JPH02188930A - Field-effect transistor and manufacture thereof - Google Patents

Field-effect transistor and manufacture thereof

Info

Publication number
JPH02188930A
JPH02188930A JP827589A JP827589A JPH02188930A JP H02188930 A JPH02188930 A JP H02188930A JP 827589 A JP827589 A JP 827589A JP 827589 A JP827589 A JP 827589A JP H02188930 A JPH02188930 A JP H02188930A
Authority
JP
Japan
Prior art keywords
semiconductor layer
mesa
gate electrode
active layer
mesa structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP827589A
Other languages
Japanese (ja)
Inventor
Kenji Otobe
健二 乙部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP827589A priority Critical patent/JPH02188930A/en
Publication of JPH02188930A publication Critical patent/JPH02188930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent an active layer from coming into direct contact with a gate electrode and to prevent a gate leakage current from flowing while an FET is being operated by a method wherein an insulating film is laid between the active layer exposed at a side wall of a mesa structure part and the gate electrode. CONSTITUTION:An active layer 2 and a semiconductor layer 3 on it are provided in a mesa structure part which has been formed for element isolation use on a substrate 1; the semiconductor layer 3 forms a recess structure 11 after it has been made thin down to a prescribed thickness between a source electrode and a drain electrode 5, 6 which have been formed on said semiconductor layer 3; and a field-effect transistor is formed after a gate electrode 7 has traversed a part between the source electrode and the drain electrode 5, 6 and has come into Schottky contact with said semiconductor layer 3 in the recess structure 11. In this transistor, insulating films 21, 22 are laid between the active layer 2 exposed at side walls of said mesa structure part and the gate electrode 7. For example, inuslating films 21, 22 composed of SiNx, SiO2 or the like are laid between a gate electrode 7 and inverted-mesa-shaped side-wall parts of a mesa structure part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電界効果型トランジスタとその製造方法に関す
るもので、特にメサ構造によって素子分離を行なうもの
に使用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a field effect transistor and a method for manufacturing the same, and is particularly used for device isolation using a mesa structure.

〔従来の技術〕[Conventional technology]

エピタキシャル成長層を積み重ねて形成される電界効果
型トランジスタ(FET)は、素子部分をメサ構造とす
ることで素子分離(アイソレーション)が図られる。第
2図は従来素子の構造を示し、同図(a)は平面図、同
図(b)、(C)はそれぞれA  −A  線、A2 
 A2線断面図であ1す る。図示の通り、半絶縁性のGaAsからなる基板1の
上にはn+型GaAsからなる動作層2、n−型GaA
sからなるショットキーコンタクト層3およびn+型G
aAsからなるオーミックコンタクト層4が順次エピタ
キシャル成長法で積層され、これがメサエッチングされ
てメサ構造部10を形成している。メサ構造部10の上
にはソース電極5およびドレイン電極6がそれぞれ形成
され、これらの間のメサ構造部10はエツチングによっ
て掘り込まれてリセス構造部11が形成されている。そ
して、リセス構造部11のショットキーコンタクト層3
にはゲート電極7がショットキー接触して設けられてい
る。
In a field effect transistor (FET) formed by stacking epitaxial growth layers, device isolation is achieved by forming the device portion into a mesa structure. Figure 2 shows the structure of a conventional element, with (a) being a plan view, and (b) and (C) being the A-A line and the A2 line, respectively.
1 in the cross-sectional view taken along line A2. As shown in the figure, on a substrate 1 made of semi-insulating GaAs, there is an active layer 2 made of n+ type GaAs, and an active layer 2 made of n-type GaAs.
Schottky contact layer 3 consisting of s and n+ type G
An ohmic contact layer 4 made of aAs is sequentially laminated by epitaxial growth, and this is mesa-etched to form a mesa structure 10. A source electrode 5 and a drain electrode 6 are respectively formed on the mesa structure 10, and the mesa structure 10 between these is etched to form a recess structure 11. Then, the Schottky contact layer 3 of the recessed structure portion 11
A gate electrode 7 is provided in Schottky contact.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第2図に示す従来素子では、n+型動作
層2がメサ構造部10の逆メサ状の側壁部で露出してお
り、この上にゲート電極7が設けられているため、同図
(C)のように動作層2とゲート電極7が接触してしま
う。従って、FETの動作中にゲートリーク電流が流れ
てしまい、ゲート耐圧の低下やショットキー特性の低下
を招き、FETの特性を劣化させる。また、上記のよう
なゲートリーク電流はステップドープ型FETだけでな
く、高電子移動度トランジスタ(H1gh1?Icct
ron Nobility Translstor ;
 HE M T )においても同様に生じる。これは、
メサ構造部10の側壁部で二次元電子ガス層(動作層)
とゲート電極が接触するためである。
However, in the conventional device shown in FIG. 2, the n+ type operating layer 2 is exposed at the inverted mesa-shaped side wall of the mesa structure 10, and the gate electrode 7 is provided on this. As shown in C), the active layer 2 and the gate electrode 7 come into contact with each other. Therefore, a gate leakage current flows during operation of the FET, resulting in a decrease in gate breakdown voltage and Schottky characteristics, thereby deteriorating the characteristics of the FET. In addition, the gate leakage current as described above is caused not only by step-doped FETs but also by high electron mobility transistors (H1gh1?Icct
ron Nobility Translator;
The same occurs in HE M T ). this is,
Two-dimensional electron gas layer (operating layer) on the side wall of mesa structure 10
This is because the gate electrode is in contact with the gate electrode.

本発明は、このような課題を解決することを目的として
いる。
The present invention aims to solve such problems.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る電界効果型トランジスタは、基板上で素子
分離のため形成されたメサ構造部に動作層およびその上
の半導体層(例えばショットキーコンタクト層とオーミ
ックコンタクト層)を有し、この半導体層は当該半導体
層上に形成されたソースおよびドレイン電極間で所定の
厚さまで薄くされてリセス構造をなし、ゲート電極がソ
ースおよびドレイン電極間を横切ってリセス構造中のシ
ョットキーコンタクト層上に形成された電界効果型トラ
ンジスタにおいて、メサ構造部の逆メサ状側壁部で露出
する動作層とゲート電極の間には絶縁膜が介在されてい
ることを特徴とする。
A field effect transistor according to the present invention has an active layer and a semiconductor layer thereon (for example, a Schottky contact layer and an ohmic contact layer) in a mesa structure formed on a substrate for element isolation, and this semiconductor layer is thinned to a predetermined thickness between the source and drain electrodes formed on the semiconductor layer to form a recessed structure, and the gate electrode is formed on the Schottky contact layer in the recessed structure across between the source and drain electrodes. The field-effect transistor is characterized in that an insulating film is interposed between the gate electrode and the active layer exposed at the inverted mesa-shaped sidewall of the mesa structure.

また、本発明に係る電界効果型トランジスタの製造方法
は、動作層およびその上の半導体層(例えばショットキ
ーコンタクト層とオーミックコンタクト層)を含み、側
壁で動作層が露出したメサ構造部を基板上に形成する第
1の工程と、メサ構造部の逆メサ状の側壁部に絶縁膜を
形成する第2の工程と、メサ構造部の半導体層をソース
およびドレイン電極形成領域間でエツチングすることに
より所定の厚さまで薄くし、リセス構造とする第3の工
程と、ソースおよびドレイン電極形成領域間を横切るゲ
ート電極をリセス構造中のショットキーコンタクト層上
に形成する第4の工程とを備えることを特徴とする。
Further, the method for manufacturing a field effect transistor according to the present invention includes a mesa structure including an active layer and a semiconductor layer thereon (for example, a Schottky contact layer and an ohmic contact layer), and in which the active layer is exposed on the sidewall, on a substrate. A second step of forming an insulating film on the inverted mesa-shaped sidewalls of the mesa structure, and etching the semiconductor layer of the mesa structure between the source and drain electrode formation regions. A third step of reducing the thickness to a predetermined thickness to form a recessed structure, and a fourth step of forming a gate electrode across the source and drain electrode forming regions on the Schottky contact layer in the recessed structure. Features.

〔作用〕[Effect]

本発明によれば、メサ構造部の逆メサ状側壁部には絶縁
膜が形成され、この上にゲート電極が設けられることに
なるので、動作層とゲート電極が直接に接触することが
ない。
According to the present invention, an insulating film is formed on the inverted mesa-shaped side wall portion of the mesa structure portion, and a gate electrode is provided on the insulating film, so that the active layer and the gate electrode do not come into direct contact with each other.

〔実施例〕〔Example〕

以下、添付図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は実施例に係るステップドープ型FETの製造工
程別素子断面図であり、同図(a)〜(f)において左
の図は第2図のA  −A1線斯■ 面、右の図は第2図のA 2 ””” A 2線断面に
対応している。
FIG. 1 is a cross-sectional view of the step-doped FET according to the embodiment according to the manufacturing process. In FIG. The figure corresponds to the cross section taken along line A 2 """ A 2 in FIG.

本発明に係る電界効果型トランジスタは第1図(f)に
示す如く、基板1上のメサ構造部10に形成されている
。すなわち、メサ構造部10の順メサ状側壁部31にソ
ース電極5およびドレイン電極6が形成されてオーミッ
クコンタクト層4と接触し、これらの電極5.6間のオ
ーミックコンタクト層4の全部およびショットキーコン
タクト層3の一部が除去されてリセス構造部11が形成
される。そして、このリセス構造部11においてソース
電極5とドレイン電極6の間を横切ってゲート電極7が
形成されるが、このゲート電極7とメサ構造部10の逆
メサ状側壁部32との間には、SiN  あるいはS 
t O2等の絶縁膜21.22が介在される。この構造
によれば、動作層2とゲート電極7が接することはない
ので、FETの動作中にゲートリーク電流が流れたりす
ることはない。
The field effect transistor according to the present invention is formed in a mesa structure 10 on a substrate 1, as shown in FIG. 1(f). That is, the source electrode 5 and the drain electrode 6 are formed on the forward mesa-shaped side wall part 31 of the mesa structure part 10 and are in contact with the ohmic contact layer 4, and the entire ohmic contact layer 4 between these electrodes 5 and 6 and the Schottky A portion of the contact layer 3 is removed to form a recessed structure 11. A gate electrode 7 is formed across the source electrode 5 and the drain electrode 6 in this recessed structure 11, but between this gate electrode 7 and the inverted mesa-shaped sidewall 32 of the mesa structure 10. , SiN or S
Insulating films 21, 22 such as tO2 are interposed. According to this structure, the active layer 2 and the gate electrode 7 do not come into contact with each other, so that no gate leakage current flows during the operation of the FET.

ここで、絶縁膜はこの逆メサ状側壁部32に設けられて
いれば、ゲートリーク電流を防止する上では十分であり
、他の部分において基板1とゲート電極7が接していて
もよい。しかしながら、第1図(f)のように絶縁膜を
下側の第1絶縁膜21と上側の第2絶縁膜22により形
成すれば、製造中の熱工程(合金化等の工程)での第1
絶縁膜21の割れ等を防止することができる。なぜなら
、第1絶縁膜21は後述のように厚く堆積されたSiN
  等の膜をエッチバックして形成しているので、この
第1絶縁膜21の上に保護用の第2絶縁膜22を設けな
いと、熱的に割れや欠けが生じやすいからである。
Here, if the insulating film is provided on this inverted mesa-shaped side wall portion 32, it is sufficient to prevent gate leakage current, and the substrate 1 and the gate electrode 7 may be in contact with each other at other portions. However, if the insulating film is formed by the first insulating film 21 on the lower side and the second insulating film 22 on the upper side as shown in FIG. 1
Cracks in the insulating film 21 can be prevented. This is because the first insulating film 21 is made of thickly deposited SiN as will be described later.
This is because if the protective second insulating film 22 is not provided on the first insulating film 21, thermal cracking or chipping is likely to occur.

上記のFETは、例えば第1図のように製造される。The above FET is manufactured, for example, as shown in FIG.

まず、例えば半絶縁性のGaAsからなる基板1を用意
し、この上にエピタキシャル成長法を用いて動作層2、
ショットキーコンタクト層3およびオーミックコンタク
ト層4を枯層する。ここで、動作層2は不純物濃度が3
 X 10 ”am−3程度で厚さが150A程度のn
 型GaAsからなり、ショットキーコンダクト層3は
不純物濃度が1×1017、、−3程度で厚さが400
A程度のn−型GaAsからなり、オーミックコンタク
ト層4は不純物濃度が5×1018CI11−3程度で
厚さが1000A程度のn+型GaAsからなる。次に
、フォトレジスト膜等でマスク(図示せず)を形成して
3000A程度のメサエッチングを施し、第1図(a)
のようなメサ構造部・10を形成する。
First, a substrate 1 made of, for example, semi-insulating GaAs is prepared, and an active layer 2 is formed on the substrate 1 by epitaxial growth.
The Schottky contact layer 3 and the ohmic contact layer 4 are dried. Here, the active layer 2 has an impurity concentration of 3
x 10” am-3 or so with a thickness of about 150A
The Schottky conductive layer 3 is made of GaAs type, and has an impurity concentration of about 1×1017, -3 and a thickness of 400 nm.
The ohmic contact layer 4 is made of n+ type GaAs with an impurity concentration of about 5×10 18 CI 11 −3 and a thickness of about 1000 Å. Next, a mask (not shown) is formed with a photoresist film or the like, and mesa etching of about 3000A is performed, as shown in FIG. 1(a).
A mesa structure 10 is formed.

図示の通り、メサ構造部10は基板1の結晶の方位に応
じて、一方の両側に順メサ状側壁部31、他方の両側に
逆メサ状側壁部32を有することになる。
As shown in the figure, the mesa structure 10 has forward mesa-shaped sidewalls 31 on one both sides and inverted mesa-shaped sidewalls 32 on the other both sides, depending on the crystal orientation of the substrate 1.

次に、上記のようにメサ構造によってアイソレーション
が施された基板1上に、第1絶縁膜21としてのSiN
  を堆積する。この第1絶縁膜21はS 102等で
あってもよいが、その厚さはメサ構造部10の高さと同
程度にする(第1図(b)図示)。また、堆積法として
はプラズマCV D (Chea+Ical Vapo
r Deposition )法やスパッタ法等を用い
得るが、逆メサ状側壁部32においても比較的強い膜質
が得られるような方法が望ましい。
Next, a SiN film as a first insulating film 21 is formed on the substrate 1 which has been isolated by the mesa structure as described above.
Deposit. This first insulating film 21 may be made of S102 or the like, but its thickness is made to be approximately the same as the height of the mesa structure 10 (as shown in FIG. 1(b)). In addition, as a deposition method, plasma CVD (Chea+Ical Vapo
Although a method such as a sputtering method or a sputtering method may be used, it is desirable to use a method that allows a relatively strong film quality to be obtained even on the inverted mesa-shaped side wall portion 32.

次に、RI E (Reactive Jon Etc
hing)法により第1絶縁膜21を除去(エッチバッ
ク)すると、メサ構造部10の順メサ状側壁部31は露
出され、逆メサ状側壁部32には第1絶縁膜21が残存
することになる(第1図(C)図示)。しかる後、表面
保護のために第2絶縁膜22を1500A程度の厚さで
堆積すると、第1図(d)に示す構造が得られる。
Next, RI E (Reactive Jon Etc.
When the first insulating film 21 is removed (etched back) by the etch-back method, the forward mesa-shaped sidewalls 31 of the mesa structure 10 are exposed, and the first insulating film 21 remains on the reverse mesa-shaped sidewalls 32. (as shown in FIG. 1(C)). Thereafter, a second insulating film 22 is deposited to a thickness of about 1500 Å for surface protection, resulting in the structure shown in FIG. 1(d).

次に、フォトレジストからなる別のマスク(図示せず)
を用いて、RIE法にょリセス構造部10の順メサ状側
壁部31で第2絶縁膜22を除去し、ソース電極5およ
びドレイン電極6の形成領域でメサ構造部10を露出さ
せる。そして、リフトオフ法によりソース電極5および
ドレイン電極6を形成すると、第1図(e)示す構造が
得られる。
Next, another mask consisting of photoresist (not shown)
Using the RIE method, the second insulating film 22 is removed from the forward mesa-shaped sidewall portion 31 of the recessed structure portion 10, and the mesa structure portion 10 is exposed in the formation region of the source electrode 5 and drain electrode 6. Then, by forming the source electrode 5 and drain electrode 6 by the lift-off method, the structure shown in FIG. 1(e) is obtained.

次に、フォトレジストからなる更に別のマスク(図示せ
ず)を用いて、ソース電極5とドレイン電極6の間のメ
サ構造部10上の第2絶縁膜22をR1・E法等で除去
し、次にオーミックコンタクト層4とショットキーコン
タクト層3のエツチングを行なう。ここで、ショットキ
ーコンタクト層3のエツチングは一定の厚さでこれが残
存するように行ない、これによりメサ構造部10にリセ
ス構造部11が形成される。しかる後、リフトオフ法を
用いてゲート電極7を形成すると、第1図(f)の構造
が得られることになる。
Next, using yet another mask (not shown) made of photoresist, the second insulating film 22 on the mesa structure 10 between the source electrode 5 and the drain electrode 6 is removed by R1/E method or the like. Then, ohmic contact layer 4 and Schottky contact layer 3 are etched. Here, the Schottky contact layer 3 is etched so that it remains at a constant thickness, thereby forming a recess structure 11 in the mesa structure 10. Thereafter, when the gate electrode 7 is formed using the lift-off method, the structure shown in FIG. 1(f) will be obtained.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明した通り本発明によれば、メサ構造部
の逆メサ状側壁部には絶縁膜が形成され、この上にゲー
ト電極が設けられることになるので、動作層とゲート電
極が直接に接触することがない。
As described above in detail, according to the present invention, an insulating film is formed on the inverted mesa-shaped side wall of the mesa structure, and a gate electrode is provided on this, so that the active layer and the gate electrode are directly connected to each other. Never come into contact with.

このため、ゲート耐圧、n値、ΦB等のショットキー特
性が優れた電界効果型トランジスタが得られる。このよ
うな電界効果型トランジスタは、特に高周波での雑音特
性に優れている。
Therefore, a field effect transistor with excellent Schottky characteristics such as gate breakdown voltage, n value, and ΦB can be obtained. Such field effect transistors have excellent noise characteristics, especially at high frequencies.

1・・・基板、2・・・動作層、3・・・ショットキー
コンタクト層、4・・・オーミックコンタクト層、5・
・・ソース電極、6・・・ドレイン電極、7・・・ゲー
ト電極、10・・・メサ構造部、11・・・リセス構造
部、21・・・第1絶縁膜、22・・・第2絶縁膜。
DESCRIPTION OF SYMBOLS 1... Substrate, 2... Operating layer, 3... Schottky contact layer, 4... Ohmic contact layer, 5...
... Source electrode, 6... Drain electrode, 7... Gate electrode, 10... Mesa structure, 11... Recess structure, 21... First insulating film, 22... Second Insulating film.

特許出願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  樹Patent applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney Yoshi Itsuki Hase

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電界効果型トランジスタを製造す
る工程別素子断面図、第2図は従来素子の構造を示す図
である。
FIG. 1 is a cross-sectional view of a device according to steps for manufacturing a field effect transistor according to the present invention, and FIG. 2 is a diagram showing the structure of a conventional device.

Claims (1)

【特許請求の範囲】 1、基板上で素子分離のため形成されたメサ構造部に動
作層およびその上の半導体層を有し、この半導体層は当
該半導体層上に形成されたソースおよびドレイン電極間
で所定の厚さまで薄くされてリセス構造をなし、ゲート
電極が前記ソースおよびドレイン電極間を横切って前記
リセス構造中の前記半導体層にショットキー接触して形
成された電界効果型トランジスタにおいて、 前記メサ構造部の側壁で露出する前記動作層と前記ゲー
ト電極の間には絶縁膜が介在されていることを特徴とす
る電界効果型トランジスタ。 2、前記動作層は高不純物濃度層である請求項1記載の
電界効果型トランジスタ。 3、前記動作層は二次元電子ガスを有する層である請求
項1記載の電界効果型トランジスタ。 4、動作層およびその上の半導体層を含み、側壁で前記
動作層が露出したメサ構造部を基板上に形成する第1の
工程と、 前記メサ構造部の逆メサ状の側壁部に絶縁膜を形成する
第2の工程と、 前記メサ構造部の前記半導体層をソースおよびドレイン
電極形成領域間でエッチングすることにより所定の厚さ
まで薄くし、リセス構造とする第3の工程と、 前記ソースおよびドレイン電極形成領域間を横切るゲー
ト電極を前記リセス構造中の前記半導体層にショットキ
ー接触して形成する第4の工程と、を備えることを特徴
とする電界効果型トランジスタの製造方法。
[Claims] 1. A mesa structure formed on a substrate for device isolation has an active layer and a semiconductor layer thereon, and this semiconductor layer has source and drain electrodes formed on the semiconductor layer. In the field effect transistor, the field effect transistor is formed by being thinned to a predetermined thickness between the source and drain electrodes to form a recess structure, and a gate electrode is formed in Schottky contact with the semiconductor layer in the recess structure by crossing between the source and drain electrodes. A field effect transistor characterized in that an insulating film is interposed between the active layer exposed at the side wall of the mesa structure and the gate electrode. 2. The field effect transistor according to claim 1, wherein the active layer is a highly impurity concentration layer. 3. The field effect transistor according to claim 1, wherein the active layer is a layer containing a two-dimensional electron gas. 4. A first step of forming on a substrate a mesa structure including an active layer and a semiconductor layer thereon, with the active layer exposed on the sidewalls; and forming an insulating film on the reverse mesa-shaped sidewalls of the mesa structure. a second step of forming a recessed structure by etching the semiconductor layer of the mesa structure between the source and drain electrode forming regions to a predetermined thickness; a third step of forming a recessed structure of the semiconductor layer of the mesa structure; A method for manufacturing a field effect transistor, comprising: a fourth step of forming a gate electrode in Schottky contact with the semiconductor layer in the recessed structure so as to cross between drain electrode formation regions.
JP827589A 1989-01-17 1989-01-17 Field-effect transistor and manufacture thereof Pending JPH02188930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP827589A JPH02188930A (en) 1989-01-17 1989-01-17 Field-effect transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP827589A JPH02188930A (en) 1989-01-17 1989-01-17 Field-effect transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02188930A true JPH02188930A (en) 1990-07-25

Family

ID=11688626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP827589A Pending JPH02188930A (en) 1989-01-17 1989-01-17 Field-effect transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02188930A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182991A (en) * 1991-11-07 1993-07-23 Mitsubishi Electric Corp Heterojunction fet and its manufacture
JP2005209969A (en) * 2004-01-23 2005-08-04 Oki Electric Ind Co Ltd Semiconductor element and its manufacturing method
JPWO2005024955A1 (en) * 2003-09-05 2007-11-08 サンケン電気株式会社 Nitride semiconductor device
JP2018514954A (en) * 2015-05-08 2018-06-07 レイセオン カンパニー Field effect transistor structure with a notched mesa.

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182991A (en) * 1991-11-07 1993-07-23 Mitsubishi Electric Corp Heterojunction fet and its manufacture
JPWO2005024955A1 (en) * 2003-09-05 2007-11-08 サンケン電気株式会社 Nitride semiconductor device
JP2005209969A (en) * 2004-01-23 2005-08-04 Oki Electric Ind Co Ltd Semiconductor element and its manufacturing method
JP2018514954A (en) * 2015-05-08 2018-06-07 レイセオン カンパニー Field effect transistor structure with a notched mesa.

Similar Documents

Publication Publication Date Title
JP2786307B2 (en) Field effect transistor and method of manufacturing the same
US6717192B2 (en) Schottky gate field effect transistor
US10985269B2 (en) Two-dimensional electron gas (2DEG)-confined devices and methods
JPH03292744A (en) Compound semiconductor device and manufacture thereof
JP3377022B2 (en) Method of manufacturing heterojunction field effect transistor
JP3298601B2 (en) Field effect transistor and method of manufacturing the same
JPH02188930A (en) Field-effect transistor and manufacture thereof
JP2685026B2 (en) Field effect transistor and manufacturing method
JPH0523497B2 (en)
KR100261461B1 (en) Method of making compound semiconductor device with asymmetry recess structure
JPS628575A (en) Semiconductor device
JPH05235045A (en) Field-effect transistor
JP3903241B2 (en) Compound field effect semiconductor device
JP2001267554A (en) Field effect transistor and its manufacturing method
KR950003076Y1 (en) Compound semicondutor device
JPH04212428A (en) Manufacture of semiconductor device
JP2003258004A (en) Mesa-structure semiconductor device and its manufacturing method
JPH09298295A (en) High electron mobility transistor and manufacture thereof
JPS59181673A (en) Semiconductor device
JP3309909B2 (en) Method for manufacturing semiconductor device
JP2000269236A (en) Compound semiconductor device and manufacture thereof
JP2000124228A (en) Manufacture of semiconductor device
JPH08191080A (en) Compound semiconductor device and its manufacture
JP2000138235A (en) Field effect transistor and fabrication thereof
JPH0523496B2 (en)