JPH02185365A - Polishing method for base of aluminum alloy slab - Google Patents

Polishing method for base of aluminum alloy slab

Info

Publication number
JPH02185365A
JPH02185365A JP1007400A JP740089A JPH02185365A JP H02185365 A JPH02185365 A JP H02185365A JP 1007400 A JP1007400 A JP 1007400A JP 740089 A JP740089 A JP 740089A JP H02185365 A JPH02185365 A JP H02185365A
Authority
JP
Japan
Prior art keywords
aluminum alloy
polishing
adjusted
colloidal silica
silica solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1007400A
Other languages
Japanese (ja)
Inventor
Kozo Hoshino
晃三 星野
Motoharu Sato
元治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1007400A priority Critical patent/JPH02185365A/en
Publication of JPH02185365A publication Critical patent/JPH02185365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

PURPOSE:To obtain an aluminum alloy slab excellent in respect of high reflection rate and deflection, by using as abrasive a colloidal silica solution whose pH is adjusted in <=8 by an org. acid for the final polishing of an aluminum alloy disk of specific composition. CONSTITUTION:The final polishing of an aluminum alloy disk containing 2-5% Mg and 0.2-0.7% Mn at wt.% and the balance consisting of Al and inevitable impurities is performed by using the colloidal silica solution whose pH is adjusted in <=8 by an org. acid as abrasives. Polishing was performed by using a 'SURFIN 018-3(R)' with the aluminum alloy sheet having the chemical composition shown in a list as an abrasive cloth. The polishing time is for 5min and pH is adjusted in 5 by lactic. Only 'SNOWTEX(R)' is a colloidal silica and all of the other abrasives are of alumina. This invention example using 'SNOWTEX(R)' adjusted in 5pH has an extremely high reflection rate and it is clear that the colloidal silica solution is effective as the abrasives.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、特に成膜用及び半導体基盤研磨支持用に好適
なアルミニウム合金平板基盤の研磨方法に関する。 (従来の技術) 半導体基盤として、現在、シリコンウェハーが用いられ
ている。この集積度の増大及びそれに伴う素子性能の向
上等から、S OI (Silicon OnI n5
ulator)技術等の新しい技術が注目されている。 すなわち、例えば、「日経エレクトロニクス」1986
年10月6日号、P76に記載されている如く、シリコ
ンウェハー上に形成した素子の性能を向上するために、
素子形成後、素子上に研磨支持用基盤を張り付け、素子
裏面のシリコン層を研磨することで能動層のみを残した
後に研磨支持基盤を剥がし、薄くなったシリコンウェハ
ーに他の基盤を張り付けている。この場合の研磨支持用
基盤には素子形成したシリコンウェハーと同一のシリコ
ンウェハーが必要となり、素子価格が高くなる原因とな
っている。また酵くなったシリコンウェハーを張り付け
る基盤においては、素子の発熱を考えると放熱性の良好
なものが要求されている。 これらの研磨用支持基盤において、シリコンでは高コス
トであり、また欠は易く、放熱性が良くない等の問題が
ある。 (発明が解決しようとする課題) そこで、本発明者等は、軽量で、且つ加工性の良好なア
ルミニウム合金を選び、シリコンウェハーと同一のオリ
エンテーションフラット部を有する平板基盤を製造する
方法を特願昭63−41009号にて提案し、アルミニ
ウム合金製のウェハーの提供を可能とした。 しかし乍ら、同方法では、仕上げ加工がグラインド仕上
げであるため1表面粗度が大きく、充分な反射率が得ら
れず、アルミニウム合金ウェハーの使用上においては改
善が要求されていた。これは、ウェハー上に形成された
能動膜の欠陥検査を。 基盤での反射光の損失、散乱程度により判定するためで
あり、したがって、方向差及び部位差のない均一な反射
がなされる基盤が要求されるようになったためである。 なお1反射率の高い表面を得るためには5ポリゴンミラ
ー等においては、従来からダイヤモンド切削がなされて
いたが、先の提案中で一部言及したが、ウェハー形状の
場合は歪みの点よりこのダイヤモンド研削方法は採用が
困難である。 このように、反射率及び歪みの点で優れた平板基盤の出
現が望まれているのが現状である。 本発明は、か)る要請に応えるべくなされたものであっ
て、高反射率で、且つ歪みの点で優れたアルミニウム合
金平板基盤の製造方法を提供することを目的とするもの
である。 (課題を解決するための手段) 前記目的を達成するため、本発明者等は、先の提案の結
果を踏まえ、更に高反射率のアルミニウム合金平板基盤
を得る方策について鋭意研究を重ねた結果、反射による
検査に要求される最低反射率(80%以上)を満たし、
更には82%以上も可能な研磨方法を見い出し、ここに
本発明をなしたものである。 すなわち、本発明は、Mg:2〜5%及びMn: 0 
。 2〜0.7%を含み、残部がAl及び不可避的不純物か
らなるアルミニウム合金円板につき、最終研磨を、有機
酸によりpHを8以下に調整したコロイダルシリカ溶液
を研磨剤として用いて行うことを特徴とするアルミニウ
ム合金平板基盤の研磨方法を要旨とするものである。 以下に本発明を更に詳細に説明する。 (作用) まず、アルミニウム合金としては、先の提案で示した如
く、基盤としての強度、取り扱い易さ、研磨のし易さの
点から、ある程度の強度が必要であるため、Mg:2〜
5%、Mn:0.2〜0.7%が必要である。 すなわち、Mgは基盤の所定の機械的性質及び加工性を
付与するのに不可欠の元素であり、2%以上添加しなけ
ればその効果が得られない、しかし、5%を超えるとM
g−8i系晶出物量が多くなり、更に溶解鋳造時の高温
酸化により非金属介在物(MgO)を生成し、仕上げ加
工時の表面精度が低下することになり、半導体基盤研磨
支持用基盤として或いは素子形成用基盤としての用をな
さないことになる。したがって、Mglは2〜5%の範
囲とする。 また、Mnは所定の機械的性質及び加工性を付与すると
共に耐食性を高めるのに効果のある元素であり、且つ熱
処理による歪の発生を抑制する効果を持つ元素である。 そのためには少なくとも0゜2%以上が必要である。し
かし、0.7%を超えると粗大なAl−Fe−Mn系品
出物が生成され易くなり、仕上げ加工時の表面精度低下
の原因になる。 なお、アルミニウム合金には製造上不純物が含まれるが
、不純物量は本発明の効果を損なわない限度で許容され
る。 次に1本発明法の条件について説明する。 本発明は上記組成のアルミニウム合金円板の研磨法を特
徴とするが、研磨に至るまでの製造工程の一例を以下に
説明する。 まず、上記組成のアルミニウム合金は常法により溶解、
#4造し、均熱化処理、熱間圧延、冷間圧延することに
より、圧延板を得る。 アルミニウム合金圧延板は、圧延後、打抜きにより円板
とし、歪みを良好とするために、更にオリエンテーショ
ンフラット加工、ベベリング加工。 フラットベーキング(焼鈍)、グラインド(例、両面ラ
ッピング装置にて固定砥粒を用いる方式で、粗グライン
ド、仕上げブラインドを含む)の工程を経る。この場合
、焼鈍はプレス焼鈍が望ましく。 また円板の一部カットが必要な場合はグラインド前に行
うのが望ましい、勿論、グラインドまでの工程としては
先の提案に示した工程が望ましい。 更に1反射率を高くするためには研磨を行うことが必要
である。 研磨法としては、幾つかの方式があるが1両面研磨(両
面ラッピング装置にて遊離砥粒を用いる方式)が最も望
ましい。 研磨用のクロスは何種類も存在するが、例えば、サーフ
ィン018−3(商品名)が挙げられる。 但し、研磨液としては、有機酸によりPHを8以下に調
整したコロイダルシリカ溶液を研磨剤として用いる必要
があることが判明した。これは、表面粗度を極めて小さ
くし、反射率を高めるためである。しかし、コロイダル
シリカ溶液のρIIが8を超えるとその効果が得られな
い。p HfJR整は乳酸、ギ酸、グルコン酸等々の有
機酸により8以下にする。なお、実質上PHは1.0程
度でも研磨品の品質上は何ら問題、がないが、研磨機の
腐食等の問題が発生し易く、この意味においてpHは2
程度に止めることが望ましい。 (実施例) 次に本発明の実施例を示す。 失適勇上 第1表に示す化学成分を有するアルミニウム合金板を、
打抜き、オリエンテーションフラット加工、ベベリング
加工、焼鈍、粗グラインド、仕上げグラインドを行った
後、第2表に示す条件で研磨加工を行った。なお、研磨
クロスとしてサーフィン018−3を用い、研磨時間は
5分であり、pHは乳酸にて5に調整した。また、同表
に示した研磨剤は商品名であり、スノーテックスのみが
コロイダルシリカで、他の研磨剤は全てアルミナである
。 得られたアルミニウム合金基盤の反射率を第2表に併記
する。 第2表より明らかな如く、pH5に調整したスノーテッ
クスを用いた本発明例は反射率が非常に高いことがわか
る。 一方、研磨剤としてアルミナを用いた比較例はいずれも
反射率が低く、pHを本発明範囲内に調整しても、反射
率向上効果が得られない。 したがって、研磨剤としてコロイダルシリカ溶液が有効
であることが明らかである。
(Industrial Application Field) The present invention relates to a method for polishing an aluminum alloy flat plate substrate, which is particularly suitable for film formation and semiconductor substrate polishing support. (Prior Art) Silicon wafers are currently used as semiconductor substrates. Due to this increase in the degree of integration and the accompanying improvement in device performance, SOI (Silicon OnI n5
New technologies such as ulator technology are attracting attention. For example, "Nikkei Electronics" 1986
As described in the October 6, 2015 issue, page 76, in order to improve the performance of devices formed on silicon wafers,
After the device is formed, a polishing support base is pasted on top of the device, and the silicon layer on the back of the device is polished, leaving only the active layer, after which the polishing support base is peeled off and another base is pasted on the thinned silicon wafer. . In this case, the polishing support base requires the same silicon wafer as the silicon wafer on which the elements are formed, which causes an increase in the element price. Furthermore, the substrate to which the fermented silicon wafer is attached is required to have good heat dissipation properties, considering the heat generated by the elements. In these polishing support bases, silicon has problems such as high cost, easy chipping, and poor heat dissipation. (Problem to be Solved by the Invention) Therefore, the present inventors selected an aluminum alloy that is lightweight and has good workability, and filed a patent application for a method of manufacturing a flat plate substrate having the same orientation flat part as a silicon wafer. It was proposed in No. 63-41009 and made it possible to provide wafers made of aluminum alloy. However, in this method, since the finishing process is a grind finish, the surface roughness is large and sufficient reflectance cannot be obtained, and improvements have been required in the use of aluminum alloy wafers. This inspects the active film formed on the wafer for defects. This is because the determination is made based on the degree of loss and scattering of the reflected light on the base, and therefore, there is a need for a base that provides uniform reflection without directional or local differences. 1. In order to obtain a surface with high reflectance, diamond cutting has traditionally been performed on 5-polygon mirrors, etc., but as I mentioned in the previous proposal, this method is not suitable for wafer-shaped surfaces due to distortion. Diamond grinding method is difficult to adopt. As described above, there is currently a desire for a flat substrate with excellent reflectance and distortion. The present invention was made in response to the above request, and an object of the present invention is to provide a method for manufacturing an aluminum alloy flat plate substrate that has high reflectance and is excellent in terms of distortion. (Means for Solving the Problems) In order to achieve the above object, the inventors of the present invention, based on the results of the previous proposal, have conducted intensive research into ways to obtain an aluminum alloy flat plate substrate with even higher reflectance. Meets the minimum reflectance (80% or more) required for reflective inspection,
Furthermore, we have discovered a polishing method that can achieve a polishing rate of 82% or more, and have hereby accomplished the present invention. That is, in the present invention, Mg: 2 to 5% and Mn: 0
. For aluminum alloy disks containing 2 to 0.7% and the remainder consisting of Al and unavoidable impurities, the final polishing is performed using a colloidal silica solution whose pH is adjusted to 8 or less with an organic acid as a polishing agent. The gist of this paper is a method for polishing an aluminum alloy flat plate substrate, which is characterized by its characteristics. The present invention will be explained in more detail below. (Function) First, as shown in the previous proposal, an aluminum alloy must have a certain level of strength in terms of strength as a base, ease of handling, and ease of polishing, so Mg: 2~
5% and Mn: 0.2 to 0.7%. In other words, Mg is an essential element for imparting certain mechanical properties and workability to the base, and the effect cannot be obtained unless it is added in an amount of 2% or more. However, if it exceeds 5%, Mg
The amount of g-8i crystallized substances increases, and non-metallic inclusions (MgO) are generated due to high-temperature oxidation during melting and casting, resulting in a decrease in surface accuracy during finishing processing, making it difficult to use as a substrate for supporting semiconductor substrate polishing. Otherwise, it becomes useless as a base for forming an element. Therefore, Mgl should be in the range of 2 to 5%. Furthermore, Mn is an element that is effective in imparting predetermined mechanical properties and workability and increasing corrosion resistance, and is also an element that has the effect of suppressing the occurrence of distortion due to heat treatment. For this purpose, at least 0°2% or more is required. However, if it exceeds 0.7%, coarse Al-Fe-Mn-based products are likely to be produced, causing a decrease in surface precision during finishing. Note that although the aluminum alloy contains impurities due to manufacturing, the amount of impurities is allowed within a limit that does not impair the effects of the present invention. Next, conditions for the method of the present invention will be explained. The present invention is characterized by a method of polishing an aluminum alloy disk having the above composition, and an example of the manufacturing process up to polishing will be described below. First, the aluminum alloy with the above composition is melted using a conventional method.
A rolled plate is obtained by #4 manufacturing, soaking treatment, hot rolling, and cold rolling. After rolling, aluminum alloy rolled plates are punched out into disks, and further processed to flatten the orientation and bevel to reduce distortion. It goes through the steps of flat baking (annealing) and grinding (for example, using fixed abrasive grains in a double-sided lapping machine, including coarse grinding and finishing blinds). In this case, press annealing is preferable for annealing. Furthermore, if it is necessary to cut a portion of the disk, it is desirable to do so before grinding.Of course, the steps shown in the previous proposal are preferable as the steps up to grinding. In order to further increase the 1 reflectance, it is necessary to perform polishing. There are several polishing methods, but single-sided polishing (a method using free abrasive grains in a double-sided lapping machine) is the most desirable. Although there are many types of polishing cloths, one example is Surfing 018-3 (trade name). However, it has been found that it is necessary to use a colloidal silica solution whose pH has been adjusted to 8 or less with an organic acid as the polishing agent. This is to make the surface roughness extremely small and increase the reflectance. However, if the ρII of the colloidal silica solution exceeds 8, this effect cannot be obtained. pHJR adjustment is adjusted to 8 or less using organic acids such as lactic acid, formic acid, gluconic acid, etc. Although there is virtually no problem with the quality of the polished product even if the pH is around 1.0, problems such as corrosion of the polishing machine are likely to occur, and in this sense, the pH is around 2.
It is desirable to limit it to a certain extent. (Example) Next, an example of the present invention will be shown. An aluminum alloy plate having the chemical composition shown in Table 1 above,
After performing punching, orientation flat processing, beveling processing, annealing, rough grinding, and final grinding, polishing processing was performed under the conditions shown in Table 2. In addition, Surfing 018-3 was used as a polishing cloth, the polishing time was 5 minutes, and the pH was adjusted to 5 with lactic acid. Furthermore, the abrasives shown in the same table are trade names; only Snowtex is colloidal silica, and all other abrasives are alumina. The reflectance of the obtained aluminum alloy substrate is also listed in Table 2. As is clear from Table 2, it can be seen that the reflectance of the present invention example using Snowtex adjusted to pH 5 is extremely high. On the other hand, all of the comparative examples using alumina as the abrasive have low reflectance, and even if the pH is adjusted within the range of the present invention, no effect of improving the reflectance can be obtained. Therefore, it is clear that colloidal silica solution is effective as a polishing agent.

【以下余白】[Left below]

去11」工 第3表に示す化学成分を有するアルミニウム合金板につ
き、実施例1と同様にグラインド加工まで行った後、第
4表に示すように酸にてp H!fl l!したスノー
テックスを用いて研磨加工を行った。 なお、研磨時の加工圧は75g/c■3とし、加工時間
は10分である。 得られたアルミニウム合金基盤についての反射率、スク
ラッチの有無、洗浄性等の評価結果を第4表に併記する
。 第4表から、有機酸でpHll11を行った本発明例!
1a2〜N+15、&6〜&7は反射率が極めて高く、
また、スクラッチもなく、良好な洗浄性を有し、効果が
著しいことが明らかである。 一方、研磨剤としてコロイダルシリカ溶液を用いた場合
であってもpH無調整の場合(pH9,5)或いは無機
酸でpH調整した場合、更には有機酸でpH調整しても
pH>8の場合は、いずれも反射率が低く、スクラッチ
の発生、洗浄性の劣化がみられる。 したがって、コロイダルシリカ溶液は有機酸でPHを8
以下に調整することが有効であることがわかる。
Example 11 An aluminum alloy plate having the chemical composition shown in Table 3 was subjected to grinding in the same manner as in Example 1, and then pH-treated with acid as shown in Table 4. Fl l! The polishing process was performed using Snowtex. The processing pressure during polishing was 75 g/c3, and the processing time was 10 minutes. Evaluation results of the obtained aluminum alloy substrates, such as reflectance, presence of scratches, and cleanability, are also listed in Table 4. From Table 4, an example of the present invention in which pHll11 was carried out using an organic acid!
1a2~N+15, &6~&7 have extremely high reflectance,
Further, it is clear that there are no scratches and that the cleaning property is good, and the effect is remarkable. On the other hand, even if a colloidal silica solution is used as the polishing agent, the pH is not adjusted (pH 9,5), or the pH is adjusted with an inorganic acid, or even if the pH is adjusted with an organic acid, the pH is >8. All have low reflectance, scratches occur, and cleaning performance deteriorates. Therefore, the colloidal silica solution has a pH of 8 with an organic acid.
It can be seen that the following adjustments are effective.

【以下余白】[Left below]

ス】0」l 第1表に示す化学成分を有するアルミニウム合金板につ
き、実施例1と同様にして仕上げグラインド加工後、更
に第5表に示す条件で研磨加工を行った。なお、他の研
磨条件は実施−例1と同様であり、乳酸でpH調整した
。 得られたアルミニウム合金基盤の表面粗度Raを第5表
に併記する。 第5表から、有機酸によるPH調整は、アルミナに対す
るよりもコロイダルシリカに対しての方が有効であるこ
とがわかる。また、コロイダルシリカと有機酸を用いた
場合に第2表に示したように反射率が高いのは、第5表
に示す如く表面粗度が非常に小さくなるためであること
がわかる。 【以下余白l (発明の効果) 以上詳述したように1本発明によれば、高反射率で、且
つ歪みの点で優れたアルミニウム合金平板基盤が得られ
るので、特に成膜用及び半導体基盤研磨支持用に好適で
ある。 特許出願人   株式会社神戸製鋼所 代理人弁理士  中  村   尚
0''l Aluminum alloy plates having the chemical components shown in Table 1 were subjected to finish grinding in the same manner as in Example 1, and then further polished under the conditions shown in Table 5. The other polishing conditions were the same as in Example 1, and the pH was adjusted with lactic acid. The surface roughness Ra of the obtained aluminum alloy substrate is also listed in Table 5. Table 5 shows that pH adjustment using an organic acid is more effective for colloidal silica than for alumina. Further, it can be seen that the reason why the reflectance is high as shown in Table 2 when colloidal silica and an organic acid are used is that the surface roughness becomes extremely small as shown in Table 5. [Blank below] (Effects of the Invention) As detailed above, according to the present invention, an aluminum alloy flat plate substrate with high reflectance and excellent distortion can be obtained, so it can be used especially for film formation and semiconductor substrates. Suitable for polishing support. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 重量%で(以下、同じ)、Mg:2〜5%及びMn:0
.2〜0.7%を含み、残部がAl及び不可避的不純物
からなるアルミニウム合金円板につき、最終研磨を、有
機酸によりpHを8以下に調整したコロイダルシリカ溶
液を研磨剤として用いて行うことを特徴とするアルミニ
ウム合金平板基盤の研磨方法。
In weight% (hereinafter the same), Mg: 2 to 5% and Mn: 0
.. For aluminum alloy disks containing 2 to 0.7% and the remainder consisting of Al and unavoidable impurities, the final polishing is performed using a colloidal silica solution whose pH is adjusted to 8 or less with an organic acid as a polishing agent. A distinctive method for polishing aluminum alloy flat plate substrates.
JP1007400A 1989-01-12 1989-01-12 Polishing method for base of aluminum alloy slab Pending JPH02185365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007400A JPH02185365A (en) 1989-01-12 1989-01-12 Polishing method for base of aluminum alloy slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007400A JPH02185365A (en) 1989-01-12 1989-01-12 Polishing method for base of aluminum alloy slab

Publications (1)

Publication Number Publication Date
JPH02185365A true JPH02185365A (en) 1990-07-19

Family

ID=11664840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007400A Pending JPH02185365A (en) 1989-01-12 1989-01-12 Polishing method for base of aluminum alloy slab

Country Status (1)

Country Link
JP (1) JPH02185365A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607718A (en) * 1993-03-26 1997-03-04 Kabushiki Kaisha Toshiba Polishing method and polishing apparatus
JP2008544868A (en) * 2005-06-30 2008-12-11 キャボット マイクロエレクトロニクス コーポレイション Use of CMP for aluminum mirrors and solar cell manufacturing
WO2007122585A3 (en) * 2006-04-26 2009-04-23 Nxp Bv Method of manufacturing a semiconductor device, semiconductor device obtained herewith, and slurry suitable for use in such a method
CN103945983A (en) * 2011-11-25 2014-07-23 福吉米株式会社 Method for polishing alloy material and method for producing alloy material
WO2015087771A1 (en) 2013-12-13 2015-06-18 株式会社フジミインコーポレーテッド Article with metal oxide film
JPWO2014013977A1 (en) * 2012-07-17 2016-06-30 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5607718A (en) * 1993-03-26 1997-03-04 Kabushiki Kaisha Toshiba Polishing method and polishing apparatus
JP2008544868A (en) * 2005-06-30 2008-12-11 キャボット マイクロエレクトロニクス コーポレイション Use of CMP for aluminum mirrors and solar cell manufacturing
WO2007122585A3 (en) * 2006-04-26 2009-04-23 Nxp Bv Method of manufacturing a semiconductor device, semiconductor device obtained herewith, and slurry suitable for use in such a method
CN103945983A (en) * 2011-11-25 2014-07-23 福吉米株式会社 Method for polishing alloy material and method for producing alloy material
JPWO2013077281A1 (en) * 2011-11-25 2015-04-27 株式会社フジミインコーポレーテッド Method for polishing alloy material and method for producing alloy material
JPWO2014013977A1 (en) * 2012-07-17 2016-06-30 株式会社フジミインコーポレーテッド Composition for polishing alloy material and method for producing alloy material using the same
WO2015087771A1 (en) 2013-12-13 2015-06-18 株式会社フジミインコーポレーテッド Article with metal oxide film
KR20160098230A (en) 2013-12-13 2016-08-18 가부시키가이샤 후지미인코퍼레이티드 Article with metal oxide film

Similar Documents

Publication Publication Date Title
JP3317330B2 (en) Manufacturing method of semiconductor mirror surface wafer
JPH10158828A (en) Sputtering target and its production
WO2015146812A1 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk, and aluminum alloy substrate for magnetic disk
JP3328193B2 (en) Method for manufacturing semiconductor wafer
WO2017163943A1 (en) Aluminum alloy blank for magnetic disc and aluminum alloy substrate for magnetic disc
JPH02185365A (en) Polishing method for base of aluminum alloy slab
JP7478766B2 (en) Magnetic disk substrate and magnetic disk using said magnetic disk substrate
JP6427290B1 (en) Aluminum alloy substrate for magnetic disk, method of manufacturing the same, and magnetic disk using the aluminum alloy substrate for magnetic disk
KR102165589B1 (en) Silicon wafer polishing method, silicon wafer manufacturing method and silicon wafer
JP2019160384A (en) Substrate for magnetic disk, method for manufacturing the same, and magnetic disk using substrate for magnetic disk
JP3503444B2 (en) Method for manufacturing semiconductor wafer having semiconductor wafer etching step
JPH05154760A (en) Polishing composition and polishing method for silicon wafer
JP7132289B2 (en) Aluminum alloy plate for magnetic disk, aluminum alloy blank for magnetic disk, aluminum alloy substrate for magnetic disk, and method for producing aluminum alloy plate for magnetic disk
JP2008001946A (en) Method of manufacturing aluminum alloy substrate for magnetic disk and aluminum alloy substrate for magnetic disk manufactured by this manufacturing method
JPH02111839A (en) Aluminum alloy sheet for disk having superior plating suitability and its production
JP2565741B2 (en) Aluminum alloy plate for disk excellent in grindability and plating property with a grindstone and method for producing the same
JP2002146521A (en) Method for manufacturing gold target
JPS62230947A (en) Aluminum alloy for magnetic disk
US20240233764A9 (en) Magnetic disk substrate, magnetic disk, annular-shaped substrate, and method for manufacturing magnetic disk substrate
JP2501454B2 (en) Method for manufacturing mirror-finished stainless steel plate
JP2003007672A (en) Method of etching silicon semiconductor wafer
JP2002275568A (en) Aluminum alloy for magnetic disk and substrate for magnetic disk
JPH03247734A (en) Magnetic disk substrate
JP2002194470A (en) Aluminum alloy disk substrate
JP2500025B2 (en) Method for manufacturing titanium magnetic disk substrate