JPH11288801A - Resistor paste, formation method for thick-film resistor, and manufacture of thick-film substrate - Google Patents

Resistor paste, formation method for thick-film resistor, and manufacture of thick-film substrate

Info

Publication number
JPH11288801A
JPH11288801A JP10089016A JP8901698A JPH11288801A JP H11288801 A JPH11288801 A JP H11288801A JP 10089016 A JP10089016 A JP 10089016A JP 8901698 A JP8901698 A JP 8901698A JP H11288801 A JPH11288801 A JP H11288801A
Authority
JP
Japan
Prior art keywords
powder
copper
weight
resistor
thick film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10089016A
Other languages
Japanese (ja)
Other versions
JP3559160B2 (en
Inventor
Toru Nomura
徹 野村
Shinobu Kasuya
忍 粕谷
Kenji Kobayashi
健児 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Denso Corp
Original Assignee
Namics Corp
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp, Denso Corp filed Critical Namics Corp
Priority to JP08901698A priority Critical patent/JP3559160B2/en
Publication of JPH11288801A publication Critical patent/JPH11288801A/en
Application granted granted Critical
Publication of JP3559160B2 publication Critical patent/JP3559160B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thick-film resistor of small temperature coefficient resistance(TRC), without using a material which adversely affects the environment such as lead. SOLUTION: On a ceramic substrate 1, where Cu group conductors 2 and 3 are arranged, this resistor paste for which conductive powder constituting of a mixed power (Cu/Ni=60/40 to 80/20) of copper powder and nickel powder, the glass powder of 3-20 pts.wt. to the 100 pts.wt. of the conductive powder and the copper oxide powder of 1-10 pts.wt. are disposed to a vehicle, composed of organic resin and a solvent with the ratio of conductive components of 75-90 wt.% is printed. Then, it is calcined in a nitrogen atmosphere, and a thick film substrate is manufactured. For the resistor paste, the main component of glass is composed of ZnO or BaO or both and a copper oxide consists of Cu2 O or CuO or the mixture of Cu2 O and CuO. The grain diameter of the copper powder is 0.1-2 μm, the grain diameter of the nickel powder is 0.1 μm-2 μm and the grain diameter of the copper oxide is 1 μm-10 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、抵抗体ペース
ト、厚膜抵抗体の形成方法および厚膜基板の製造方法に
関するものである。
The present invention relates to a method for forming a resistor paste, a thick film resistor, and a method for manufacturing a thick film substrate.

【0002】[0002]

【従来の技術】厚膜抵抗体を有する厚膜基板の製造方法
を図2を用いて説明する。まず、セラミック基板11の
上にAg、Pd、ガラスフリットからなる貴金属ペース
トをスクリーン印刷し、空気中で焼成して導体(電極)
12,13を形成する。そして、その上に、RuO2
たはAg−Pdと酸化鉛系ガラスからなる抵抗体ペース
トを印刷し、空気中で焼成して厚膜抵抗体14を形成し
ている。
2. Description of the Related Art A method of manufacturing a thick film substrate having a thick film resistor will be described with reference to FIG. First, a noble metal paste made of Ag, Pd, and glass frit is screen-printed on the ceramic substrate 11 and fired in air to form a conductor (electrode).
12 and 13 are formed. Then, a resistor paste made of RuO 2 or Ag—Pd and lead oxide glass is printed thereon, and fired in air to form the thick film resistor 14.

【0003】ここで、貴金属ペーストは高価であり、ま
た、ハイブリッドICの回路に使用すると、はんだ食わ
れによる部品接合部の信頼性低下、Ag(銀)のエレク
トロマイグレーションが懸念される。この対策として、
Ag電極の代わりにCu電極が使用される。
Here, the noble metal paste is expensive, and when it is used in a circuit of a hybrid IC, there is a concern that the reliability of a part joint portion may be reduced due to solder erosion, and electromigration of Ag (silver) may occur. As a measure against this,
A Cu electrode is used instead of the Ag electrode.

【0004】[0004]

【発明が解決しようとする課題】しかし、Cu電極を使
用した場合には酸化を防止するために窒素雰囲気下で焼
成することとなり、抵抗体に従来の酸化ルテニウムまた
はAg−Pdを使用すると、窒素雰囲気下で還元を受
け、希望の抵抗値、抵抗温度係数(TCR)が得られに
くい。
However, when a Cu electrode is used, firing is performed in a nitrogen atmosphere in order to prevent oxidation. When a conventional ruthenium oxide or Ag-Pd is used for a resistor, nitrogen is not used. It is difficult to obtain desired resistance value and temperature coefficient of resistance (TCR) due to reduction in an atmosphere.

【0005】また、近年環境への対応が求められてお
り、Pb、Cdなどの有害物質は、使用しない方向に進
んでいる。そこで、この発明の目的は、鉛などの環境に
対し悪影響を与える物質を使用することなく抵抗温度係
数(TCR)の小さい厚膜抵抗体を得ることにある。
[0005] In recent years, there has been a demand for environmental protection, and harmful substances such as Pb and Cd have been increasingly used. SUMMARY OF THE INVENTION It is an object of the present invention to provide a thick film resistor having a small temperature coefficient of resistance (TCR) without using a substance such as lead which has an adverse effect on the environment.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の窒素雰
囲気焼成用抵抗体ペーストは、銅粉とニッケル粉の混合
粉またはCu−Ni合金粉からなる導電性粉末と、該導
電性粉末100重量部に対し3〜20重量部のガラス粉
末および1〜10重量部の銅酸化物粉末を、有機樹脂お
よび溶剤からなるビヒクルに、導電成分の割合が75〜
90重量%で分散したことを特徴としている。
According to a first aspect of the present invention, there is provided a resistor paste for firing in a nitrogen atmosphere, comprising a conductive powder comprising a mixed powder of copper powder and nickel powder or a Cu-Ni alloy powder; 3 to 20 parts by weight of glass powder and 1 to 10 parts by weight of copper oxide powder are added to a vehicle composed of an organic resin and a solvent in an amount of 75 to 100 parts by weight.
It is characterized by being dispersed at 90% by weight.

【0007】よって、請求項5に記載のごとく、厚膜抵
抗体の形成方法として、銅粉とニッケル粉の混合粉また
はCu−Ni合金粉からなる導電性粉末と、該導電性粉
末100重量部に対し3〜20重量部のガラス粉末およ
び1〜10重量部の銅酸化物粉末を、有機樹脂および溶
剤からなるビヒクルに、導電成分の割合が75〜90重
量%で分散して抵抗体ペーストとし、このペーストが窒
素雰囲気下で焼成されて厚膜抵抗体が形成される。
According to a fifth aspect of the present invention, as a method of forming a thick film resistor, a conductive powder composed of a mixed powder of a copper powder and a nickel powder or a Cu—Ni alloy powder and 100 parts by weight of the conductive powder are used. 3 to 20 parts by weight of a glass powder and 1 to 10 parts by weight of a copper oxide powder are dispersed in a vehicle composed of an organic resin and a solvent at a ratio of a conductive component of 75 to 90% by weight to form a resistor paste. This paste is fired in a nitrogen atmosphere to form a thick film resistor.

【0008】また、請求項9に記載のごとく、厚膜基板
の製造方法として、電極材であるCu系導体を配置した
基板の上に、銅粉とニッケル粉の混合粉またはCu−N
i合金粉からなる導電性粉末と、該導電性粉末100重
量部に対し3〜20重量部のガラス粉末および1〜10
重量部の銅酸化物粉末を、有機樹脂および溶剤からなる
ビヒクルに、導電成分の割合が75〜90重量%で分散
した抵抗体ペーストが印刷される。その後に、窒素雰囲
気下で焼成される。
According to a ninth aspect of the present invention, as a method of manufacturing a thick film substrate, a mixed powder of copper powder and nickel powder or Cu-N
a conductive powder composed of an i-alloy powder, 3 to 20 parts by weight of glass powder and 1 to 10 parts by weight based on 100 parts by weight of the conductive powder.
A resistor paste in which a weight part of a copper oxide powder is dispersed in a vehicle made of an organic resin and a solvent with a conductive component ratio of 75 to 90% by weight is printed. Thereafter, firing is performed in a nitrogen atmosphere.

【0009】このようにして、Cu−Ni系厚膜抵抗体
として、鉛などの環境に対し悪影響を与える物質を使用
することなく、抵抗温度係数の小さい厚膜抵抗体を形成
できる。
In this way, a thick film resistor having a small temperature coefficient of resistance can be formed as a Cu-Ni-based thick film resistor without using a substance such as lead which has an adverse effect on the environment.

【0010】ここで、請求項2,6,10に記載のよう
に、銅とニッケルの混合比をCu/Ni=60/40〜
80/20とすると、抵抗温度係数をより小さくでき
る。よって、温度環境の厳しい車載用とする場合に好適
なものとなる。
Here, the mixing ratio of copper and nickel is set to Cu / Ni = 60 / 40-
When the ratio is 80/20, the temperature coefficient of resistance can be further reduced. Therefore, it is suitable for use in a vehicle where the temperature environment is severe.

【0011】また、請求項3,7,11に記載のよう
に、抵抗体ペーストは、ガラスの主成分がZnOまたは
BaO、あるいはZnOとBaOからなり、銅酸化物が
Cu2OまたはCuO、あるいはCu2 OとCuOの混
合物からなるものとすると、より好ましいものとなる。
Further, in the resistor paste, the main component of the glass of the resistor paste is ZnO or BaO, or ZnO and BaO, and the copper oxide is Cu 2 O or CuO, or It is more preferable to use a mixture of Cu 2 O and CuO.

【0012】また、請求項4,8,12に記載のよう
に、抵抗体ペーストは、銅粉の粒径が0.1μm〜2μ
m、ニッケル粉の粒径が0.1μm〜2μm、Cu−N
i合金粉の粒径が0.1μm〜2μm、銅酸化物の粒径
が1μm〜10μmであるものとすると、より好ましい
ものとなる。
Further, in the resistor paste, the particle size of the copper powder is 0.1 μm to 2 μm.
m, particle size of nickel powder is 0.1 μm to 2 μm, Cu-N
It is more preferable that the particle diameter of the i-alloy powder be 0.1 μm to 2 μm and the particle diameter of the copper oxide be 1 μm to 10 μm.

【0013】[0013]

【発明の実施の形態】以下、この発明を具体化した実施
の形態を図面に従って説明する。図1に、本実施形態に
おける厚膜基板を示す。本例では車載用として使用され
るものであり、厚膜抵抗体4の仕様として、抵抗温度係
数(TCR)が−55℃〜125℃の範囲で200pp
m/℃以下を満足している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a thick film substrate according to the present embodiment. In this example, the thick-film resistor 4 is used in a vehicle and has a temperature coefficient of resistance (TCR) of 200 pp in a range of -55 ° C to 125 ° C.
m / ° C or less.

【0014】図1に示すように、アルミナ製のセラミッ
ク基板1の上には、電極材としてのCu系導体2が形成
されるとともに、Cu系導体2とは離間した位置に電極
材としてのCu系導体3が形成されている。また、セラ
ミック基板1の上には、Cu−Ni系厚膜抵抗体4が形
成され、Cu系導体(電極)2とCu系導体(電極)3
との間にCu−Ni系厚膜抵抗体4が配置された構造と
なっている。
As shown in FIG. 1, a Cu-based conductor 2 serving as an electrode material is formed on a ceramic substrate 1 made of alumina, and a Cu-based conductor 2 serving as an electrode material is provided at a position separated from the Cu-based conductor 2. A system conductor 3 is formed. A Cu-Ni thick film resistor 4 is formed on the ceramic substrate 1, and a Cu-based conductor (electrode) 2 and a Cu-based conductor (electrode) 3
And a Cu-Ni-based thick-film resistor 4 is arranged between them.

【0015】次に、この厚膜基板の製造方法を説明す
る。まず、上記Cu−Ni系厚膜抵抗体4を形成するた
めのCu−Ni系厚膜抵抗体ペーストを用意する。この
抵抗体ペーストは、銅粉とニッケル粉の混合粉からな
り、かつ、銅とニッケルの混合比がCu/Ni=60/
40〜80/20である導電性粉末と、該導電性粉末1
00重量部に対し3〜20重量部のガラス粉末および1
〜10重量部の銅酸化物粉末を、有機樹脂および溶剤か
らなるビヒクルに、導電成分の割合が75〜90重量%
で分散したものである。
Next, a method of manufacturing the thick film substrate will be described. First, a Cu-Ni-based thick film resistor paste for forming the Cu-Ni-based thick film resistor 4 is prepared. This resistor paste is composed of a mixed powder of copper powder and nickel powder, and the mixing ratio of copper and nickel is Cu / Ni = 60 /
A conductive powder of 40 to 80/20, and the conductive powder 1
3 to 20 parts by weight of glass powder and 1 part by weight
10 to 10 parts by weight of copper oxide powder was added to a vehicle comprising an organic resin and a solvent, and the proportion of the conductive component was 75 to 90% by weight.
It is what is dispersed.

【0016】銅粉の粒径は0.1μm〜2μmであり、
ニッケル粉の粒径は0.1μm〜2μmであり、スクリ
ーン印刷を行う上で好ましい範囲としている。ニッケル
粉の粒径として、より好ましいのは、0.5μm〜1μ
mの範囲である。銅粉は、硫酸銅、塩化銅の還元剤によ
る還元銅粉、アトマイズ銅粉を分級したものが使用でき
る。ニッケル粉は、硫酸ニッケル、塩化ニッケルの還元
ニッケル、アトマイズニッケル、カルボニッケルからの
分解ニッケル、これらを溶融再結晶化した金属粉が使用
できる。
The particle size of the copper powder is 0.1 μm to 2 μm,
The particle size of the nickel powder is 0.1 μm to 2 μm, which is a preferable range for performing screen printing. More preferably, the particle size of the nickel powder is 0.5 μm to 1 μm.
m. As the copper powder, those obtained by classifying reduced copper powder with a reducing agent of copper sulfate or copper chloride or atomized copper powder can be used. As the nickel powder, nickel sulfate, reduced nickel of nickel chloride, atomized nickel, nickel decomposed from carbo nickel, and metal powder obtained by melting and recrystallizing these can be used.

【0017】ここで、Cu粉とNi粉の混合比率を変え
ることにより、抵抗値および抵抗温度係数(TCR)を
変化させることができ、目標とする抵抗値およびTCR
になるようにこの比率を適宜選択している。つまり、C
u/Ni重量比を60/40〜80/20とすることに
より、−55℃〜125℃の範囲でTCRが200pp
m/℃以下になる。
Here, by changing the mixing ratio of the Cu powder and the Ni powder, the resistance value and the temperature coefficient of resistance (TCR) can be changed.
This ratio is appropriately selected so that That is, C
By setting the u / Ni weight ratio to 60/40 to 80/20, the TCR becomes 200 pp in the range of −55 ° C. to 125 ° C.
m / ° C. or less.

【0018】なお、銅粉とニッケル粉の混合粉にて導電
性粉末を構成したが、Cu−Ni合金粉にて導電性粉末
を構成してもよい。この場合、Cu−Ni合金粉の粒径
は0.1μm〜2μmとするとよい。
Although the conductive powder is composed of a mixed powder of copper powder and nickel powder, the conductive powder may be composed of a Cu-Ni alloy powder. In this case, the particle size of the Cu—Ni alloy powder may be 0.1 μm to 2 μm.

【0019】また、ガラス粉末は、厚膜抵抗体4をセラ
ミック基板1に接着するためと抵抗値の調整のために必
要であるが、PbやCdを含まずZnOまたはBaOま
たはその両方を主成分としている。ガラスの軟化点は5
50〜650℃、熱膨張率は85〜97×10-7/℃と
するのが望ましい。ここで、ガラスの軟化点は亜鉛とバ
リウムの割合にて調整することができる。
The glass powder is necessary for bonding the thick film resistor 4 to the ceramic substrate 1 and for adjusting the resistance value, but does not contain Pb or Cd and contains ZnO or BaO or both as main components. And The softening point of glass is 5
Desirably, the thermal expansion coefficient is 50 to 650 ° C. and the thermal expansion coefficient is 85 to 97 × 10 −7 / ° C. Here, the softening point of the glass can be adjusted by the ratio of zinc and barium.

【0020】より具体的には、ガラスフリットとして
は、融点500℃〜800℃の硼酸亜鉛、硼酸バリウ
ム、硼珪酸ガラスがよい。さらに、銅酸化物(粉末)は
Cu2 OまたはCuO、あるいはCu2 OとCuOの混
合物からなる。銅酸化物の粒径は1μm〜10μmであ
り、スクリーン印刷を行う上で好ましい範囲となってい
る。
More specifically, as the glass frit, zinc borate, barium borate, or borosilicate glass having a melting point of 500 ° C. to 800 ° C. is preferable. Further, the copper oxide (powder) is made of Cu 2 O or CuO, or a mixture of Cu 2 O and CuO. The particle size of the copper oxide is 1 μm to 10 μm, which is a preferable range for performing screen printing.

【0021】このように、導電性粉末、ガラス粉末、銅
酸化物粉末は、ビヒクルと混練してペースト状組成物と
されるが、この組成物は、100〜400メッシュの印
刷スクリーンによって印刷されるので、20μm以上の
粒子がほとんどない平均粒子径1μm程度のものが特に
適している。
As described above, the conductive powder, the glass powder, and the copper oxide powder are kneaded with the vehicle to form a paste composition, which is printed by a 100-400 mesh printing screen. Therefore, those having an average particle diameter of about 1 μm, which has almost no particles of 20 μm or more, are particularly suitable.

【0022】ビヒクルに使用される溶剤としては、テル
ペン系、エステルアルコール、芳香族炭化水素、エステ
ル系溶剤が用いられる。テルペン系溶剤としては、リモ
ネン、パラメンタン、ピナン、ターピネオール、ジヒド
ロターピネオール等が例示される。エステルアルコール
としては、2.2.4トリメチル1.3ペンタンジオー
ルが例示される。芳香族炭化水素としては、キシレン、
イソプロピルベンゼン、メチルシクロヘキサン、トルエ
ンが例示される。エステル系溶剤としては、酢酸エチレ
ングリコールモノメチルエーテル、酢酸ジエチレングリ
コールモノメチルエーテル、酢酸ジエチレングリコール
モノブチルエーテルが例示される。あるいは、これら溶
剤のうちの複数の混合溶剤を用いてもよい。
As the solvent used for the vehicle, terpene solvents, ester alcohols, aromatic hydrocarbons, and ester solvents are used. Examples of the terpene-based solvent include limonene, paramenthane, pinane, terpineol, dihydroterpineol, and the like. Examples of the ester alcohol include 2.2.4 trimethyl1.3 pentanediol. As aromatic hydrocarbons, xylene,
Examples include isopropylbenzene, methylcyclohexane, and toluene. Examples of the ester solvent include ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, and diethylene glycol monobutyl ether acetate. Alternatively, a plurality of mixed solvents among these solvents may be used.

【0023】ビヒクルに使用される有機樹脂としては、
セルロース系樹脂、アクリル系樹脂、アルキッド系樹脂
が用いられる。セルロース系樹脂としては、エチルセル
ロース、ニトロセルロースが挙げられる。アクリル系樹
脂としては、メチルアクリレート、エチルアクリレー
ト、プロピルアクリレート、ブチルアクリレート、メチ
ルメタアクリレート、エチルメタアクリレート、プロピ
ルメタアクリレート、ブチルメタアクリレートまたはこ
れらの複数の混合物、複数のモノマーの共重合体が挙げ
られる。アルキッド系樹脂としては、多価アルコールに
2価のエチレングリコール、プロピレングリコールな
ど、3価のアルコールとしてグリセリン、トリメチロー
ルプロパンなど、多価アルコールとしてジグリセリン、
トリグリセリンなどが使用できる。
The organic resin used in the vehicle includes
Cellulose resin, acrylic resin, and alkyd resin are used. Examples of the cellulosic resin include ethyl cellulose and nitrocellulose. Examples of the acrylic resin include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate or a mixture of a plurality of these, and a copolymer of a plurality of monomers. . Examples of the alkyd resin include polyhydric alcohols such as dihydric ethylene glycol and propylene glycol, trihydric alcohols such as glycerin and trimethylolpropane, polyhydric alcohols such as diglycerin,
Triglycerin and the like can be used.

【0024】さらに、添加有機剤として、多塩基酸無水
フタール酸、琥珀酸、マレイン酸、イタコン酸等が例示
される。添加有機剤の一つである変性剤として、大豆
油、桐油、脱水ひまし油等の脂肪酸、オレイン酸、ステ
アリン酸等が挙げられる。また、添加有機剤の一つであ
る天然樹脂として、ロジン、セラック等が挙げられ、合
成樹脂として、エステルガム、フェノール樹脂、アクリ
ル樹脂などが挙げられる。
Further, examples of the added organic agent include polybasic acid phthalic anhydride, succinic acid, maleic acid and itaconic acid. As a modifying agent which is one of the added organic agents, fatty acids such as soybean oil, tung oil and dehydrated castor oil, oleic acid, stearic acid and the like can be mentioned. In addition, rosin, shellac, and the like are given as natural resins that are one of the added organic agents, and ester gums, phenol resins, and acrylic resins are given as synthetic resins.

【0025】そして、厚膜基板の製造の際には、まず、
図1に示すように、Cu系導体ペーストをセラミック基
板1上にスクリーン印刷により塗布する。さらに、焼成
して電極材であるCu系導体2,3を得る。
When manufacturing a thick film substrate, first,
As shown in FIG. 1, a Cu-based conductor paste is applied on a ceramic substrate 1 by screen printing. Further, by sintering, Cu-based conductors 2 and 3 as electrode materials are obtained.

【0026】引き続き、前述したCu−Ni系厚膜抵抗
体ペーストをセラミック基板1上にスクリーン印刷によ
り塗布する。そして、窒素雰囲気下で焼成してCu−N
i系厚膜抵抗体4を得る。
Subsequently, the above-mentioned Cu-Ni thick film resistor paste is applied on the ceramic substrate 1 by screen printing. Then, it is fired in a nitrogen atmosphere to
An i-system thick film resistor 4 is obtained.

【0027】その結果、図1に示す厚膜基板が製造され
る。以下、厚膜抵抗体ペーストの成分や配合を変えて抵
抗値やTCRや接着強度を測定し、評価を行ったので、
それを説明していく。
As a result, the thick film substrate shown in FIG. 1 is manufactured. In the following, the resistance value, TCR and adhesive strength were measured and evaluated by changing the components and composition of the thick film resistor paste.
I will explain that.

【0028】表1,2,3には、評価結果を示す。サン
プルとしては、表1,2,3において縦の項目で表すよ
うに、実施例1〜20および比較例1〜3を用いた。ま
た、この表1,2,3において、横の項目として、抵抗
体ペーストの導電成分の割合(Cu−Ni含有率)、C
uとNiの組成比率、ガラス主成分、ガラス成分の割
合、銅酸化物の割合をとっている。さらに、表1,2,
3の横の項目で表すように、測定項目として、面抵抗
(単位;mΩ/□)、25℃〜150℃でのTCR、−
55℃〜25℃でのTCR、接着強度(単位;Kg/
□)をとっている。
Tables 1, 2 and 3 show the evaluation results. As samples, Examples 1 to 20 and Comparative Examples 1 to 3 were used as indicated by vertical items in Tables 1, 2, and 3. In Tables 1, 2 and 3, the horizontal items are the ratio of the conductive component of the resistor paste (Cu-Ni content) and C
The composition ratios of u and Ni, the glass main component, the glass component ratio, and the copper oxide ratio are shown. In addition, Tables 1, 2,
As indicated by the item next to 3, the measurement items include sheet resistance (unit: mΩ / □), TCR at 25 ° C. to 150 ° C., −
TCR and adhesive strength at 55 ° C to 25 ° C (unit: Kg /
□).

【0029】実施例1〜20では、導電成分の割合(C
u−Ni含有率)は75〜90wt%であり、CuとN
iの比率はCu/Ni=60/40〜80/20であ
り、ガラス量は導電性粉末100重量部に対し3〜20
重量部であり、銅酸化物の量は導電性粉末100重量部
に対し1〜10重量部である。
In Examples 1 to 20, the ratio of the conductive component (C
u-Ni content) is 75 to 90 wt%, and Cu and N
The ratio of i is Cu / Ni = 60/40 to 80/20, and the glass amount is 3 to 20 with respect to 100 parts by weight of the conductive powder.
Parts by weight, and the amount of the copper oxide is 1 to 10 parts by weight based on 100 parts by weight of the conductive powder.

【0030】これに対し、比較例1ではガラス量は導電
性粉末100重量部に対し1重量部であり、比較例2で
は、CuとNiの比率はCu/Ni=90/10であ
り、比較例3では、CuとNiの比率はCu/Ni=5
0/50である。
On the other hand, in Comparative Example 1, the amount of glass was 1 part by weight with respect to 100 parts by weight of the conductive powder. In Comparative Example 2, the ratio of Cu and Ni was Cu / Ni = 90/10. In Example 3, the ratio of Cu and Ni is Cu / Ni = 5.
0/50.

【0031】比較例1では接着強度が0.3Kg/□と
低くなっているが、実施例1〜20では、接着強度が
1.5Kg/□以上であった。また、比較例2では25
℃〜150℃でのTCRおよび−55℃〜25℃でのT
CRが、共に500ppmと大きいが、実施例1〜20
では、25℃〜150℃でのTCRおよび−55℃〜2
5℃でのTCRが、共に200ppm以下であった。さ
らに、比較例3では面抵抗が60mΩ/□と大きいが、
実施例1〜20では、面抵抗が47mΩ/□以下であっ
た。
In Comparative Example 1, the adhesive strength was as low as 0.3 kg / □, but in Examples 1 to 20, the adhesive strength was 1.5 kg / □ or more. In Comparative Example 2, 25
TCR at 150C to 150C and T at -55C to 25C
Although CR was as large as 500 ppm in both cases, Examples 1 to 20
TCR at 25 ° C. to 150 ° C. and −55 ° C. to 2
The TCR at 5 ° C. was both 200 ppm or less. Further, in Comparative Example 3, although the sheet resistance was as large as 60 mΩ / □,
In Examples 1 to 20, the sheet resistance was 47 mΩ / □ or less.

【0032】このように、本実施の形態は、下記の特徴
を有する。 (イ)窒素雰囲気焼成用抵抗体ペーストとして、銅粉と
ニッケル粉の混合粉(またはCu−Ni合金粉)からな
る導電性粉末と、該導電性粉末100重量部に対し3〜
20重量部のガラス粉末および1〜10重量部の銅酸化
物粉末を、有機樹脂および溶剤からなるビヒクルに、導
電成分の割合が75〜90重量%で分散したものを用い
た。 (ロ)そして、この抵抗体ペーストを窒素雰囲気下で焼
成してCu−Ni系厚膜抵抗体4を形成した。 (ハ)特に、電極材であるCu系導体2,3を配置した
基板1の上に、(イ)の抵抗体ペーストを印刷し、その
後に窒素雰囲気下で焼成して厚膜基板を製造した。
As described above, this embodiment has the following features. (A) As a resistor paste for firing in a nitrogen atmosphere, a conductive powder composed of a mixed powder of copper powder and nickel powder (or Cu-Ni alloy powder), and 3 to 100 parts by weight of the conductive powder.
A dispersion of 20 parts by weight of glass powder and 1 to 10 parts by weight of copper oxide powder in a vehicle composed of an organic resin and a solvent with a conductive component ratio of 75 to 90% by weight was used. (B) The resistor paste was fired in a nitrogen atmosphere to form a Cu-Ni thick film resistor 4. (C) In particular, the resistor paste of (a) was printed on the substrate 1 on which the Cu-based conductors 2 and 3 as electrode materials were arranged, and then fired in a nitrogen atmosphere to produce a thick film substrate. .

【0033】このようにすると、Cu−Ni系厚膜抵抗
体4として、鉛などの環境に対し悪影響を与える物質を
使用することなく、抵抗温度係数(TCR)の小さい厚
膜抵抗体4を形成できる。 (ニ)抵抗体ペーストにおける銅とニッケルの混合比を
Cu/Ni=60/40〜80/20としたので、抵抗
温度係数(TCR)をより小さくできる。よって、本実
施形態のように温度環境の厳しい車載用とする場合に好
適なものとなる。 (ホ)抵抗体ペーストにおけるガラスの主成分がZnO
またはBaO、あるいはZnOとBaOからなり、銅酸
化物がCu2 OまたはCuO、あるいはCu2 OとCu
Oの混合物からなるので、より好ましいものとなる。 (ヘ)抵抗体ペーストにおける銅粉の粒径が0.1μm
〜2μm、ニッケル粉の粒径が0.1μm〜2μm、銅
酸化物の粒径が1μm〜10μmであるので、より好ま
しいものとなる。
Thus, the thick-film resistor 4 having a small temperature coefficient of resistance (TCR) can be formed as the Cu-Ni-based thick-film resistor 4 without using a substance having an adverse effect on the environment such as lead. it can. (D) Since the mixing ratio of copper and nickel in the resistor paste is set to Cu / Ni = 60/40 to 80/20, the temperature coefficient of resistance (TCR) can be further reduced. Therefore, it is suitable for use in a vehicle where the temperature environment is severe as in the present embodiment. (E) The main component of the glass in the resistor paste is ZnO
Or BaO, or ZnO and BaO, and the copper oxide is Cu 2 O or CuO, or Cu 2 O and Cu
Since it is made of a mixture of O, it is more preferable. (F) The particle size of the copper powder in the resistor paste is 0.1 μm
22 μm, the particle size of the nickel powder is 0.1 μm to 2 μm, and the particle size of the copper oxide is 1 μm to 10 μm, which is more preferable.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態における厚膜基板の断面図。FIG. 1 is a cross-sectional view of a thick film substrate according to an embodiment.

【図2】 従来技術を説明するための厚膜基板の断面
図。
FIG. 2 is a cross-sectional view of a thick film substrate for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1…セラミック基板、2…Cu系導体、3…Cu系導
体、4…Cu−Ni系厚膜抵抗体。
1. Ceramic substrate, 2. Cu-based conductor, 3. Cu-based conductor, 4. Cu-Ni thick film resistor.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 健児 新潟市濁川3993番地 ナミックス株式会社 内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kenji Kobayashi 3993 Narukawa, Niigata City Inside Namics Corporation

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 銅粉とニッケル粉の混合粉またはCu−
Ni合金粉からなる導電性粉末と、該導電性粉末100
重量部に対し3〜20重量部のガラス粉末および1〜1
0重量部の銅酸化物粉末を、有機樹脂および溶剤からな
るビヒクルに、導電成分の割合が75〜90重量%で分
散したことを特徴とする窒素雰囲気焼成用抵抗体ペース
ト。
1. A mixed powder of copper powder and nickel powder or Cu-
A conductive powder made of a Ni alloy powder;
3 to 20 parts by weight of glass powder and 1 to 1 part by weight
A resistor paste for firing in a nitrogen atmosphere, wherein 0 parts by weight of a copper oxide powder is dispersed in a vehicle comprising an organic resin and a solvent at a ratio of 75 to 90% by weight of a conductive component.
【請求項2】 銅とニッケルの混合比がCu/Ni=6
0/40〜80/20である請求項1記載の抵抗体ペー
スト。
2. The mixing ratio of copper and nickel is Cu / Ni = 6.
The resistor paste according to claim 1, wherein the ratio is 0/40 to 80/20.
【請求項3】 ガラスの主成分がZnOまたはBaO、
あるいはZnOとBaOからなり、銅酸化物がCu2
またはCuO、あるいはCu2 OとCuOの混合物から
なる請求項1記載の抵抗体ペースト。
3. The main component of glass is ZnO or BaO,
Alternatively, it is composed of ZnO and BaO, and the copper oxide is Cu 2 O
2. The resistor paste according to claim 1, comprising CuO or a mixture of Cu2O and CuO.
【請求項4】 銅粉の粒径が0.1μm〜2μm、ニッ
ケル粉の粒径が0.1μm〜2μm、Cu−Ni合金粉
の粒径が0.1μm〜2μm、銅酸化物の粒径が1μm
〜10μmである請求項1記載の抵抗体ペースト。
4. A copper powder having a particle size of 0.1 μm to 2 μm, a nickel powder having a particle size of 0.1 μm to 2 μm, a Cu—Ni alloy powder having a particle size of 0.1 μm to 2 μm, and a copper oxide particle size. Is 1 μm
2. The resistor paste according to claim 1, which has a thickness of 10 to 10 [mu] m.
【請求項5】 銅粉とニッケル粉の混合粉またはCu−
Ni合金粉からなる導電性粉末と、該導電性粉末100
重量部に対し3〜20重量部のガラス粉末および1〜1
0重量部の銅酸化物粉末を、有機樹脂および溶剤からな
るビヒクルに、導電成分の割合が75〜90重量%で分
散して抵抗体ペーストとし、 このペーストを窒素雰囲気下で焼成して厚膜抵抗体を形
成したことを特徴とする厚膜抵抗体の形成方法。
5. A mixed powder of copper powder and nickel powder or Cu-
A conductive powder made of a Ni alloy powder;
3 to 20 parts by weight of glass powder and 1 to 1 part by weight
0 parts by weight of a copper oxide powder is dispersed in a vehicle composed of an organic resin and a solvent at a conductive component ratio of 75 to 90% by weight to form a resistor paste, and the paste is fired in a nitrogen atmosphere to form a thick film. A method for forming a thick film resistor, comprising forming a resistor.
【請求項6】 銅とニッケルの混合比がCu/Ni=6
0/40〜80/20である請求項5記載の厚膜抵抗体
の形成方法。
6. The mixing ratio of copper and nickel is Cu / Ni = 6.
6. The method for forming a thick film resistor according to claim 5, wherein the ratio is 0/40 to 80/20.
【請求項7】 ガラスの主成分がZnOまたはBaO、
あるいはZnOとBaOからなり、銅酸化物がCu2
またはCuO、あるいはCu2 OとCuOの混合物から
なる請求項5記載の厚膜抵抗体の形成方法。
7. The main component of glass is ZnO or BaO,
Alternatively, it is composed of ZnO and BaO, and the copper oxide is Cu 2 O
Or CuO or Cu 2 O and forming method according to claim 5 thick film resistor according consisting of a mixture of CuO,.
【請求項8】 銅粉の粒径が0.1μm〜2μm、ニッ
ケル粉の粒径が0.1μm〜2μm、Cu−Ni合金粉
の粒径が0.1μm〜2μm、銅酸化物の粒径が1μm
〜10μmである請求項5記載の厚膜抵抗体の形成方
法。
8. The particle size of the copper powder is 0.1 μm to 2 μm, the particle size of the nickel powder is 0.1 μm to 2 μm, the particle size of the Cu—Ni alloy powder is 0.1 μm to 2 μm, and the particle size of the copper oxide. Is 1 μm
6. The method for forming a thick film resistor according to claim 5, wherein the thickness is from 10 to 10 [mu] m.
【請求項9】 電極材であるCu系導体を配置した基板
の上に、 銅粉とニッケル粉の混合粉またはCu−Ni合金粉から
なる導電性粉末と、該導電性粉末100重量部に対し3
〜20重量部のガラス粉末および1〜10重量部の銅酸
化物粉末を、有機樹脂および溶剤からなるビヒクルに、
導電成分の割合が75〜90重量%で分散した抵抗体ペ
ーストを印刷する工程と、 窒素雰囲気下で焼成する工程と、を備えたことを特徴と
する厚膜基板の製造方法。
9. A conductive powder comprising a mixed powder of copper powder and nickel powder or a Cu—Ni alloy powder on a substrate on which a Cu-based conductor as an electrode material is disposed, and 100 parts by weight of the conductive powder. 3
-20 parts by weight of glass powder and 1-10 parts by weight of copper oxide powder in a vehicle comprising an organic resin and a solvent,
A method for manufacturing a thick film substrate, comprising: a step of printing a resistor paste in which a conductive component is dispersed at a ratio of 75 to 90% by weight; and a step of firing in a nitrogen atmosphere.
【請求項10】 銅とニッケルの混合比がCu/Ni=
60/40〜80/20である請求項9記載の厚膜基板
の製造方法。
10. The mixing ratio of copper and nickel is Cu / Ni =
The method for producing a thick film substrate according to claim 9, wherein the thickness is 60/40 to 80/20.
【請求項11】 ガラスの主成分がZnOまたはBa
O、あるいはZnOとBaOからなり、銅酸化物がCu
2 OまたはCuO、あるいはCu2 OとCuOの混合物
からなる請求項9記載の厚膜基板の製造方法。
11. The main component of glass is ZnO or Ba.
O, or ZnO and BaO, and the copper oxide is Cu
10. The method for producing a thick film substrate according to claim 9, comprising a mixture of 2 O or CuO, or a mixture of Cu 2 O and CuO.
【請求項12】 銅粉の粒径が0.1μm〜2μm、ニ
ッケル粉の粒径が0.1μm〜2μm、Cu−Ni合金
粉の粒径が0.1μm〜2μm、銅酸化物の粒径が1μ
m〜10μmである請求項9記載の厚膜基板の製造方
法。
12. The particle size of copper powder is 0.1 μm to 2 μm, the particle size of nickel powder is 0.1 μm to 2 μm, the particle size of Cu—Ni alloy powder is 0.1 μm to 2 μm, and the particle size of copper oxide Is 1μ
The method for producing a thick film substrate according to claim 9, wherein the thickness is from 10 to 10 m.
JP08901698A 1998-04-01 1998-04-01 Resistor paste, method of forming thick film resistor, and method of manufacturing thick film substrate Expired - Lifetime JP3559160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08901698A JP3559160B2 (en) 1998-04-01 1998-04-01 Resistor paste, method of forming thick film resistor, and method of manufacturing thick film substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08901698A JP3559160B2 (en) 1998-04-01 1998-04-01 Resistor paste, method of forming thick film resistor, and method of manufacturing thick film substrate

Publications (2)

Publication Number Publication Date
JPH11288801A true JPH11288801A (en) 1999-10-19
JP3559160B2 JP3559160B2 (en) 2004-08-25

Family

ID=13959121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08901698A Expired - Lifetime JP3559160B2 (en) 1998-04-01 1998-04-01 Resistor paste, method of forming thick film resistor, and method of manufacturing thick film substrate

Country Status (1)

Country Link
JP (1) JP3559160B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104047A (en) * 2002-09-13 2004-04-02 Koa Corp Resistor composition and resistor
WO2004055836A1 (en) * 2002-12-16 2004-07-01 Koa Kabushiki Kaisha Resistive material, resistive element, resistor and method for manufacturing resistor
JP2005158563A (en) * 2003-11-27 2005-06-16 Tdk Corp Conductor paste for laminated ceramic electronic component and manufacturing method of laminate unit for laminated ceramic electronic component
JP2006066475A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Mining Co Ltd Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor
JP2015046567A (en) * 2013-07-31 2015-03-12 三ツ星ベルト株式会社 Resistor paste, manufacturing method thereof, resistor and application thereof
CN106571473A (en) * 2016-10-26 2017-04-19 济南大学 Preparation method of Cu/Cu2O/CuO three-dimensional composite material having hierarchical pore structure
DE112018004778T5 (en) 2017-08-31 2020-06-18 Koa Corporation Thick film resistor element paste and use of a thick film resistor element paste in a resistor
CN115947619A (en) * 2022-12-30 2023-04-11 深圳市爱斯强科技有限公司 Humidity-sensitive heating slurry, preparation method thereof and atomization core

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004104047A (en) * 2002-09-13 2004-04-02 Koa Corp Resistor composition and resistor
WO2004055836A1 (en) * 2002-12-16 2004-07-01 Koa Kabushiki Kaisha Resistive material, resistive element, resistor and method for manufacturing resistor
JP4569100B2 (en) * 2003-11-27 2010-10-27 Tdk株式会社 Conductor paste for multilayer ceramic electronic component and method for manufacturing multilayer unit for multilayer ceramic electronic component
WO2005057591A1 (en) * 2003-11-27 2005-06-23 Tdk Corporation Conductive paste for electrode layer of multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
KR100816787B1 (en) 2003-11-27 2008-03-25 티디케이가부시기가이샤 Conductive paste for electrode layer of multilayer ceramic electronic component and method for producing multilayer unit for multilayer ceramic electronic component
JP2005158563A (en) * 2003-11-27 2005-06-16 Tdk Corp Conductor paste for laminated ceramic electronic component and manufacturing method of laminate unit for laminated ceramic electronic component
JP2006066475A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Mining Co Ltd Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor
JP2015046567A (en) * 2013-07-31 2015-03-12 三ツ星ベルト株式会社 Resistor paste, manufacturing method thereof, resistor and application thereof
CN106571473A (en) * 2016-10-26 2017-04-19 济南大学 Preparation method of Cu/Cu2O/CuO three-dimensional composite material having hierarchical pore structure
DE112018004778T5 (en) 2017-08-31 2020-06-18 Koa Corporation Thick film resistor element paste and use of a thick film resistor element paste in a resistor
US11136257B2 (en) 2017-08-31 2021-10-05 Koa Corporation Thick-film resistive element paste and use of thick-film resistive element paste in resistor
CN115947619A (en) * 2022-12-30 2023-04-11 深圳市爱斯强科技有限公司 Humidity-sensitive heating slurry, preparation method thereof and atomization core
CN115947619B (en) * 2022-12-30 2023-09-05 深圳市爱斯强科技有限公司 Humidity-sensitive heating slurry, preparation method thereof and atomization core

Also Published As

Publication number Publication date
JP3559160B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US4493789A (en) Electroconductive paste and process for producing electroconductive metallized ceramics using the same
KR960001353B1 (en) Method for making multilayer electronic circuits
US4415624A (en) Air-fireable thick film inks
US4894184A (en) Low-temperature burnt conductive paste and method of manufacturing printed circuit board
CA1278912C (en) Overprint copper composition
JP2001243836A (en) Conductive paste and printed circuit board using it
JP4623921B2 (en) Resistive composition and resistor
JP3559160B2 (en) Resistor paste, method of forming thick film resistor, and method of manufacturing thick film substrate
CN100419918C (en) Terminal electrod composition for multilayer ceramic capacitor
US3347799A (en) Gold-palladium conductor compositions and conductors made therefrom
JP2004119692A (en) Resistor composition and resistor
JP2010010405A (en) Resistor paste, thick film resistor and method of manufacturing thick film substrate
EP0291064B1 (en) Conductive paste composition
JP4397279B2 (en) Resistive composition and resistor using the same
KR880002063B1 (en) Air-fireable thick film inks
JPH06196831A (en) Manufacture of conductive pattern for aln substrate
JP2003347102A (en) Resistance element paste, resistor, and manufacturing method thereof
JPH05128910A (en) Conductor paste
JPH0541110A (en) Conductive paste
JP2941002B2 (en) Conductor composition
JP2004119561A (en) Resistive paste and resistor
JPH08162762A (en) Glass ceramic multilayer circuit board
JP2006066475A (en) Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor
JP2002231049A (en) Conductive paste
JP2005085907A (en) Cu-ni thick-film resistor, forming method thereof, and manufacturing method of circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term