JPH0218907B2 - - Google Patents

Info

Publication number
JPH0218907B2
JPH0218907B2 JP23692486A JP23692486A JPH0218907B2 JP H0218907 B2 JPH0218907 B2 JP H0218907B2 JP 23692486 A JP23692486 A JP 23692486A JP 23692486 A JP23692486 A JP 23692486A JP H0218907 B2 JPH0218907 B2 JP H0218907B2
Authority
JP
Japan
Prior art keywords
amount
calcium
added
wastewater
oxalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23692486A
Other languages
Japanese (ja)
Other versions
JPS6391193A (en
Inventor
Masao Sobukawa
Kiwamu Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP23692486A priority Critical patent/JPS6391193A/en
Publication of JPS6391193A publication Critical patent/JPS6391193A/en
Publication of JPH0218907B2 publication Critical patent/JPH0218907B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はごみ埋立地浸透排水、産業廃水、下水
等のカルシウム含有汚水の処理方法に関するもの
である。 (従来の技術) カルシウム含有汚水の処理方法としては、用水
廃水便覧(用水廃水便覧編集委員会編、丸善(株)、
昭39年)にも記載されているように、沈澱除去
法、錯塩法、カチオン交換法等が知られている。
しかし沈澱除去法は汚水中にカセイソーダを加え
ることによりCaCO3の沈澱を生じさせるもので
あるが、汚水中に含まれるカルシウム及びその他
の共存物質の種類や濃度によつて処理能率が変化
して不安定であるうえ、PH11〜13の高アルカリで
処理するために中和のための後処理を必要とし、
薬品費が高価なものとなる欠点がある。また錯塩
法はEDTAのような錯化剤を汚水に加えること
によりカルシウムと反応させる方法であるが、他
の金属とも反応するのでカルシウム以外の金属が
多い場合には処理能率が変化して不安定となり、
またこの方法はカルシウムの除去法というよりも
マスキング法であるので、処理水が放流等により
水質変化した場合にはカルシウムが再析出してス
ケールを生ずることがある等の欠点があつた。更
にまたカチオン交換法は汚水中のSS濃度が高い
場合にはSSがカチオン交換剤を被覆して処理能
率が低下するため、SS除去のための前処理を必
要とし、設備費及びランニングコストが高くなる
欠点があつた。 (発明が解決しようとする問題点) 本発明はこのような従来の問題点を解決して、
共存物質に左右されることなく常に安定してカル
シウムを除去することができ、しかも処理費用が
安価なカルシウム含有汚水の処理方法を目的とし
て完成されたものである。 (問題点を解決するための手段) 本発明はカルシウムを含有する汚水に対して、
除去すべきCa++量に対する理論量に相当する蓚
酸またはその塩を添加したのち、Fe+++とAl+
一方または双方を含む無機凝集剤を所定の濃度と
なるまで添加し、PH5以上の条件下で凝集沈澱を
行わせることを特徴とするものである。 本発明においては、処理すべき汚水に対して、
蓚酸または蓚酸アンモニウム、蓚酸ナトリウム等
の蓚酸塩が除去すべきカルシウムイオン量に相当
する量だけ添加される。なお除去すべきカルシウ
ムイオン量とは、処理前の汚水中に含有されるカ
ルシウムイオン量から処理後の汚水中に含有され
るカルシウムイオン量を差引いたカルシウムイオ
ン量をいう。処理後の汚水中のカルシウムイオン
量は規制値や使用目的に応じて設定されるもので
あり、通常50〜100mg/に設定される。このよ
うに蓚酸をカルシウム含有汚水に添加すると次の
とおりの反応が生じ水に不溶性の蓚酸カルシウム
が生成される。(COOH)2・2H2O+Ca++
(COOH)2Ca+2H2O+2H+従つて理論量は
Ca+++40gに対して、蓚酸は126g、蓚酸アンモ
ニウムは140g、蓚酸ナトリウムは134gであり、
また濃度ベースではCa++1mg/に対して、それ
ぞれ3.15mg/、3.5mg/、3.35mg/である。
なお蓚酸の添加量とCa除去率との関係は後述の
実施例及び第1図のグラフに示されるとおりであ
つて、理論量を同程度以上を添加したときに除去
率が100%に近付く。 また汚水中に2価の鉄が共存すると次のように
反応して水に不溶性の蓚酸鉄()を生ずるため
2価の鉄イオンの除去も行なわれる。 (COOH)2・2H2O+Fe+++→(COOH)2Fe+2H2O+2H+ ところがこのようにして生成された蓚酸カルシ
ウム及蓚酸鉄()は微細な結晶であつてこのま
までは沈降分離が難しいので、本発明においては
3価のアルミニウムの一方または双方を含む無機
凝集剤が100mg/以上の濃度となるまで添加さ
れ、更に中和剤を添加してPHを5以上とした条件
下で凝集沈澱が行われる。無機凝集剤としては3
価の鉄化合物である塩化第2鉄のほか硫酸第2
鉄、3価のアルミニウム化合物である硫酸バン
土、PACなどを用いることもできる。このよう
な無機凝集剤を添加すると大きいフロツクが形成
され蓚酸カルシウムや、蓚酸鉄をその中に取込ん
で除去することが容易となる。ここで無機凝集剤
の濃度をFe+++またはAl+++として75mg/以上
としたのは、第2図に示されるように75mg/未
満ではCa除去率が60〜70%下となるためである。
なお高分子凝集剤が必要に応じて付加的に添加さ
れる。高分子凝集剤は生成した蓚酸カルシウムの
補捉にはそれ程効果がないが、無機凝集剤により
生成されたフロツクの沈降速度を高めることがで
きる。また本発明においてはNaOH等の中和剤
の添加によりPH5以上の条件下で凝集沈澱を行わ
せるが、これは第3図に示されるようにPH4以上
で塩化第2鉄が水酸化第2鉄のフロツクに変化し
て蓚酸カルシウムの粒子を捕捉するが、PH5以上
にすることによつてより確実に効果的に捕捉する
ためである。 以上の各処理薬剤の添加順序は、蓚酸または蓚
酸塩、無機凝集剤、中和剤の順序であることが好
ましいが、蓚酸カルシウムの生成はほぼ瞬間的に
起こるので、各処理薬剤のすべてを同時に添加し
ても何等支障はない。また処理薬剤添加後の凝集
操作は120rpm×5分+60rpm×10分、あるいは
60rpm×15分等の常法に従えばよく、凝集操作後
の沈澱操作も30分間で十分である。 (実施例) 次に、各処理薬剤の添加量等とCa除去率との
関係を調べるために下記の実験を行つた。 <実験1> ごみ埋立地浸透用排水であるPH6.6、SS68mg/
、Fe57.2mg/、Ca121mg/の水質の源水1
と、同じくごみ埋立地浸透排水であるPH6.7、
SS270mg/、Fe485mg/、Ca1270mg/の原
水2とをそれぞれ200容量のステンレス鋼製ド
ラム缶中に200ずつ採取し、撹拌機をセツトし
て60rpmで撹拌し、第1表に示す分量の蓚酸を添
加した。次に塩化第2鉄をFe+++濃度が100mg/
となるよう添加するとともに高分子凝集剤を1
mg/添加し、NaOHを表中に記した量ずつ加
えてPHを7前後に調整して60rpm×15分の撹拌を
継続した。撹拌終了後30分間静置し、上澄液をサ
イホンで分離して処理水とし、その水質を分析し
て表中に記した。これにより、蓚酸を理論量と同
程度以上添加したときにCa除去率が100%に近付
くことが分かる。 <実験2> 次に同上の原水1、原水2について蓚酸の添加
量を理論量の0.94倍及び0.99倍に固定し、無機凝
集剤としての塩化第2鉄の添加量を第2表に記し
たとおり変化させて同様に凝集沈澱を行わせ、処
理水の水質を分析した。これにより無機凝集剤の
添加量をFe+++として100mg/以上としたとき
Ca除去率が100%に近付くことが分かる。 <実験3> 無機凝集剤としてPACを用い、そのAl+++とし
ての添加量を第3表に記したとおり変化させて<
実験2>と同様にその影響を調べた。PACを用
いた場合にもAl+++として75mg/以上を添加す
ればFeCl3を用い場合と同様に優れたCa除去率が
達成されることが分かる。 〈実験4〉 次に蓚酸の添加量と無機凝集剤の添加量とを固
定し、NaOHの添加量を変化させてPHを第3表
に記したとおり変化させてこれによるCa除去率
の変動を調べた。これにより、PHが5以上のとき
にCa除去率が100%に近付くことが分かる。 <比較例> 上記の実験に用いたと同一の原水1、原水2を
従来技術として示した沈澱除去法により処理し
た。即ち、原水をステンレス鋼製ドラム缶中に
200入れ、60rpmで撹拌し、第5表に示す分量
のNaOH(16%)を添加して所定のPHに調整した
うえ15分間撹拌を継続した。その後30分間静置
し、上澄液をサイホンにて別の200容量のステ
ンレス鋼製ドラム缶に移し、更に第5表に示す分
量のH2SO4(20%)を添加し、PHを7.5〜8に調整
して処理水とした。この従来法に比較して本発明
方法によれば優れたCa除去率が達成されること
が明らかであろう。また従来法は多量の薬品を必
要とするので原水1m3を処理するに要する費用が
本発明方法に比較して原水1の場合には約10倍、
原水2の場合には約2倍となり、ランニングコス
トの点においても本発明の利点は著しいものがあ
る。
(Field of Industrial Application) The present invention relates to a method for treating calcium-containing sewage such as wastewater from a landfill, industrial wastewater, and sewage. (Prior art) As a method for treating calcium-containing wastewater, the Water and Wastewater Handbook (edited by the Water and Wastewater Handbook Editorial Committee, Maruzen Co., Ltd.),
As described in 1962), the precipitation removal method, complex salt method, cation exchange method, etc. are known.
However, in the precipitation removal method, CaCO 3 is precipitated by adding caustic soda to the wastewater, but the treatment efficiency changes depending on the type and concentration of calcium and other coexisting substances contained in the wastewater, resulting in inefficiency. In addition to being stable, it requires post-treatment for neutralization because it is treated with a high alkali with a pH of 11 to 13.
The disadvantage is that the drug costs are high. In addition, the complex salt method is a method in which a complexing agent such as EDTA is added to wastewater to react with calcium, but it also reacts with other metals, so if there are many metals other than calcium, the treatment efficiency changes and becomes unstable. Then,
Furthermore, since this method is a masking method rather than a method for removing calcium, it has drawbacks such as when the quality of the treated water changes due to discharge or the like, calcium may re-precipitate and form scale. Furthermore, in the cation exchange method, when the SS concentration in wastewater is high, the SS coats the cation exchange agent and the treatment efficiency decreases, so pre-treatment is required to remove SS, and the equipment cost and running cost are high. There was a drawback. (Problems to be solved by the invention) The present invention solves these conventional problems,
This method was developed with the aim of providing a method for treating calcium-containing sewage that can always and stably remove calcium without being affected by coexisting substances and that is inexpensive to process. (Means for solving the problems) The present invention provides solutions for wastewater containing calcium.
After adding oxalic acid or its salt in a theoretical amount relative to the amount of Ca ++ to be removed, an inorganic flocculant containing one or both of Fe +++ and Al + is added to a predetermined concentration, and the pH is 5 or higher. This method is characterized by coagulation and precipitation under the following conditions. In the present invention, for wastewater to be treated,
Oxalic acid or an oxalate salt such as ammonium oxalate or sodium oxalate is added in an amount corresponding to the amount of calcium ions to be removed. Note that the amount of calcium ions to be removed refers to the amount of calcium ions obtained by subtracting the amount of calcium ions contained in the wastewater after treatment from the amount of calcium ions contained in the wastewater before treatment. The amount of calcium ions in wastewater after treatment is set according to regulatory values and intended use, and is usually set at 50 to 100 mg/. When oxalic acid is added to calcium-containing wastewater in this manner, the following reaction occurs to produce water-insoluble calcium oxalate. (COOH) 2・2H 2 O+Ca ++
(COOH) 2 Ca+2H 2 O+2H + Therefore, the theoretical amount is
For 40 g of Ca +++ , oxalic acid is 126 g, ammonium oxalate is 140 g, and sodium oxalate is 134 g.
In addition, on a concentration basis, they are 3.15 mg/, 3.5 mg/, and 3.35 mg/, respectively, for 1 mg/ of Ca ++ .
The relationship between the amount of oxalic acid added and the Ca removal rate is as shown in the Examples described below and the graph in FIG. 1, and the removal rate approaches 100% when the same or more theoretical amount is added. Further, when divalent iron coexists in wastewater, the following reaction occurs to produce water-insoluble iron oxalate (2), so that divalent iron ions are also removed. (COOH) 2・2H 2 O+Fe +++ → (COOH) 2 Fe+2H 2 O+2H + However, the calcium oxalate and iron oxalate () produced in this way are fine crystals and are difficult to separate by sedimentation as they are. In the present invention, an inorganic flocculant containing one or both of trivalent aluminum is added to a concentration of 100 mg or more, and coagulation and precipitation are performed under conditions where a neutralizing agent is further added to raise the pH to 5 or more. be exposed. 3 as an inorganic flocculant
In addition to ferric chloride, which is a high-value iron compound, ferric sulfate
It is also possible to use iron, trivalent aluminum compounds such as aluminum sulfate, PAC, and the like. When such an inorganic flocculant is added, a large floc is formed, and calcium oxalate and iron oxalate can be easily taken into the floc and removed. The reason why the concentration of the inorganic flocculant was set to 75 mg/or more as Fe +++ or Al +++ is because, as shown in Figure 2, if it is less than 75 mg/, the Ca removal rate will drop by 60 to 70%. It is.
Note that a polymer flocculant may be additionally added as necessary. Although polymeric flocculants are not very effective in scavenging the produced calcium oxalate, inorganic flocculants can increase the sedimentation rate of the flocs produced. In addition, in the present invention, coagulation and precipitation are carried out under conditions of pH 5 or higher by adding a neutralizing agent such as NaOH, but as shown in Figure 3, ferric chloride becomes ferric hydroxide at pH 4 or higher. The purpose is to trap particles of calcium oxalate more reliably and effectively by setting the pH to 5 or higher. It is preferable that the above treatment chemicals be added in the following order: oxalic acid or oxalate, an inorganic flocculant, and a neutralizing agent. However, since the production of calcium oxalate occurs almost instantaneously, all of the treatment chemicals are added at the same time. There is no problem in adding it. In addition, the flocculation operation after adding treatment chemicals is 120 rpm x 5 minutes + 60 rpm x 10 minutes, or
It is sufficient to follow a conventional method such as 60 rpm x 15 minutes, and 30 minutes is sufficient for the precipitation operation after the flocculation operation. (Example) Next, the following experiment was conducted to investigate the relationship between the amount of each treatment agent added and the Ca removal rate. <Experiment 1> PH6.6, SS68mg/wastewater for infiltrating a garbage landfill
, Fe57.2mg/, Ca121mg/ source water 1
and PH6.7, which is also wastewater from a landfill.
Raw water 2 containing 270 mg of SS, 485 mg of Fe, and 1270 mg of Ca was collected in 200-capacity stainless steel drums, a stirrer was set, the mixture was stirred at 60 rpm, and oxalic acid was added in the amount shown in Table 1. . Next, add ferric chloride to Fe +++ concentration of 100mg/
At the same time, add 1 part of polymer flocculant.
The pH was adjusted to around 7 by adding NaOH in the amount shown in the table, and stirring was continued at 60 rpm for 15 minutes. After stirring, the mixture was allowed to stand for 30 minutes, and the supernatant liquid was separated using a siphon to obtain treated water.The quality of the water was analyzed and recorded in the table. This shows that the Ca removal rate approaches 100% when oxalic acid is added in an amount equal to or greater than the theoretical amount. <Experiment 2> Next, for raw water 1 and raw water 2, the amount of oxalic acid added was fixed at 0.94 times and 0.99 times the theoretical amount, and the amount of ferric chloride added as an inorganic flocculant was listed in Table 2. The water quality of the treated water was analyzed by performing coagulation and sedimentation in the same manner. As a result, when the amount of inorganic flocculant added is 100mg/or more as Fe +++
It can be seen that the Ca removal rate approaches 100%. <Experiment 3> Using PAC as an inorganic flocculant, the amount added as Al +++ was varied as shown in Table 3.
The effect was investigated in the same manner as in Experiment 2>. It can be seen that when PAC is used, as well as when FeCl 3 is used, an excellent Ca removal rate can be achieved if 75 mg/or more of Al +++ is added. <Experiment 4> Next, the amount of oxalic acid added and the amount of inorganic flocculant added were fixed, and the amount of NaOH added was changed to change the pH as shown in Table 3, and the resulting fluctuations in the Ca removal rate were investigated. Examined. This shows that the Ca removal rate approaches 100% when the pH is 5 or higher. <Comparative Example> Raw water 1 and raw water 2, which were the same as those used in the above experiment, were treated by the precipitate removal method shown as the prior art. That is, raw water is placed in a stainless steel drum.
200, stirred at 60 rpm, added NaOH (16%) in the amount shown in Table 5 to adjust the pH to a predetermined value, and continued stirring for 15 minutes. After that, it was left to stand still for 30 minutes, and the supernatant liquid was transferred using a siphon to another 200-capacity stainless steel drum, and the amount of H 2 SO 4 (20%) shown in Table 5 was added to adjust the pH to 7.5-7.5. 8 and used as treated water. It is clear that a superior Ca removal rate can be achieved by the method of the present invention compared to this conventional method. In addition, since the conventional method requires a large amount of chemicals, the cost required to treat 1 m 3 of raw water is about 10 times that of the method of the present invention in the case of raw water 1.
In the case of raw water 2, it is approximately twice as high, and the present invention has a significant advantage in terms of running costs as well.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (発明の効果) 本発明は以上の説明からも明らかなように、共
存物質の種類や濃度にほとんど影響されることな
く汚水中のカルシウムを効率的かつ安定的に除去
できるものであり、カルシウムのほかに2価の鉄
やSSも処理できること、処理費用が従来法より
も安価であること等の利点をも有するものであ
る。よつて本発明は従来の問題点を解消したカル
シウム含有汚水の処理方法として、産業の発展に
寄与するところは極めて大きいものである。
[Table] (Effects of the Invention) As is clear from the above explanation, the present invention is capable of efficiently and stably removing calcium from wastewater almost unaffected by the types and concentrations of coexisting substances. This method also has the advantages of being able to treat divalent iron and SS in addition to calcium, and that the treatment cost is lower than that of conventional methods. Therefore, the present invention greatly contributes to the development of industry as a method for treating calcium-containing wastewater that solves the conventional problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は理論量に対する蓚酸添加倍率とCa除
去率との関係を示すグラフ、第2図は塩化第2鉄
とCa除去率との関係を示すグラフ、第3図は処
理PHとCa除去率との関係を示すグラフである。
Figure 1 is a graph showing the relationship between the addition ratio of oxalic acid and Ca removal rate relative to the theoretical amount, Figure 2 is a graph showing the relationship between ferric chloride and Ca removal rate, and Figure 3 is a graph showing the relationship between treatment PH and Ca removal rate. It is a graph showing the relationship between

Claims (1)

【特許請求の範囲】 1 カルシウムを含有する汚水に対して、除去す
べきCa++量に対する理論量に相当する蓚酸また
はその塩を添加したのち、Fe+++とAl+++の一方
または双方を含む無機凝集剤を所定の濃度となる
まで添加し、PH5以上の条件下で凝集沈澱を行わ
せることを特徴とするカルシウム含有汚水の処理
方法。 2 無機凝集剤の濃度をFe+++またはAl+++とし
て75mg/とした特許請求の範囲第1項記載のカ
ルシウム含有汚水の処理方法。
[Claims] 1. After adding oxalic acid or its salt in a theoretical amount to the amount of Ca ++ to be removed to wastewater containing calcium, one of Fe +++ and Al +++ or A method for treating calcium-containing wastewater, which comprises adding an inorganic flocculant containing both to a predetermined concentration, and coagulating and precipitating it under conditions of pH 5 or higher. 2. The method for treating calcium-containing wastewater according to claim 1, wherein the concentration of the inorganic flocculant is 75 mg/Fe +++ or Al +++ .
JP23692486A 1986-10-03 1986-10-03 Treatment of sewage containing calcium Granted JPS6391193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23692486A JPS6391193A (en) 1986-10-03 1986-10-03 Treatment of sewage containing calcium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23692486A JPS6391193A (en) 1986-10-03 1986-10-03 Treatment of sewage containing calcium

Publications (2)

Publication Number Publication Date
JPS6391193A JPS6391193A (en) 1988-04-21
JPH0218907B2 true JPH0218907B2 (en) 1990-04-27

Family

ID=17007769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23692486A Granted JPS6391193A (en) 1986-10-03 1986-10-03 Treatment of sewage containing calcium

Country Status (1)

Country Link
JP (1) JPS6391193A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100155B2 (en) * 1987-04-15 1995-11-01 株式会社クボタ Organic wastewater treatment method
JP4342119B2 (en) * 2000-04-06 2009-10-14 株式会社神戸製鋼所 Protective cover plate during drilling and printed wiring board drilling method using the same

Also Published As

Publication number Publication date
JPS6391193A (en) 1988-04-21

Similar Documents

Publication Publication Date Title
JP2683991B2 (en) Dyeing wastewater treatment method
JP2004141799A (en) Silica-containing waste water treatment method
JP4374636B2 (en) Treatment method of waste liquid containing heavy metal complex
JP4863694B2 (en) Method and apparatus for fluorinating chelating agent-containing water
JP4351867B2 (en) Fluorine or phosphorus-containing water treatment equipment
US5451327A (en) Compound and method for treating water containing metal ions and organic and/or inorganic impurities
JP2002316173A (en) Method for treating wastewater containing arsenic and hydrogen peroxide
JPS59166290A (en) Method for removing harmful component in waste water of smoke scrubbing
JP3642516B2 (en) Method and apparatus for removing COD components in water
JP3334786B2 (en) Treatment method for wastewater containing insoluble and soluble lead, chromium and zinc
JPH0218907B2 (en)
KR100395476B1 (en) A manufacturing method of a organic-inorganic polymeric flocculant for a waste water treatment
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
JP4034218B2 (en) Wastewater treatment method
JPS61161191A (en) Treatment of heavy metal ion-containing solution
JPS6339307B2 (en)
JP4110295B2 (en) Method for simultaneously treating copper etching waste liquid and resist waste liquid and chemicals used therefor
JPH03186393A (en) Treatment of waste water containing fluorine
JPH0141110B2 (en)
JP4407236B2 (en) Treatment method of wastewater containing antimony
JPH0460717B2 (en)
JP2003260475A (en) Method for removing and recovering copper by treating wastewater and chemical agent used therein
JP4348116B2 (en) Fluorine or phosphorus-containing water treatment equipment
JP2003047972A (en) Method for treating fluorine-containing wastewater
JP3501843B2 (en) Treatment of oil-containing wastewater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees