収縮により膜が
不均一となり、導電性の低下が生しるからである。なお
、粒径の下限は特に規定はないが、実質的に製造され得
る極微細粒粉末の下限は0.005μm程度である。
10 to 3 powders with a particle size of 0.171 m or less are added to the hese powder.
The particle size contained at 0% by weight is 0.1% by weight.
This is because if it exceeds .mu.m, the content increases, and accordingly, it becomes necessary to increase the amount of organic vehicle. 0.1μ
Powders with a particle diameter of less than m bring about a significant improvement in sintering properties, and even in small amounts, they function satisfactorily as sintering aids. Regarding the content, if the content is less than 10% by weight, no improvement in sinterability or conductivity will be observed, and if it exceeds 30% by weight, the amount of organic vehicle must be increased, and the film may fail due to large shrinkage during firing. This is because it becomes uniform, resulting in a decrease in conductivity. Although there is no particular restriction on the lower limit of the particle size, the lower limit of ultrafine powder that can be practically produced is about 0.005 μm.

本発明の製造方法においては、ペースト中で0゜1μm
以下の極細粒粉末に偏析が生じず、特に優れた性能の導
電ペーストが得られる。すなわち、金属粉末を一度に混
入せず、先ずその中の極細粒粉末と有機ビヒクルとを混
練し、その後、この混練物質とバインダー粉末およびヘ
ースとなる金属粉末とを混練することにより、ヘースと
なる1〜10μmの金属粉末の周囲に、有機ビヒクルと
一体になった0、1μm以下の極細粒粉末が配された均
一混合体が得られる。
In the manufacturing method of the present invention, 0°1 μm in the paste
No segregation occurs in the following ultrafine powder, and a conductive paste with particularly excellent performance can be obtained. That is, the metal powder is not mixed all at once, but the ultrafine powder and the organic vehicle are kneaded, and then this kneaded material is kneaded with the binder powder and the metal powder that will become the hese, thereby forming the hese. A homogeneous mixture is obtained in which ultrafine powder particles of 0.1 .mu.m or less are arranged around metal powder of 1 to 10 .mu.m and are integrated with an organic vehicle.

[実施例] 本発明の導電ペーストをその構成要素である金属粉末、
バインダー、有機ビヒクルに分けて具体的に説明し、合
せて製造方法についても説明する。
[Example] The conductive paste of the present invention was prepared using metal powder, which is a component thereof,
The binder and organic vehicle will be explained in detail, and the manufacturing method will also be explained.

なお、金属粉末の粒度構成は、既に詳しく説明している
ので省略する。
Note that the particle size structure of the metal powder has already been explained in detail, so a description thereof will be omitted.

○ 金属粉末 Ag、Ag−Pa、Ni、Cu等の導電性に優れる金属
粉末が用いられる。最も一般的なAgは、大気焼成可能
であるが、マイグレーションを生じやすい。そこで、P
a添加合金にすることにより導電性を落とし、耐マイグ
レーション性を向上させている。また、Cuは大気焼成
不可であるが、耐マイグレーション性に優れ、ファイン
パターンによる高集積化が可能なため注目されている。
○ Metal powder A metal powder with excellent conductivity such as Ag, Ag-Pa, Ni, or Cu is used. The most common Ag can be fired in the atmosphere, but is prone to migration. Therefore, P
By using an a-added alloy, the conductivity is lowered and the migration resistance is improved. Further, although Cu cannot be fired in the atmosphere, it is attracting attention because it has excellent migration resistance and can be highly integrated with fine patterns.

○ バインダ 焼成過程で金属粉末を基板上に固着させるためのもので
、通常はガラス、酸化物、またはこれらの混合物より成
る。材質としてはホウケイ酸鉛ガラス、CuO等が使用
される。
○ It is used to fix the metal powder onto the substrate during the binder firing process, and is usually made of glass, oxide, or a mixture thereof. As the material, lead borosilicate glass, CuO, etc. are used.

○ 有機ビヒクル 金属粉末とバインダー粉末とに適当な粘性を与え、印刷
可能なペーストとするだめのものである。
○ The organic vehicle is used to impart appropriate viscosity to the metal powder and binder powder to form a printable paste.

通常はエチルセルロース含有ラルピネオール等の炭化水
素化合物系の有機物と溶剤とからなる。
It usually consists of a hydrocarbon compound-based organic substance such as ethylcellulose-containing ralpineol and a solvent.

○ 製造方法 金属粉末、バインダーおよび有機ビヒクルを十分に混練
できればよく、具体的な手順および使用機器は特に問わ
ない。ただし、本発明の導電ペーストの能力を高めるた
めに、本発明の製造方法が特に好適なことは、前述した
とおりである。
○ Manufacturing method It is sufficient to sufficiently knead the metal powder, binder, and organic vehicle, and the specific procedure and equipment used are not particularly limited. However, as described above, the manufacturing method of the present invention is particularly suitable for improving the performance of the conductive paste of the present invention.

次に、3種類の試験結果を示し、本発明の実施効果を比
較例と対比させて明らかにする。
Next, three types of test results will be shown, and the effects of implementing the present invention will be clarified by comparing them with comparative examples.

○ 試験1 粒径が0゜1μm以下のCu粉末と有機ビヒクルとを3
本ロール型混練機で混練した後、その混練物質とバイン
ダー粉末および粒径が2〜8μmのCu粉末とを同じく
3本ロール型混練機で混練して、導電ペーストとした。
○ Test 1 Cu powder with a particle size of 0°1 μm or less and an organic vehicle were
After kneading with this roll-type kneader, the kneaded material, binder powder, and Cu powder having a particle size of 2 to 8 μm were kneaded with the same three-roll kneader to obtain a conductive paste.

全Cu粉末における粒径0.1μm以下の極細粒Cu粉
末の含有量は、0〜50重量%の範囲内で種々変化させ
た。有機ビヒクルは、6重量%エチルセルロール含有テ
ルピネオールを使用し、最適な印刷性が確保されるよう
に、0.1μm以下のCu粉末の含有量に応じてその量
を種々変更した。また、バインダー粉末はガラスフリッ
トで、ホウケイ酸鉛ガラスを使用し、ペースト中の含有
量は5重量%(一定)とした。
The content of ultrafine Cu powder with a particle size of 0.1 μm or less in all Cu powder was varied within the range of 0 to 50% by weight. Terpineol containing 6% by weight of ethylcellulose was used as the organic vehicle, and the amount was varied depending on the content of Cu powder of 0.1 μm or less so as to ensure optimal printability. Further, the binder powder was glass frit, and lead borosilicate glass was used, and the content in the paste was 5% by weight (constant).

製造された導電ペーストを基板上にスクリーン印刷した
後、N2雰囲気で900°C×10分の焼成を行い、基
板」二に形成された厚膜導体のシート抵抗を調査した。
After screen printing the manufactured conductive paste on a substrate, it was baked at 900° C. for 10 minutes in an N2 atmosphere, and the sheet resistance of the thick film conductor formed on the substrate was investigated.

粒径0.1μm以下の極細粒C11粉末含有量と印刷性
確保に必要な有機ビヒクル量との関係を第1表に示し、
上記含有量とシート抵抗との関係を市販品の場合と比較
して第1図に示す。
Table 1 shows the relationship between the content of ultrafine C11 powder with a particle size of 0.1 μm or less and the amount of organic vehicle required to ensure printability.
The relationship between the above content and sheet resistance is shown in FIG. 1 in comparison with that of a commercially available product.

市販品は前述した粒径が1〜5μmの金属粉末を使用す
るもので、導電ペースト中の有機ビヒクル量は18重量
%に調整されている。
The commercially available product uses the aforementioned metal powder with a particle size of 1 to 5 μm, and the amount of organic vehicle in the conductive paste is adjusted to 18% by weight.

第 表 第1表に示されるように、良好な印刷性を確保するため
には、粒径0.1μm以下の極細粒粉末の増量に対応さ
せて有機ビヒクル量を増加させる必要がある。ちなのに
、0.1μm以下の極細粒粉末の含有比が30重量%ま
では、有機ビヒクルを20重量%以下に抑えることがで
きるが、上記含有比が40重量%以上になると有機ビヒ
クルは30重量%以上を必要とする。
As shown in Table 1, in order to ensure good printability, it is necessary to increase the amount of organic vehicle in accordance with the increase in the amount of ultrafine powder with a particle size of 0.1 μm or less. Incidentally, when the content ratio of ultrafine powder of 0.1 μm or less is up to 30% by weight, the organic vehicle can be suppressed to 20% by weight or less, but when the above content ratio becomes 40% by weight or more, the organic vehicle can be reduced to 30% by weight. % or more is required.

このような種々の含有比で粒度調整されたCu粉末を含
有する導電ペース1−を焼成した結果、第1図に示され
るように、Cu粉末中の0.1μm以下の粉末の含有比
が10〜30重量%のものを使用した導電ペーストが、
従来の市販Cuペーストを凌く通電性を示している。
As a result of firing the conductive paste 1- containing Cu powder whose particle size was adjusted at various content ratios, the content ratio of powder of 0.1 μm or less in the Cu powder was 10 as shown in FIG. The conductive paste using ~30% by weight is
It shows electrical conductivity superior to conventional commercially available Cu paste.

10〜30重量%の範囲外で十分な通電性が得られない
のは、0.1μm以下の極細粒粉末が占める割合の少な
い金属粉末の場合は、極細粒粉末の不足に起因して焼結
性が向上せず、逆に極細粒粉末を増量した場合は、印刷
性確保のために、その増量にともなって増量される有機
ビヒクルによって焼結性が阻害されるためである。
The reason why sufficient electrical conductivity cannot be obtained outside the range of 10 to 30% by weight is that metal powders with a small proportion of ultrafine powder of 0.1 μm or less are due to the lack of ultrafine powder. This is because, if the amount of ultrafine powder is increased without improving the properties, the sinterability will be inhibited by the amount of organic vehicle that is increased in order to ensure printability.

○ 試験2 ヘースとなるCu粉末の粒径を種々変化させた時の、粒
径変化がシーI・抵抗に及ぼず影響を調査した。全Cu
粉末中の0.1.i1m以下の極細粒Cu粉末の含有量
は20重量%で一定とした。導電ベースI・の製造方法
および焼成方法は、試験1と同じとした。調査結果を第
2図に示す。導電ペースト中の有機ビヒクル量は、印刷
性確保の点から調整され、第2図に対応した形で第2表
に示されている。
○ Test 2 When the particle size of the Cu powder used as the haze was varied, the influence of the change in particle size did not affect the sea I/resistance was investigated. Total Cu
0.1 in powder. The content of the ultrafine Cu powder of i1 m or less was kept constant at 20% by weight. The manufacturing method and firing method of the conductive base I were the same as in Test 1. The survey results are shown in Figure 2. The amount of organic vehicle in the conductive paste was adjusted from the viewpoint of ensuring printability, and is shown in Table 2 in a form corresponding to FIG.

第   2   表 ヘース粉末の粒径が小さい場合は、焼結性が向上する反
面、印刷性確保のために増量した有機ビヒクルによって
焼成時に大きな収縮が生じ、亀裂が生じてシート抵抗を
増大させている。ヘース粉末の粒径が大きい場合は、主
に焼結性の低下によりシート抵抗が増大する。ヘース粉
末の最適な粒径は、第2図から明らかなように、1〜1
0μmである。
Table 2: When the particle size of Heas powder is small, sinterability improves, but on the other hand, the increased amount of organic vehicle to ensure printability causes large shrinkage during firing, which causes cracks and increases sheet resistance. . When the particle size of the heath powder is large, the sheet resistance increases mainly due to a decrease in sinterability. As is clear from Figure 2, the optimum particle size of hace powder is 1 to 1
It is 0 μm.

○ 試験3 粒径が2〜8μmのベー粉末u扮末(80重量%)と、
0.1μm以下の極細粒Cu粉末(20重量%)と、有
機ビヒクルとしての6重量%エチルセルロース含有テル
ピネオールと、バインダーとしてのポウケイ酸鉛ガラス
とを使用して、本発明の方法の有効性を調整した。
○ Test 3 Base powder u-powder (80% by weight) with a particle size of 2 to 8 μm,
The effectiveness of the method of the present invention was adjusted using ultrafine Cu powder (20 wt %) below 0.1 μm, terpineol containing 6 wt % ethyl cellulose as the organic vehicle, and lead porosilicate glass as the binder. did.

全Cu粉末中のベース粉末と極細粒粉末との重量比は8
0/20である。また、導電ペースト中における有機ビ
ヒクルの含有量は18重量%、バインダー量は5重量%
で一定とした。この導電ペストハ木発明組成のものであ
る。
The weight ratio of base powder and ultrafine powder in all Cu powder is 8
It is 0/20. In addition, the content of organic vehicle in the conductive paste is 18% by weight, and the amount of binder is 5% by weight.
It was held constant. This conductive pesto is of an inventive composition.

この導電ペーストを製造するにあたり、次の2つの方法
を採用した。第1方法では、極細粒粉末と有機ビヒクル
を3本ロール型混練機で混練した後、この混練物質とベ
ース粉末およびバインダー粉末とを同型式の混練機で混
練した。これは本発明の方法である。第2方法は、比較
法で、全てを・度に同型式の混練機で混練する方法であ
る。
In manufacturing this conductive paste, the following two methods were adopted. In the first method, ultrafine powder and organic vehicle were kneaded in a three-roll kneader, and then this kneaded material, base powder, and binder powder were kneaded in the same type of kneader. This is the method of the invention. The second method is a comparative method, in which everything is kneaded at the same time using the same type of kneader.

画法で得られた導電ペーストを焼成温度900’C,8
50°C1焼成時間10分、焼成雰囲気N2の条件で基
板上に焼成し、得られた厚膜導体のシー l・抵抗を調
査した結果を第3表に市販品と比較して示す。
The conductive paste obtained by the painting method was fired at a temperature of 900'C, 8
The thick film conductor was baked on a substrate at 50° C. for 10 minutes in a baking atmosphere of N2, and the seal resistance and resistance of the thick film conductor obtained were investigated, and Table 3 shows a comparison with commercially available products.

第   3   表 比較法である第2方法で混練を行った時は、市販品より
若干価れた導電性が得られる程度であるが、本発明方法
である第1方法で混練を行った時は、導電性の著しい改
善が見られ、特に焼結温度を低下させた場合の改善効果
が顕著である。これは、比較法では極細粒粉末が偏析を
生じ、その特長が完全に生かされていないのに対し、本
発明方法ではベース粉末の周囲に極細粒粉末が配され、
十分に分散するごとから、焼結性の大rl改善がもたれ
るためである。
When kneading was carried out using the second method, which is a comparative method in Table 3, conductivity was only slightly higher than that of the commercially available product, but when kneading was carried out using the first method, which was the method of the present invention. , a remarkable improvement in conductivity was observed, and the improvement effect was particularly remarkable when the sintering temperature was lowered. This is because in the comparative method, the ultra-fine powder is segregated and its features are not fully utilized, whereas in the method of the present invention, the ultra-fine powder is arranged around the base powder.
This is because sufficient dispersion leads to a significant improvement in sinterability.

(発明の効果) 以上の説明から明らかなよ・うに、本発明の導電ペース
トは、金属粉末として通常粒径のベース粉末と、・ベー
ス粉末に対して極細粒の粉末の2種類の両極粉末を使用
することにより、焼結性の向上を図るとともに、有機ビ
ヒクルの増量なしに優れた印刷性を確保し、導電性向」
二と低温焼成とを可能ならしめる。
(Effects of the Invention) As is clear from the above description, the conductive paste of the present invention contains two types of bipolar powders as metal powder: a base powder with a normal particle size and a powder with extremely fine particles compared to the base powder. By using it, we aim to improve sinterability, ensure excellent printability without increasing the amount of organic vehicle, and improve conductivity.
Second, low-temperature firing is possible.

また、本発明の導電ペースト製造方法は、極細粒粉末の
偏析をなくし、導電性向上と焼成温度低下に対する効果
を一層効果的に発現させるものである。
Furthermore, the method for producing a conductive paste of the present invention eliminates the segregation of ultrafine powder particles and more effectively improves conductivity and lowers the firing temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は極細粒粉末の含有量がシート抵抗に与える影響
度を示すグラフ、第2図はベース粉末の粒径がシー1〜
抵抗に与える影響度を示すグラフである。
Figure 1 is a graph showing the influence of the content of ultrafine powder on sheet resistance, and Figure 2 is a graph showing the influence of the content of ultrafine powder on sheet resistance.
It is a graph showing the degree of influence on resistance.

Claims (2)

【特許請求の範囲】[Claims] 1.機能成分としての金属粉末、バインダー粉末および
有機ビヒクルから実質的になる厚膜導体形成用の導電ペ
ーストであって、前記金属粉末の粒度構成が0.1μm
以下10〜30重量%、残部1〜10μmであることを
特徴とする導電ペースト。
1. A conductive paste for forming a thick film conductor consisting essentially of a metal powder as a functional component, a binder powder, and an organic vehicle, wherein the metal powder has a particle size structure of 0.1 μm.
A conductive paste characterized in that the content is 10 to 30% by weight and the balance is 1 to 10 μm.
2.有機ビヒクルと粒径が0.1μm以下の金属粉末と
均一に混練した後、該混練物質と粒径が1〜10μmの
金属粉末およびバインダー粉末と混練することを特徴と
する請求項1に記載の導電ペーストの製造方法。
2. 2. The organic vehicle and the metal powder having a particle size of 0.1 μm or less are uniformly kneaded, and then the kneaded substance is kneaded with the metal powder and the binder powder having a particle size of 1 to 10 μm. Method for manufacturing conductive paste.
JP717189A 1989-01-13 1989-01-13 Conductive paste and manufacture thereof Pending JPH02189808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP717189A JPH02189808A (en) 1989-01-13 1989-01-13 Conductive paste and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP717189A JPH02189808A (en) 1989-01-13 1989-01-13 Conductive paste and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02189808A true JPH02189808A (en) 1990-07-25

Family

ID=11658636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP717189A Pending JPH02189808A (en) 1989-01-13 1989-01-13 Conductive paste and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02189808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779773A1 (en) * 1994-06-30 1997-06-18 Mitsuboshi Belting Ltd. Copper conductor paste and production method of copper conductor film
JP2007035353A (en) * 2005-07-25 2007-02-08 Namics Corp Metal paste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0779773A1 (en) * 1994-06-30 1997-06-18 Mitsuboshi Belting Ltd. Copper conductor paste and production method of copper conductor film
JP2007035353A (en) * 2005-07-25 2007-02-08 Namics Corp Metal paste

Similar Documents

Publication Publication Date Title
US4859364A (en) Conductive paste composition
JPH0334162B2 (en)
JPS59146103A (en) Conductive paste
CN111468713B (en) Nickel slurry for electronic cigarette atomization core and preparation method thereof
JPH07302510A (en) Conductive paste composition
CN111739675B (en) Thick film resistor paste
JPS62184704A (en) Overprinting copper composition
JP2006294589A (en) Resistance paste and resistor
JP3507084B2 (en) Copper conductor composition
CN115461825A (en) Thick film resistor paste, thick film resistor, and electronic component
JPH0817241A (en) Copper conductive paste and manufacture of copper conductive film
KR20010112845A (en) Composite substance containing metal particles, conductive paste and manufacturing method thereof
JPH02189808A (en) Conductive paste and manufacture thereof
JPH03167713A (en) Conductive paste burnable at low temperature and burning method thereof
EP0291064B1 (en) Conductive paste composition
JP2001006436A (en) Conductive paste and manufacture thereof and laminated ceramic capacitor using the same
JPH11288801A (en) Resistor paste, formation method for thick-film resistor, and manufacture of thick-film substrate
JP2022140207A (en) Resistor paste, application thereof and method for manufacturing resistor
JPH05334911A (en) Platinum conductive paste for printing and manufacture thereof
JPH11251105A (en) Thick-film resistance paste and its manufacture
JP2001118424A (en) Copper alloy powder for conductive paste
JPH0541110A (en) Conductive paste
JP2003257244A (en) Conductive resin paste and conductive resin membrane
JPH08162762A (en) Glass ceramic multilayer circuit board
CN115516579A (en) Thick film resistor paste, thick film resistor, and electronic component