JPH02185990A - Ultrahigh purity copper and production thereof - Google Patents

Ultrahigh purity copper and production thereof

Info

Publication number
JPH02185990A
JPH02185990A JP1002848A JP284889A JPH02185990A JP H02185990 A JPH02185990 A JP H02185990A JP 1002848 A JP1002848 A JP 1002848A JP 284889 A JP284889 A JP 284889A JP H02185990 A JPH02185990 A JP H02185990A
Authority
JP
Japan
Prior art keywords
copper
purity
refined
ultra
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1002848A
Other languages
Japanese (ja)
Other versions
JPH08990B2 (en
Inventor
Mitsuo Abumiya
三雄 鐙屋
Fumihiro Kamata
鎌田 文博
Satoshi Fujiwara
藤原 諭
Kenichi Akamine
健一 赤嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP1002848A priority Critical patent/JPH08990B2/en
Publication of JPH02185990A publication Critical patent/JPH02185990A/en
Publication of JPH08990B2 publication Critical patent/JPH08990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To produce ultrahigh purity copper having a specified elongation and a specified hardness at ordinary temp. by using high purity copper as raw material to ge refined and carrying out primary electrolytic refining in a copper sulfate soln. acidified with sulfuric acid and secondary electrolytic refining in a copper nitrate soln. acidified with nitric acid. CONSTITUTION:High purity copper is electrolytically refined as the anode in a copper sulfate soln. acidified with sulfuric acid at <=100A/m<2> cathode and anode current densities to obtain primarily refined copper on a starting sheet as the cathode. This refined copper is electrolytically refined again as the anode in a copper nitrate soln. acidified with nitric acid at <=100A/m<2> cathode and anode current densities to obtain secondarily refined copper on a starting sheet as the cathode. This refined copper is ultrahigh purity copper having >=99.99999% (7N) purity, >=30% elongation and <=42 Vickers hardness at ordinary temp. The electrolytic solns. in the 1st and the 2nd stages are preferably kept at 30-50 deg.C. Ag and S can be remarkably removed by shifting the potential of each of the electrolytic solns. to an extremely low potential region.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、純度が99.99999%(7N)以上の超
高純度銅及びその製造方法に関し、特に常温での伸び3
0%以上、ビッカース硬度42以下という金に近い特性
を有する、ICボンディングワイヤー用等の新規用途に
適した鋼材に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to ultra-high purity copper with a purity of 99.99999% (7N) or more and a method for producing the same, and in particular to an elongation of 3.
The present invention relates to a steel material suitable for new uses such as IC bonding wire, which has properties close to gold, such as a Vickers hardness of 0% or more and a Vickers hardness of 42 or less.

[従来の技術] 従来、高純度銅の製造方法としては、硫酸酸性硫酸銅電
解法や硝酸酸性硝酸銅電解法或いは帯溶融精製法を何回
か繰返す方法、又はこれらの手法を組合せて精製を行な
う方法などが知られていた。
[Prior art] Conventionally, methods for producing high-purity copper include repeating the sulfuric acid acidic copper sulfate electrolysis method, nitric acid acidic copper nitrate electrolysis method, or zone melting refining method several times, or refining using a combination of these methods. There were known ways to do it.

しかしながら、これらの従来の方法では最終純度5N〜
6Nが限界であり、その場合の最も除去困難な不可避不
純物は主にAgとSであることが知られていた。
However, these conventional methods have a final purity of 5N~
It was known that 6N is the limit, and that the unavoidable impurities that are most difficult to remove in that case are mainly Ag and S.

[発明が解決しようとする課題] しかしながら近年、ICボンディングワイヤー相等エレ
クトロニクス分野や超電導安定化材料用等の新規分野に
おいては、従来不可避不純物としである程度の混入が容
認されていたAg1及びSまでもが徹底的に除去された
7Nグレイドの超高純度銅材の豊富な供給が望まれてい
た。しかしながら、従来の製造技術では、上述純度の達
成は難しく何らかの解決策を講じることが望まれていた
[Problem to be solved by the invention] However, in recent years, in new fields such as electronics fields such as IC bonding wires and superconducting stabilizing materials, even Ag1 and S, which were previously allowed to be mixed in to a certain extent as unavoidable impurities, are being introduced. It has been desired to have an abundant supply of 7N grade ultra-high purity copper material that has been thoroughly removed. However, with conventional manufacturing techniques, it is difficult to achieve the above-mentioned purity, and some kind of solution has been desired.

[課題を解決する為の手段] 本発明者等は、斯かる課題を解決するため鋭意研究を行
なった結果、液温、液電位、添加剤の種類および量等の
諸条件を極めて厳密に制御しながら、精製原料としての
高純度銅を陽極とし、硫酸酸性硫酸銅溶液を電解液とし
て100A/m2以下の陰極及び陽極電流密度で精製電
解を行ない、陰極種板上に第一次精製銅を得た後、続い
て、前記第一次精製銅を陽極とし、硝酸酸性硝酸銅溶液
を電解液として、100A/rrr以下の陰極及び陽極
電流密度で精製電解を行ない、陰極種板上に第二次精製
銅を得ることからなる2段構えの精製電解を慎重に実施
することにより、99.99999%(7N)以上の超
高純度銅を安定的に製造することが可能であることを見
出し、本発明を達成した。さらに、上記電解精製法にお
いて電解時の電解液電位を極低電位領域に移行させるこ
とにより、Ag及びSが極めて顕著に除去され得ること
を発見し、またその液電位を調整する媒体として水素ガ
ス又は/及びヒドラジン又は/及びその他の還元剤の存
在が極めて有効であることを見い出した。
[Means for Solving the Problems] As a result of intensive research in order to solve the problems, the present inventors have succeeded in extremely strictly controlling various conditions such as liquid temperature, liquid potential, and the type and amount of additives. Meanwhile, using high purity copper as a refining raw material as an anode and a sulfuric acid acidic copper sulfate solution as an electrolyte, refining electrolysis is performed at a cathode and anode current density of 100 A/m2 or less, and primary refined copper is deposited on a cathode seed plate. After obtaining the obtained copper, purification electrolysis is performed using the primary purified copper as the anode and the nitric acidic copper nitrate solution as the electrolyte at a cathode and anode current density of 100 A/rrr or less, and a second layer is formed on the cathode seed plate. We have discovered that it is possible to stably produce ultra-high purity copper of 99.99999% (7N) or higher by carefully carrying out a two-stage refining electrolysis process consisting of obtaining second refined copper. The present invention has been achieved. Furthermore, in the above electrolytic refining method, it was discovered that Ag and S could be removed extremely significantly by shifting the electrolytic solution potential during electrolysis to an extremely low potential region, and hydrogen gas was used as a medium to adjust the solution potential. or/and the presence of hydrazine or/and other reducing agents has been found to be very effective.

すなわち、本発明者等は、従来の一般電解精製法による
銅の精製において、電解時の岐電位を、好ましくは還元
剤の使用により、通常では側底出来ない低電位領域へ故
意に移行させることにより、たとえば硫酸酸性硫酸銅電
解においてAgがより強力に除去され、また、従来Ag
の除去には不適当とされていた硝酸酸性硝酸銅電解にお
いても、極微二人gレベルにおいてもAgの除去がなさ
れ、かつSは完全に除去されることを確認した。
That is, the inventors of the present invention intentionally shifted the branch potential during electrolysis, preferably by using a reducing agent, to a low potential region that cannot normally be reached in the refining of copper by the conventional general electrolytic refining method. For example, in sulfuric acid acidic copper sulfate electrolysis, Ag can be removed more strongly, and conventional Ag
Even in nitric acid-acidic copper nitrate electrolysis, which was considered to be unsuitable for the removal of S, it was confirmed that Ag was removed even at the microscopic two-person g level, and S was completely removed.

すなわち、本発明は、上記の方法により、また、さらに
好ましくは電解浴に、たとえば水素ガス又は/及びヒド
ラジン又は/及びその他適用可能な還元剤を作用させる
等の手段により、故意に液電位を低下させ、かつそれを
維持し、通常では存在しえない液電位領域で電解精製を
行なうことによって、純度99.99999%(7N)
以上の超高純度銅を製造することのできる全く新規な銅
の電解精製法を提供するものである。この方法によって
得られる製品は、常温での伸びが30%以上であり、ビ
ッカース硬度が42以下であり、純度が99.9999
9%(7N)以上であることを特徴とする超高純度銅で
ある。
That is, the present invention intentionally lowers the liquid potential by the above method, and more preferably by acting on the electrolytic bath with, for example, hydrogen gas or/and hydrazine or/and other applicable reducing agents. Purity of 99.99999% (7N) is achieved by electrolytically refining in a liquid potential range that normally does not exist.
The present invention provides a completely new copper electrolytic refining method that can produce the ultra-high purity copper described above. The product obtained by this method has an elongation at room temperature of 30% or more, a Vickers hardness of 42 or less, and a purity of 99.9999.
It is ultra-high purity copper characterized by having a content of 9% (7N) or more.

[作  用] 本発明は、第一工程が硫酸酸性硫酸銅電解による第一次
精製であり、続く第二工程が硝酸酸性硝酸銅電解による
第二次精製であり、好ましくは、これら電解工程におけ
る電解浴液電位が極低電位レベルに故意に制御されてい
ることを特徴とする銅の電解精製法である。すなわち、
精製工程が二段の電解精製により構成されている。必要
に応じ、第二次精製銅を真空脱ガス処理した後真空鋳造
してさらに純度を高めることも可能である。
[Function] In the present invention, the first step is primary purification by sulfuric acid acidic copper sulfate electrolysis, and the subsequent second step is secondary purification by nitric acidic copper nitrate electrolysis, and preferably in these electrolytic steps. This is an electrolytic refining method for copper characterized in that the electrolytic bath potential is intentionally controlled to an extremely low potential level. That is,
The refining process consists of two stages of electrolytic refining. If necessary, it is also possible to further improve the purity by subjecting the second refined copper to vacuum degassing treatment and then vacuum casting.

銅の電解精製におけるAgの陰極への放電析出の経路は
大きく分けて、以下の2つが考えられる。
The following two routes for the discharge deposition of Ag onto the cathode in the electrolytic refining of copper can be broadly classified.

■陽極分極圧の上昇により一部のAgが電気化学的に溶
出し、陰極へ放電析出する。
(2) Due to the increase in anode polarization pressure, some Ag is electrochemically eluted and deposited on the cathode.

■陽極スライムからAgの自然溶解が起り、陰極へ拡散
し、放電析出する。
■Spontaneous dissolution of Ag occurs from the anode slime, diffuses to the cathode, and is deposited by discharge.

上記■の経路によるAgの溶出を防ぐためには、陽極分
極圧を低下維持させることが必要であり、それには陽極
電流密度を低く設定し、かつ、電解液の銅濃度を、陰極
電着状態に支障を及ぼさない範囲で低く抑えることが肝
要である。電解液の銅濃度を低くすることにより、さら
には、陽極スライムの陽極溶解面からの離脱が容易とな
り、陽極溶解面近傍の銅イオンの拡散及び陰イオンの補
給が充分になされ、陽極分極圧の低下が達成される。
In order to prevent the elution of Ag through the route (2) above, it is necessary to lower and maintain the anodic polarization pressure, which requires setting the anode current density low and adjusting the copper concentration of the electrolyte to the cathode electrodeposition state. It is important to keep it as low as possible without causing any problems. Furthermore, by lowering the copper concentration in the electrolyte, the anode slime can be easily separated from the anode dissolution surface, copper ions near the anode dissolution surface are diffused and anions are sufficiently replenished, and the anode polarization pressure is reduced. reduction is achieved.

本発明方法では、第一工程及び第二工程共に、電解液の
銅濃度は30g/!I以下に設定されており、かつ陽極
電流密度に関しては、電解終了時点で1.00 A/r
rl’を超えないように配慮して設定されている。
In the method of the present invention, the copper concentration of the electrolyte in both the first and second steps is 30 g/! I or less, and the anode current density is 1.00 A/r at the end of electrolysis.
It is set with consideration given to not exceeding rl'.

また■及び■いずれに関しても、電解液の温度の設定は
重要な因子となる。すなわち高温設定においては陽極分
極圧低下を招き、■に関しては望ましいが■のAgの自
然溶解を助長し、かつ陰極分極圧が低下し陰極電着荒を
招くと考えられる。
Also, regarding both (1) and (2), setting the temperature of the electrolytic solution is an important factor. That is, setting a high temperature causes a decrease in the anodic polarization pressure, which is desirable for (2), but promotes spontaneous dissolution of Ag (2), and is thought to decrease the cathode polarization pressure, resulting in rough cathode electrodeposition.

したがって本発明においては、温度選定に関しては、陽
極及び陰極分極圧並びにスライムの溶出等の点から総合
的に判断され、30〜50℃が最適温度範囲と決定され
た。本発明においては、たとえば硫酸酸性硫酸銅電解(
たとえば、Cu : 25g/D 。
Therefore, in the present invention, temperature selection was comprehensively judged from the viewpoints of anode and cathode polarization pressures, elution of slime, etc., and 30 to 50°C was determined to be the optimum temperature range. In the present invention, for example, sulfuric acid acidic copper sulfate electrolysis (
For example, Cu: 25g/D.

F、A、 160g/l 、陰極及び陽極電流密度90
A/ゴ)において電解液温度20℃においては陽極不働
態化現象が起き、回収電気銅中Agの増加が観察された
。一方、高温電解試験(60℃)においては、陰極分極
圧低下により、平滑剤としてのゼラチンの効果が薄れ、
極端な陰極電着荒を起こし、局部的に電解液の巻き込み
が観察された。したがって本発明方法における電解液温
は20℃より高く、60℃より低くする必要がある。望
ましい液温度は30〜50℃であり、より好ましくは4
0±5℃であることが確認された。
F, A, 160g/l, cathode and anode current density 90
In A/G), an anodic passivation phenomenon occurred at an electrolytic solution temperature of 20° C., and an increase in Ag in the recovered electrolytic copper was observed. On the other hand, in the high-temperature electrolytic test (60°C), the effect of gelatin as a smoothing agent weakened due to the decrease in cathodic polarization pressure.
Extremely rough cathode electrodeposition occurred, and local entrainment of the electrolyte was observed. Therefore, the electrolyte temperature in the method of the present invention needs to be higher than 20°C and lower than 60°C. Desirable liquid temperature is 30 to 50°C, more preferably 4°C.
It was confirmed that the temperature was 0±5°C.

一方、従来、銅の電解精製において電解液中のAgを除
去する目的で遊離塩素を共存させる方法が公知である。
On the other hand, a method in which free chlorine is allowed to coexist in electrolytic refining of copper for the purpose of removing Ag in an electrolytic solution is known.

本発明方法における第一工程においては、従来法におけ
る一般の遊離塩素の添加量が30〜BO+ng/Ilで
あったのに比し、遊離塩素100〜500 mg/I)
を用いている。より好ましい添加量は150〜250 
l11g/ lである。このように従来の添加量に比し
多くした理由は、より積極的にAgを除去する目的に寄
与させる遊離塩素の他に、ゼラチンとの組合せ効果によ
り、陰極電着状態における平滑化傾向を顕著に改善させ
るための遊離塩素の存在が必要であることを見出したか
らである。
In the first step of the method of the present invention, the amount of free chlorine added is 100 to 500 mg/I, compared to the conventional method where the amount of free chlorine added is 30 to BO + ng/I).
is used. A more preferable addition amount is 150 to 250
11g/l. The reason for increasing the amount added compared to the conventional one is that in addition to free chlorine, which contributes to the purpose of more actively removing Ag, the combination effect with gelatin causes a noticeable smoothing tendency in the cathode electrodeposition state. This is because it was discovered that the presence of free chlorine is necessary to improve the

なお、第二工程は、通常、精製の最終工程であるため、
汚染防止の目的から、遊離塩素は全く添加せず、純粋な
硝酸酸性硝酸銅浴を用いることが好ましい。本発明の方
法においては、第一工程で硫酸酸性硫酸銅電解を採用し
、電解の諸条件を通常、銅濃度30g/p以下、遊離硫
酸160〜180g/Ω、温度30〜50℃、遊離塩素
100〜500mg/l!、ゼラチン30〜80g/を
電着銅とすることができる。より好ましい電解条件の一
例は、銅濃度20〜25g/i)、遊離硫酸濃度170
g/j)、温度40±5℃、遊離塩素150〜250 
mg/Nであり、陰極及び陽極電流密度は1−00A/
rd以下、好ましくは50A/は以下である。
Note that the second step is usually the final step of purification, so
For the purpose of preventing contamination, it is preferable to use a pure nitric acidic copper nitrate bath without adding any free chlorine. In the method of the present invention, sulfuric acid acidic copper sulfate electrolysis is adopted in the first step, and the electrolytic conditions are usually copper concentration 30 g/p or less, free sulfuric acid 160 to 180 g/Ω, temperature 30 to 50°C, and free chlorine. 100-500mg/l! , 30 to 80 g/gelatin can be electrodeposited copper. An example of more preferable electrolytic conditions is a copper concentration of 20 to 25 g/i) and a free sulfuric acid concentration of 170 g/i.
g/j), temperature 40±5℃, free chlorine 150-250
mg/N, and the cathode and anode current densities are 1-00A/N.
rd or less, preferably 50A/ or less.

また、第二工程では、第一工程で得られた電気銅(第一
次精製銅)を陽極に用い、通常、pHが1.5前後の硝
酸酸性硝酸銅浴において電解精製を行なう。銅濃度、電
解液温度及び電流密度等の条件は第一工程と全く同じで
よいが、ゼラチン等の有機質添加剤及び遊離塩素の添加
は全くしないのが好ましいことは既述の通りである。
In the second step, the electrolytic copper (primary refined copper) obtained in the first step is used as an anode, and electrolytic refining is usually performed in a nitric acidic copper nitrate bath having a pH of around 1.5. The conditions such as copper concentration, electrolyte temperature, and current density may be exactly the same as in the first step, but as described above, it is preferable not to add organic additives such as gelatin and free chlorine at all.

次に電解液の液電位の作用について述べる。本発明にお
いては、電解液電位を極低電位領域まで故意に低下維持
し電解することにより、特に第一工程においてはAgの
除去が、また第二工程においてはAg及びSの除去が極
めて顕著であることを見い出したものである。即ち、た
とえば第一工程において、銅濃度25g/Ω、電解液温
度40℃、遊離硫酸160g/i)、遊離塩素20On
+g/n 、陰極及び陽極電流密度は50A/イ、陽極
Ag品位が10ppm S1M解液0液電位が85hV
(vs N HE )の条件で、電解回収された電気銅
中のAg品位が0.20ppmであったのに対し、故意
に液電位をGGOmV(vs N HE )まで下げた
場合にはAg品位は0.09ppmであった。
Next, the effect of the electrolyte potential will be described. In the present invention, by intentionally lowering the electrolyte potential to an extremely low potential region and performing electrolysis, the removal of Ag in the first step and the removal of Ag and S in the second step are extremely remarkable. I have discovered something. That is, for example, in the first step, the copper concentration is 25 g/Ω, the electrolyte temperature is 40° C., the free sulfuric acid is 160 g/i), and the free chlorine is 20 On.
+g/n, cathode and anode current density is 50A/i, anode Ag grade is 10ppm, S1M solution 0 solution potential is 85hV
(vs NHE), the Ag grade in the electrolytically recovered electrolytic copper was 0.20 ppm, but when the solution potential was intentionally lowered to GGOmV (vs NHE), the Ag grade decreased. It was 0.09 ppm.

また、第二工程において、たとえば、銅濃度25g/I
I、電解液温度40℃、I)H−1,5、陰極及び陽極
電流密度は50A/rr?、陽極Ag品位が0.13p
pm 。
In addition, in the second step, for example, the copper concentration is 25 g/I
I, electrolyte temperature 40°C, I) H-1,5, cathode and anode current density 50A/rr? , anode Ag quality is 0.13p
p.m.

電解液の液電位が840mV(vs N HE )の条
件で、電解回収された電気胴中のAg品位がO,l0p
pI11であったのに対し、故意の還元剤投入により5
1釦V(vsNHE)まで下げ電解回収した電気銅中の
Ag品位は0.O3ppmであった。
Under the condition that the electrolyte potential is 840 mV (vs N HE ), the Ag grade in the electrolytically recovered electric shell is O, l0p.
The pI was 11, but due to the deliberate addition of a reducing agent, the pI was 5.
The Ag grade in the electrolytic copper recovered by electrolytic reduction to 1 button V (vsNHE) is 0. O was 3 ppm.

またSに関しては、2.5ppmS含有の陽極を用い、
上記と同じ電解条件において、種々の液電位下で電解回
収された電気銅中のS品位を調べたところ、 85h+
V(vs N HE )でS −0,05ppi 、7
80+aV(vsNHE)でS −0,O2ppmであ
り、次に故意に還元剤を投入した低液電位下での電解、
730mV 。
Regarding S, using an anode containing 2.5 ppm S,
Under the same electrolytic conditions as above, we investigated the S content in electrolytic copper electrolytically recovered under various solution potentials, and found that it was 85h+
S -0.05ppi in V (vs NHE), 7
Electrolysis at low liquid potential with S −0, O2 ppm at 80 + aV (vs NHE) and then intentionally introducing a reducing agent,
730mV.

670mV 、 530cV (vs NHE)では、
回収電気銅中S品位はすべて0.01ppm以下であっ
た。
At 670mV, 530cV (vs NHE),
The S grade in the recovered electrolytic copper was all 0.01 ppm or less.

この理由については、必ずしも明確な説明は出来ないが
、本発明者等は、以下のごとく推Ult、でいる。すな
わちAgに関しては、それぞれの液電位と平衡するAg
イオン濃度に着目した場合、たとえば通常の電位850
mV(vs N HE )では7.3モル/IIであり
、一方、故意に調整した液電位600mV(vs N 
HE )では4.3X10’モル/Ωであり、約10,
000倍以上の差を生ずると考えられる(データ; A
t1as orElectrochemjeal Eq
ulllbrla InAqueous 5oluti
on ; by Marcel Pourbaix) 
o これにより陽極スライム中のAgの自然溶解が抑え
られ、したがって陽極電流密度を低く設定し陽極分極圧
を下げ、電気化学的なAgの溶解を抑えることにより低
Ag電気銅の製造が可能になると思われる。一方、第二
工程における回収電気銅中Sの品位が電解液の液電位に
著しく関係する現象については、現状理論では必ずしも
説明が出来るものではない。
The reason for this cannot necessarily be clearly explained, but the inventors of the present invention suggest the following. In other words, regarding Ag, the Ag that is in equilibrium with each liquid potential
When focusing on ion concentration, for example, the normal potential of 850
mV (vs N HE ) is 7.3 mol/II, while the intentionally adjusted liquid potential of 600 mV (vs N
HE) is 4.3X10'mol/Ω, which is about 10,
It is thought that there will be a difference of more than 1,000 times (data; A
t1as or Electrochemjeal Eq
ullbrla InAqueous 5oluti
on; by Marcel Pourbaix)
o This suppresses the spontaneous dissolution of Ag in the anode slime, and therefore it becomes possible to produce low-Ag electrolytic copper by setting the anode current density low, lowering the anodic polarization pressure, and suppressing the electrochemical dissolution of Ag. Seem. On the other hand, the current theory cannot necessarily explain the phenomenon in which the quality of S in the recovered electrolytic copper in the second step is significantly related to the solution potential of the electrolytic solution.

本発明方法は、好ましくは通常の電解精製における液電
位領域とは全く違う領域で電解を行なうものである。こ
のためには、故意の還元剤投入が極めて有効である。還
元剤存在の効果は、たとえばガスを用いる場合には、ア
ルゴンガス、窒素ガス等の不活性ガスはほとんど効果が
なく、微量なりとも水素ガスの存在が必要であることに
よっても裏付けられる。水素化物を還元剤とする場合に
は、電解浴の汚染防止及び効果の点からヒドラジンか最
も有効である。ヒドラジンには、抱水ヒドラジン、塩酸
ヒドラジン、硫酸ヒドラジン等があるが、電解浴中の塩
素イオンや硫酸根の蓄積を避ける意味から抱水ヒドラジ
ンが最適である。
In the method of the present invention, electrolysis is preferably carried out in a region completely different from the solution potential region in ordinary electrolytic refining. For this purpose, intentional introduction of a reducing agent is extremely effective. The effect of the presence of a reducing agent is also supported by the fact that when a gas is used, inert gases such as argon gas and nitrogen gas have almost no effect, and the presence of hydrogen gas is necessary, even if it is in a trace amount. When using a hydride as a reducing agent, hydrazine is most effective from the viewpoint of prevention of contamination of the electrolytic bath and effectiveness. Hydrazine includes hydrazine hydrate, hydrazine hydrochloride, hydrazine sulfate, etc., but hydrazine hydrate is most suitable in order to avoid accumulation of chloride ions and sulfate radicals in the electrolytic bath.

硝酸酸性硝酸銅電解によって得られた第二次精製銅を必
要に応じ真空脱ガス処理した後、真空鋳造することから
なる第三工程を経て得られる第三次精製銅は、さらに純
度の高められた超高純度銅となり得る。
After the secondary refined copper obtained by nitric acid acidic copper nitrate electrolysis is vacuum degassed as necessary, the tertiary refined copper obtained through the third step of vacuum casting is further improved in purity. It can be used as ultra-high purity copper.

以下実施例により、さらに詳細に説明する。The present invention will be explained in more detail below using examples.

し実施例1] 第一工程 A鉱山産4N電気銅(品位; Ag −13ppm 。Example 1] First step 4N electrolytic copper from mine A (grade: -13ppm Ag).

S = 7 ppm)を陽極として用い、硫酸酸性硫酸
銅溶液中で以下の条件下により電解精製を行なった。
Electrolytic refining was carried out in a sulfuric acid acidic copper sulfate solution under the following conditions using S = 7 ppm) as an anode.

銅  濃  度   25g/D 遊離硫酸 170g/l 遊離塩素 200mg/N ゼ ラ チ ン  45z/を電着銅 液  温  度   40℃ 陰極電流密度  35A/イ 陽極電流密度  35A/rrr (電解終了時)また
電解浴液電位調整は、純水素ガスを用い、ガラスポール
フィルターを介し、直接液中に吹き込み、約860mV
 (vs NHE) ヘ低下させることによって行なっ
た。なお、液電位は電解途中に上昇傾向を示すため、適
宜適時水素ガスを吹き込んで安定させた。得られた電気
銅の品位は、Ag−0、O8ppm 、  S−2,7
ppmであった。
Copper concentration 25g/D Free sulfuric acid 170g/l Free chlorine 200mg/N Gelatin 45z/electrodeposited copper solution Temperature 40°C Cathode current density 35A/a Anode current density 35A/rrr (At the end of electrolysis) To adjust the potential of the bath liquid, use pure hydrogen gas, which is blown directly into the liquid through a glass pole filter, to approximately 860 mV.
(vs NHE). In addition, since the liquid potential showed an increasing tendency during the electrolysis, hydrogen gas was blown in from time to time to stabilize it. The quality of the obtained electrolytic copper was Ag-0, O8ppm, S-2,7
It was ppm.

第二工程 第一工程で得られた電気銅を陽極として、硝酸酸性硝酸
銅溶液中で、以下の条件により電解精製を行なった。
Second Step Using the electrolytic copper obtained in the first step as an anode, electrolytic refining was performed in a nitric acidic copper nitrate solution under the following conditions.

銅  濃  度  25z/(1 pH1,5 温度  40℃ 陰極電流密度  35A/イ 陽極電流密度  35A/rr? (電解終了時)液電
位  530mV(vs N HE )なお、電解浴液
電位の調整は、水素ガスを用い第一工程と同様に行ない
、さらに電解途中においては、特級ブレイド抱水ヒドラ
ジンも併用した。
Copper concentration 25z/(1 pH 1,5 Temperature 40°C Cathode current density 35A/A anode current density 35A/rr? (At the end of electrolysis) Solution potential 530mV (vs NHE) Note that the adjustment of the electrolytic bath solution potential is performed using hydrogen The same procedure as in the first step was carried out using gas, and special grade braided hydrazine hydrate was also used during the electrolysis.

得られた電気銅の品位を第1表に示す。Table 1 shows the quality of the electrolytic copper obtained.

なお、分析はグロー放電質量分析装置によるものである
Note that the analysis was performed using a glow discharge mass spectrometer.

第   1   表 第二工程回収電気銅品位 (単位: pplり Na <0.01 K  <0.01 Mg <0.01 Afl<0.01 Si<0.01 s  <o、ot Fe<0.01 Ni <0.01 Cr <0.01 As <0.01 Sb<0.02 Bl<O,旧 Ag   O,01 Pb <0.01 Zn <0.02 Cd <0.02 尚、同時に同電気銅をスパークソース型質量分析装置に
供し、品位を確認したところ、Ag以外は全く検出する
ことができなかった。従って、両質量分析によって評価
・検出された不純物はAgのみであり、その値は0.0
ip+)mであった。
Table 1 Second process recovered electrolytic copper grade (unit: ppl Na <0.01 K <0.01 Mg <0.01 Afl<0.01 Si<0.01 s <o, ot Fe<0.01 Ni <0.01 Cr <0.01 As <0.01 Sb<0.02 Bl<O, old Ag O, 01 Pb <0.01 Zn <0.02 Cd <0.02 At the same time, the same electrolytic copper When the quality was confirmed using a spark source mass spectrometer, nothing other than Ag could be detected.Therefore, the only impurity evaluated and detected by both mass spectrometers was Ag, and its value was 0. .0
ip+)m.

これらの結果から、本発明法によって得られた鋼材の純
度は99.99999%(7N)以上の優れた超高純度
界であることが理解される。
From these results, it is understood that the purity of the steel obtained by the method of the present invention is in the ultra-high purity range of 99.99999% (7N) or higher.

尚、第二工程で得られた電気銅を黒鉛ルツボを用いI 
X 10−’torrの真空下で1150℃、2時間溶
解処理を行なった。次いで、本インゴットから各特性値
allJ定用の試料片を作製し、Ar雰囲気下500℃
で1時間焼鈍処理を施し、測定に供した。尚、比較のた
めに、市販無酸素銅(4N)についての測定結果も同時
に記した。
Incidentally, the electrolytic copper obtained in the second step was heated using a graphite crucible.
The dissolution treatment was carried out at 1150°C for 2 hours under a vacuum of X 10-'torr. Next, sample pieces for each characteristic value allJ were prepared from this ingot and heated at 500°C in an Ar atmosphere.
The sample was annealed for 1 hour and then subjected to measurement. For comparison, the measurement results for commercially available oxygen-free copper (4N) are also listed at the same time.

引張強度 (kg/mj) 伸   び     (%) ビッカース硬度(llv) 15.6     22.1 46.2 75.2 40.6 55.0 [発明の効果] 以上のように本発明方法によって、従来法では得られな
かった99.99999%(7N)以上の超高純度銅を
簡易な手段で得ることが可能になった。
Tensile strength (kg/mj) Elongation (%) Vickers hardness (llv) 15.6 22.1 46.2 75.2 40.6 55.0 [Effects of the invention] As described above, by the method of the present invention, It has become possible to obtain ultra-high purity copper of 99.99999% (7N) or higher by a simple method, which could not be obtained by other methods.

これらの超高純度銅は、従来の4N銅や無酸素銅からは
つくれなかったICボンディングワイヤー、レーザー用
ミラー、酸化物系超電導体の安定化剤、高性能音響用ケ
ーブル等の主として金材が用いられていた物品をつくる
ための金材の代替品としての新規分野に広く用途をもつ
ものである。
These ultra-high-purity copper materials are mainly used for IC bonding wires, laser mirrors, stabilizers for oxide superconductors, and high-performance acoustic cables, which cannot be made from conventional 4N copper or oxygen-free copper. It has a wide range of applications in new fields as an alternative to metal materials for making previously used items.

なお、本発明方法で使用できる還元剤には、本明細書に
開示したもののほかにも種々適用可能なものがあること
は当業者の容易に理解するところであり、したがって、
いかなる修正も可能であり、そのような還元剤の使用に
よって実施する方法も当然本発明の技術範囲に含まれる
ものである。
It should be noted that those skilled in the art will easily understand that there are various other reducing agents that can be used in the method of the present invention in addition to those disclosed herein, and therefore,
Any modifications are possible, and methods carried out by using such reducing agents are naturally within the scope of the present invention.

Claims (29)

【特許請求の範囲】[Claims] (1)常温での伸びが30%以上であり、ビッカース硬
度が42以下であり、純度が99.99999%(7N
)以上であることを特徴とする超高純度銅。
(1) Elongation at room temperature is 30% or more, Vickers hardness is 42 or less, and purity is 99.99999% (7N
) or higher.
(2)(ィ)精製原料としての高純度銅を陽極とし、硫
酸酸性硫酸銅溶液を電解液として100A/m^2以下
の陰極及び陽極電流密度で精製電解を行ない、陰極種板
上に第一次精製銅を得る第一工程;及び(ロ)前記第一
次精製銅を陽極とし、硝酸酸性硝酸銅溶液を電解液とし
て、100A/m^2以下の陰極及び陽極電流密度で精
製電解を行ない、陰極種板上に第二次精製銅を得る第二
工程; からなることを特徴とする超高純度銅の製造方法。
(2) (A) Purification electrolysis is performed using high-purity copper as a refining raw material as an anode and a sulfuric acid acidic copper sulfate solution as an electrolyte at a cathode and anode current density of 100 A/m^2 or less. A first step of obtaining primary refined copper; and (b) Refining electrolysis using the primary refined copper as an anode and a nitric acidic copper nitrate solution as an electrolyte at a cathode and anode current density of 100 A/m^2 or less. a second step of obtaining second refined copper on a cathode seed plate;
(3)前記第一工程及び第二工程における精製電解の液
温を30〜50℃とすることを特徴とする請求項2記載
の方法。
(3) The method according to claim 2, characterized in that the temperature of the purifying electrolytic solution in the first step and the second step is 30 to 50°C.
(4)前記液温を40±5℃とすることを特徴とする請
求項3記載の方法。
(4) The method according to claim 3, characterized in that the liquid temperature is 40±5°C.
(5)前記第一工程における電解浴中に100〜500
mg/lの遊離塩素を添加し、かつ有機質添加剤として
ゼラチンを用いることを特徴とする請求項2〜4のいず
れかに記載の方法。
(5) 100 to 500 in the electrolytic bath in the first step
5. Process according to claim 2, characterized in that mg/l of free chlorine is added and gelatin is used as organic additive.
(6)前記第一工程及び第二工程における電解液の液電
位を、還元剤を用いて800mV(vsNHE)以下に
調整することを特徴とする請求項2〜4のいずれかに記
載の方法。
(6) The method according to any one of claims 2 to 4, characterized in that the potential of the electrolyte in the first step and the second step is adjusted to 800 mV (vsNHE) or less using a reducing agent.
(7)前記還元剤が水素ガス、ヒドラジン、水素化ホウ
素ナトリウム、ホルムアルデヒド、蓚酸およびぶどう糖
からなる群より選ばれたいずれか1種、または任意に選
ばれた2種以上のものの組合せである請求項6記載の方
法。
(7) The reducing agent is any one selected from the group consisting of hydrogen gas, hydrazine, sodium borohydride, formaldehyde, oxalic acid, and glucose, or a combination of two or more selected arbitrarily. The method described in 6.
(8)前記第一工程における電解液の液電位を、還元剤
を用いて800mV(vsNHE)以下に調整すること
を特徴とする請求項5記載の方法。
(8) The method according to claim 5, wherein the potential of the electrolytic solution in the first step is adjusted to 800 mV (vsNHE) or less using a reducing agent.
(9)前記還元剤が水素ガス、ヒドラジン、水素化ホウ
素ナトリウム、ホルムアルデヒド、蓚酸およびぶどう糖
からなる群より選ばれたいずれか1種、または任意に選
ばれた2種以上のものの組合せである請求項8記載の方
法。
(9) A claim in which the reducing agent is any one selected from the group consisting of hydrogen gas, hydrazine, sodium borohydride, formaldehyde, oxalic acid, and glucose, or a combination of two or more selected arbitrarily. 8. The method described in 8.
(10)前記第一次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項2〜4のいずれか
に記載の方法。
(10) The primary refined copper has a purity of 99.99999% (
The method according to any one of claims 2 to 4, wherein the ultra-high purity copper is 7N) or higher.
(11)前記第一次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項5記載の方法。
(11) The primary refined copper has a purity of 99.99999% (
6. The method according to claim 5, wherein the ultra-high purity copper is 7N) or higher.
(12)前記第一次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項6記載の方法。
(12) The primary refined copper has a purity of 99.99999% (
7. The method according to claim 6, wherein the ultra-high purity copper is 7N) or higher.
(13)前記第一次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項7記載の方法。
(13) The primary refined copper has a purity of 99.99999% (
8. The method according to claim 7, wherein the ultra-high purity copper is 7N) or higher.
(14)前記第一次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項8記載の方法。
(14) The primary refined copper has a purity of 99.99999% (
9. The method according to claim 8, wherein the ultra-high purity copper is 7N) or higher.
(15)前記第一次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項9記載の方法。
(15) The primary refined copper has a purity of 99.99999% (
10. The method according to claim 9, wherein the ultra-high purity copper is 7N) or higher.
(16)(イ)精製原料としての高純度銅を陽極とし、
硫酸酸性硫酸銅溶液を電解液として100A/m^2以
下の陰極及び陽極電流密度で精製電解を行ない、陰極種
板上に第一次精製銅を得る第一工程; (ロ)前記第一次精製銅を陽極とし、硝酸酸性硝酸銅溶
液を電解液として、100A/m^2以下の陰極及び陽
極電流密度で精製電解を行ない、陰極種板上に第一次精
製銅を得る第二工程;及び (ハ)前記第二次精製銅を真空脱ガス処理した後、真空
鋳造して第三次精製銅を得ることからなる第三工程; からなることを特徴とする超高純度銅の製造方法。
(16) (a) High-purity copper as a refining raw material is used as an anode,
A first step of obtaining primary purified copper on a cathode seed plate by carrying out purification electrolysis using a sulfuric acid acidic copper sulfate solution as an electrolyte at cathode and anode current densities of 100 A/m^2 or less; (b) the above-mentioned first step; A second step of obtaining primary purified copper on a cathode seed plate by performing purification electrolysis at a cathode and anode current density of 100 A/m^2 or less using purified copper as an anode and a nitric acidic copper nitrate solution as an electrolyte; and (c) a third step of vacuum degassing the second refined copper and then vacuum casting to obtain tertiary refined copper; .
(17)前記第一工程及び第二工程における精製電解の
液温を30〜50℃とすることを特徴とする請求項16
記載の方法。
(17) Claim 16, characterized in that the temperature of the purified electrolytic solution in the first step and the second step is 30 to 50°C.
Method described.
(18)前記液温を40±5℃とすることを特徴とする
請求項17記載の方法。
(18) The method according to claim 17, characterized in that the liquid temperature is 40±5°C.
(19)前記第一工程における電解浴中に100〜50
0mg/lの遊離塩素を添加し、かつ有機質添加剤とし
てゼラチンを用いることを特徴とする請求項16〜18
のいずれかに記載の方法。
(19) 100 to 50% in the electrolytic bath in the first step
Claims 16 to 18 characterized in that 0 mg/l of free chlorine is added and gelatin is used as an organic additive.
The method described in any of the above.
(20)前記第一工程及び第二工程における電解液の液
電位を、還元剤を用いて800mV(vsNHE)以下
に調整することを特徴とする請求項16〜18のいずれ
かに記載の方法。
(20) The method according to any one of claims 16 to 18, characterized in that the potential of the electrolyte in the first step and the second step is adjusted to 800 mV (vsNHE) or less using a reducing agent.
(21)前記還元剤が水素ガス、ヒドラジン、水素化ホ
ウ素ナトリウム、ホルムアルデヒド、蓚酸およびぶどう
糖からなる群より選ばれたいずれか1種、または任意に
選ばれた2種以上のものの組合せである請求項20記載
の方法。
(21) A claim in which the reducing agent is any one selected from the group consisting of hydrogen gas, hydrazine, sodium borohydride, formaldehyde, oxalic acid, and glucose, or a combination of two or more selected arbitrarily. 20. The method described in 20.
(22)前記第一工程における電解液の液電位を、還元
剤を用いて800mV(vsNHE)以下に調整するこ
とを特徴とする請求項19記載の方法。
(22) The method according to claim 19, characterized in that the potential of the electrolytic solution in the first step is adjusted to 800 mV (vsNHE) or less using a reducing agent.
(23)前記還元剤が水素ガス、ヒドラジン、水素化ホ
ウ素ナトリウム、ホルムアルデヒド、蓚酸およびぶどう
糖からなる群より選ばれたいずれか1種、または任意に
選ばれた2種以上のものの組合せである請求項22記載
の方法。
(23) A claim in which the reducing agent is any one selected from the group consisting of hydrogen gas, hydrazine, sodium borohydride, formaldehyde, oxalic acid, and glucose, or a combination of two or more selected arbitrarily. 22. The method described in 22.
(24)前記第三次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項16〜18のいず
れかに記載の方法。
(24) The tertiary refined copper has a purity of 99.99999% (
The method according to any one of claims 16 to 18, wherein the ultra-high purity copper is 7N) or higher.
(25)前記第三次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項19記載の方法。
(25) The tertiary refined copper has a purity of 99.99999% (
20. The method according to claim 19, wherein the ultra-high purity copper is 7N) or higher.
(26)前記第三次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項20記載の方法。
(26) The tertiary refined copper has a purity of 99.99999% (
21. The method according to claim 20, wherein the ultra-high purity copper is 7N) or higher.
(27)前記第三次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項21記載の方法。
(27) The tertiary refined copper has a purity of 99.99999% (
22. The method according to claim 21, wherein the ultra-high purity copper is 7N) or higher.
(28)前記第三次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項22記載の方法。
(28) The tertiary refined copper has a purity of 99.99999% (
23. The method according to claim 22, wherein the ultra-high purity copper is 7N) or higher.
(29)前記第三次精製銅が純度99.99999%(
7N)以上の超高純度銅である請求項23記載の方法。
(29) The tertiary refined copper has a purity of 99.99999% (
24. The method according to claim 23, wherein the ultra-high purity copper is 7N) or higher.
JP1002848A 1989-01-11 1989-01-11 Ultra high purity copper manufacturing method Expired - Fee Related JPH08990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002848A JPH08990B2 (en) 1989-01-11 1989-01-11 Ultra high purity copper manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002848A JPH08990B2 (en) 1989-01-11 1989-01-11 Ultra high purity copper manufacturing method

Publications (2)

Publication Number Publication Date
JPH02185990A true JPH02185990A (en) 1990-07-20
JPH08990B2 JPH08990B2 (en) 1996-01-10

Family

ID=11540821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002848A Expired - Fee Related JPH08990B2 (en) 1989-01-11 1989-01-11 Ultra high purity copper manufacturing method

Country Status (1)

Country Link
JP (1) JPH08990B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060632A (en) * 1996-08-16 1998-03-03 Dowa Mining Co Ltd Sputtering target, its production, and semiconductor device
WO2001090445A1 (en) * 2000-05-22 2001-11-29 Nikko Materials Company, Limited Method of producing a higher-purity metal
JP2006028642A (en) * 2005-07-22 2006-02-02 Dowa Mining Co Ltd Internal wiring of semiconductor device
EP1903119A1 (en) * 2005-06-15 2008-03-26 Nippon Mining & Metals Co., Ltd. Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper
WO2009098756A1 (en) * 2008-02-05 2009-08-13 Mitsubishi Materials Corporation Process and apparatus for producing high-purity aqueous copper sulfate solution or aqueous copper sulfate solution containing iron sulfate, and high-purity aqueous copper sulfate solution or aqueous copper sulfate solution containing iron sulfate
JP2009287096A (en) * 2008-05-30 2009-12-10 Pan Pacific Copper Co Ltd Method of manufacturing low silver grade electric copper
US8192596B2 (en) 2004-01-29 2012-06-05 Jx Nippon Mining & Metals Corporation Ultrahigh-purity copper and process for producing the same
WO2014136296A1 (en) * 2013-03-07 2014-09-12 パンパシフィック・カッパー株式会社 Production method for electrolytic copper
CN104694978A (en) * 2013-12-05 2015-06-10 阳谷祥光铜业有限公司 Waste electrolyte treatment method and device
CN105339527A (en) * 2013-07-11 2016-02-17 三菱综合材料株式会社 Copper material for high-purity copper sputtering target, and high-purity copper sputtering target
US9441289B2 (en) 2008-09-30 2016-09-13 Jx Nippon Mining & Metals Corporation High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film
US9476134B2 (en) 2008-09-30 2016-10-25 Jx Nippon Mining & Metals Corporation High purity copper and method of producing high purity copper based on electrolysis
WO2017033694A1 (en) * 2015-08-24 2017-03-02 三菱マテリアル株式会社 High purity copper sputtering target material
JP2017043790A (en) * 2015-08-24 2017-03-02 三菱マテリアル株式会社 High-purity copper sputtering target material
JP2017071833A (en) * 2015-10-08 2017-04-13 三菱マテリアル株式会社 High-purity copper sputtering target material
JP2017071834A (en) * 2015-10-08 2017-04-13 三菱マテリアル株式会社 High-purity copper sputtering target material
JP2017071832A (en) * 2015-10-08 2017-04-13 三菱マテリアル株式会社 High-purity copper sputtering target material
JP2017150010A (en) * 2016-02-22 2017-08-31 三菱マテリアル株式会社 High purity copper sputtering target material
JP2017150008A (en) * 2016-02-22 2017-08-31 三菱マテリアル株式会社 High purity copper sputtering target material
WO2018221734A1 (en) * 2017-06-01 2018-12-06 三菱マテリアル株式会社 Method for producing high-purity electrolytic copper
JP2018204102A (en) * 2017-06-02 2018-12-27 三菱マテリアル株式会社 Method of producing high-purity electrolytic copper
CN109763140A (en) * 2019-03-20 2019-05-17 金川集团股份有限公司 A kind of preparation method of the ultrapure copper of 7N
CN110678582A (en) * 2017-06-01 2020-01-10 三菱综合材料株式会社 Method for producing high-purity electrolytic copper
CN111218630A (en) * 2020-03-11 2020-06-02 宁波江丰电子材料股份有限公司 Method for eliminating defects of ultrahigh-purity copper ingot
CN114457390A (en) * 2022-02-24 2022-05-10 阳谷祥光铜业有限公司 Preparation method of ultra-pure copper foil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10793956B2 (en) 2015-08-29 2020-10-06 Mitsubishi Materials Corporation Additive for high-purity copper electrolytic refining and method of producing high-purity copper
TWI705159B (en) * 2015-09-30 2020-09-21 日商三菱綜合材料股份有限公司 Additive for high-purity copper electrolytic refining, method of producing high-purity copper, and high-purity electrolytic copper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307291A (en) * 1987-06-05 1988-12-14 Sumitomo Metal Mining Co Ltd Manufacture of high-purity copper

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307291A (en) * 1987-06-05 1988-12-14 Sumitomo Metal Mining Co Ltd Manufacture of high-purity copper

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060632A (en) * 1996-08-16 1998-03-03 Dowa Mining Co Ltd Sputtering target, its production, and semiconductor device
WO2001090445A1 (en) * 2000-05-22 2001-11-29 Nikko Materials Company, Limited Method of producing a higher-purity metal
US6896788B2 (en) 2000-05-22 2005-05-24 Nikko Materials Company, Limited Method of producing a higher-purity metal
US8192596B2 (en) 2004-01-29 2012-06-05 Jx Nippon Mining & Metals Corporation Ultrahigh-purity copper and process for producing the same
EP1903119A1 (en) * 2005-06-15 2008-03-26 Nippon Mining & Metals Co., Ltd. Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper
JP4750112B2 (en) * 2005-06-15 2011-08-17 Jx日鉱日石金属株式会社 Ultra high purity copper, method for producing the same, and bonding wire made of ultra high purity copper
EP1903119A4 (en) * 2005-06-15 2014-06-18 Jx Nippon Mining & Metals Corp Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper
EP2845915A1 (en) * 2005-06-15 2015-03-11 JX Nippon Mining & Metals Corporation Ultrahigh-purity copper bonding wire
JP2006028642A (en) * 2005-07-22 2006-02-02 Dowa Mining Co Ltd Internal wiring of semiconductor device
WO2009098756A1 (en) * 2008-02-05 2009-08-13 Mitsubishi Materials Corporation Process and apparatus for producing high-purity aqueous copper sulfate solution or aqueous copper sulfate solution containing iron sulfate, and high-purity aqueous copper sulfate solution or aqueous copper sulfate solution containing iron sulfate
JP2009287096A (en) * 2008-05-30 2009-12-10 Pan Pacific Copper Co Ltd Method of manufacturing low silver grade electric copper
US9476134B2 (en) 2008-09-30 2016-10-25 Jx Nippon Mining & Metals Corporation High purity copper and method of producing high purity copper based on electrolysis
US9441289B2 (en) 2008-09-30 2016-09-13 Jx Nippon Mining & Metals Corporation High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film
WO2014136296A1 (en) * 2013-03-07 2014-09-12 パンパシフィック・カッパー株式会社 Production method for electrolytic copper
US9932682B2 (en) 2013-03-07 2018-04-03 Pan Pacific Copper Co., Ltd. Method for manufacturing electrolytic copper
AU2013381287B2 (en) * 2013-03-07 2015-09-03 Kyoto University Production method for electrolytic copper
CN105339527A (en) * 2013-07-11 2016-02-17 三菱综合材料株式会社 Copper material for high-purity copper sputtering target, and high-purity copper sputtering target
CN104694978A (en) * 2013-12-05 2015-06-10 阳谷祥光铜业有限公司 Waste electrolyte treatment method and device
CN104694978B (en) * 2013-12-05 2018-03-23 阳谷祥光铜业有限公司 The processing method and processing unit of a kind of waste electrolyte
JP2017043790A (en) * 2015-08-24 2017-03-02 三菱マテリアル株式会社 High-purity copper sputtering target material
US10889889B2 (en) 2015-08-24 2021-01-12 Mitsubishi Materials Corporation High purity copper sputtering target material
WO2017033694A1 (en) * 2015-08-24 2017-03-02 三菱マテリアル株式会社 High purity copper sputtering target material
JP2017071832A (en) * 2015-10-08 2017-04-13 三菱マテリアル株式会社 High-purity copper sputtering target material
JP2017071833A (en) * 2015-10-08 2017-04-13 三菱マテリアル株式会社 High-purity copper sputtering target material
JP2017071834A (en) * 2015-10-08 2017-04-13 三菱マテリアル株式会社 High-purity copper sputtering target material
JP2017150010A (en) * 2016-02-22 2017-08-31 三菱マテリアル株式会社 High purity copper sputtering target material
JP2017150008A (en) * 2016-02-22 2017-08-31 三菱マテリアル株式会社 High purity copper sputtering target material
CN110678582B (en) * 2017-06-01 2021-10-29 三菱综合材料株式会社 Method for producing high-purity electrolytic copper
CN110678582A (en) * 2017-06-01 2020-01-10 三菱综合材料株式会社 Method for producing high-purity electrolytic copper
WO2018221734A1 (en) * 2017-06-01 2018-12-06 三菱マテリアル株式会社 Method for producing high-purity electrolytic copper
US11453953B2 (en) 2017-06-01 2022-09-27 Mitsubishi Materials Corporation High-purity electrolytic copper
US11753733B2 (en) 2017-06-01 2023-09-12 Mitsubishi Materials Corporation Method for producing high-purity electrolytic copper
JP2018204102A (en) * 2017-06-02 2018-12-27 三菱マテリアル株式会社 Method of producing high-purity electrolytic copper
CN109763140A (en) * 2019-03-20 2019-05-17 金川集团股份有限公司 A kind of preparation method of the ultrapure copper of 7N
CN111218630A (en) * 2020-03-11 2020-06-02 宁波江丰电子材料股份有限公司 Method for eliminating defects of ultrahigh-purity copper ingot
CN114457390A (en) * 2022-02-24 2022-05-10 阳谷祥光铜业有限公司 Preparation method of ultra-pure copper foil

Also Published As

Publication number Publication date
JPH08990B2 (en) 1996-01-10

Similar Documents

Publication Publication Date Title
JPH02185990A (en) Ultrahigh purity copper and production thereof
US8216442B2 (en) Ultrahigh-purity copper and process for producing the same
US6783611B2 (en) Phosphorized copper anode for electroplating
US7943033B2 (en) Electrolytic copper plating method, pure copper anode for electrolytic copper plating, and semiconductor wafer having low particle adhesion plated with said method and anode
KR0157257B1 (en) Method for manufacturing cu alloy and the same product
WO2005083138A1 (en) Ni-Pt ALLOY AND TARGET COMPRISING THE ALLOY
JPH03135041A (en) Manufacture of bonding fine wire for semiconductor use
US3660251A (en) Method for the electrolytical deposition of highly ductile copper
JPH11293365A (en) Super-fine conductor for winding, and its manufacture
JP2651932B2 (en) Aluminum alloy foil for anode of electrolytic capacitor and method for producing the same
JP2561862B2 (en) Purification and electrolysis method for obtaining ultra high purity copper
JP2000219922A (en) High purity titanium and its production
US6309529B1 (en) Method for producing sputtering target material
JPS6241303B2 (en)
JP2651931B2 (en) Aluminum alloy foil for cathode of electrolytic capacitor and method for producing the same
JPH11229172A (en) Method and apparatus for producing high-purity copper
JPS6270589A (en) Manufacture of high purity electrolytic copper
KR940002684B1 (en) Copper-iron-cobalt-titanium alloy with high mechanial and electrical characteristics and its production process
JP4554662B2 (en) Phosphorus copper anode for electrolytic copper plating and method for producing the same
US20230055850A1 (en) Continuously Cast Mg Brass
JPH05311298A (en) Copper base alloy for connector and its manufacture
JPH11172350A (en) Cu alloy rolled thin sheet in which crystallized product ahd precipitate are fine and distribution ratio thereof is low
JPS5989800A (en) Production of anode material for copper plating
RU2813495C1 (en) Aluminium-based alloy and article made from it
US2942158A (en) Copper alloys for asymmetrical conductors and copper oxide cells made therefrom

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080110

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees