JPH02184078A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH02184078A
JPH02184078A JP408589A JP408589A JPH02184078A JP H02184078 A JPH02184078 A JP H02184078A JP 408589 A JP408589 A JP 408589A JP 408589 A JP408589 A JP 408589A JP H02184078 A JPH02184078 A JP H02184078A
Authority
JP
Japan
Prior art keywords
layer
gaas
source
electrode
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP408589A
Other languages
Japanese (ja)
Inventor
Hoki Haba
方紀 羽場
Masako Tanaka
雅子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP408589A priority Critical patent/JPH02184078A/en
Publication of JPH02184078A publication Critical patent/JPH02184078A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To inhibit a latchup by making an n<+> source layer function as an n<+>-GaSi epitaxial layer, disposing a p<+> diffusion layer in the upper section at a position away from the inversion layer of a p layer, and by boding a source electrode onto an n<+>-GaAs epitaxial layer and a p<+> diffusion layer. CONSTITUTION:An n<+>-GaAs epitaxial layer 6 is formed on the top surface of a p layer 4 so as to be across p<+> layers 5, 5, and a p-n heterojunction is formed. A V groove 7 is disposed in the center of the n<+>-GaAs layer 6. An SiO2 gate oxide film 8 is applied from the V groove 7 to the top surface of the inner edge of the n<+>-GaAs layer. A gate electrode 9 is disposed in the V groove of the gate oxide film 8. A source (emitter) electrode 10 is disposed from the n<+>-GaAs layer 6 to the p<+> layer 5 and the p layer 4, and a drain electrode 11 is disposed on the rear side of the p<+> substrate 1. As the result of the above arrangement, a voltage at which a latchup phenomenon of a parasitic thyristor can be increased greatly.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、電界効果トランジスタに関する。[Detailed description of the invention] A. Industrial application field The present invention relates to field effect transistors.

89発明の概要 本発明の電界効果トランジスタは、堅型バイポーラMO
9FET又は堅型バイポーラVMOSFE’rにおいて
、n゛ソース層n  −GaAsエピタキシャル層とし
、これが設けられるPエピタキシャル層との間にP−n
へテロ接合を作り、ホールに対する障壁を高くすると共
に、Pエピタキシャル層にP゛拡散層を設け、これにソ
ース電極を接合して、ホールがこのP0拡散層を通って
ソース電極に良く流れるようにしたものである。
89 Summary of the Invention The field effect transistor of the present invention is a hard bipolar MO
In a 9FET or rigid bipolar VMOSFE'r, an n source layer is an n-GaAs epitaxial layer, and a P-n layer is formed between this and a P epitaxial layer.
In addition to creating a heterojunction and increasing the barrier to holes, a P diffusion layer is provided in the P epitaxial layer and a source electrode is bonded to this so that holes can flow well through this P diffusion layer to the source electrode. This is what I did.

C1従来の技術 従来の堅型MOS電界効果トランジスタ(FET)は、
第4図に示すように構成されており、ゲ−ト電極Gに電
圧を印加することによって、酸化物S I Otとの界
面近傍に薄いP層の反転層を形成させ、それにより電子
C−が矢印方向に流れ、ゲート電圧を取り去ると反転層
が蓄積状態となり電子e−は流れなくなる。これにより
高速のスイッチングを行うことができる。0M5FET
は竪形にしたことによりチャネル形成密度が上がり、電
流容量が増す事によって電力用としての用途が開けた。
C1 Conventional technology The conventional rigid MOS field effect transistor (FET) is
It is constructed as shown in FIG. 4, and by applying a voltage to the gate electrode G, an inversion layer of a thin P layer is formed near the interface with the oxide S I Ot, thereby inverting the electron C- flows in the direction of the arrow, and when the gate voltage is removed, the inversion layer becomes in an accumulation state and electrons e- no longer flow. This allows high-speed switching to be performed. 0M5FET
By making it vertical, the density of channel formation increased, and the current capacity increased, opening up applications for electric power.

最近更に消費電力を軽紘するために、ON抵抗を下げ、
更に電流容量を上げる試みがなされた。
Recently, in order to further reduce power consumption, the ON resistance has been lowered,
Attempts were made to further increase the current capacity.

第5図及び第6図に堅型バイポーラMO8FET及び堅
型バイポーラVMO8FETを示す。これらは電流キャ
リアを電子eとホールhにすることによってON抵抗を
下げ、かつ第6図はV溝を設はゲート位置を低くして電
流経路を短縮し更に抵抗を下げている。
5 and 6 show a rigid bipolar MO8FET and a rigid bipolar VMO8FET. These reduce the ON resistance by using electrons e and holes h as current carriers, and in FIG. 6, a V groove is provided and the gate position is lowered to shorten the current path and further reduce the resistance.

D0発明が解決しようとする課題 ところが、この堅型バイポーラの構造では、点線枠aで
囲まれている部分がサイリスク構造(寄生サイリスク)
となり、この寄生サイリスタが、成る印加電圧量]−,
ではONの状態になるため、ゲート信号によるターンオ
フができなくなる。この現象はラッチアップと呼ばれる
Problem to be solved by the D0 invention However, in this rigid bipolar structure, the part surrounded by the dotted line frame a has a cyrisk structure (parasitic cyrisk).
Then, this parasitic thyristor has the applied voltage ]−,
Since it is in the ON state, it cannot be turned off by the gate signal. This phenomenon is called latch-up.

〈ラッチアップが起こらない条件〉 寄生サイリスク部分は、第7図に示すようにnpn接合
とpnp接合の2つのトランジスタを組み合わせた構造
となっており、各々の電流増幅率が次式(1)を満たす
限りはラッチアップは抑制できる。
<Conditions under which latch-up does not occur> As shown in Figure 7, the parasitic silicon risk part has a structure that combines two transistors, an npn junction and a pnp junction, and the current amplification factor of each satisfies the following equation (1). As long as the requirements are met, latch-up can be suppressed.

αpnp+αnpn<l  ・・ψ(1)ここで、an
pn=Ic/Eg、Ig=Ia+Icこれを更に第8図
で説明すると、電子e−の経路抵抗RNとホール、ho
の経路抵抗Rpが並列に存在すると考えられ、次式(2
)を満たず限りラッチアップは起ごらない。
αpnp+αnpn<l ・・ψ(1) Here, an
pn=Ic/Eg, Ig=Ia+Ic To further explain this with FIG. 8, the path resistance RN of electron e- and hole, ho
It is considered that the path resistance Rp exists in parallel, and the following equation (2
), latch-up will not occur.

!1・RP−!、・R,4くvl、 ・ ・ ・ (2
)ここで、!7;ホール電極、!、;電子電流。
! 1・RP-! ,・R,4kuvl, ・ ・ ・ (2
)here,! 7; Hall electrode! , ;electronic current.

v2;ビルトイン電位差 従って、上記式(1)、(2)を満たず工夫が必要であ
る。
v2: Built-in potential difference Therefore, the above formulas (1) and (2) are not satisfied, and some measures are required.

本発明は、堅型バイポーラM OS F E ’r又は
堅型バイポーラVMOSFETにおいて、寄生サイリス
タ構造のラッチアップ電圧を高くする目的で、上記式(
2)の■。を大きくした電界効果トランジスタを提供す
ることにある。
The present invention uses the above formula (
2) ■. It is an object of the present invention to provide a field effect transistor with a large size.

■シ0課題を解決するための手段 上記[1的を達成するために、本発明の電界効果トラン
ジスタは、P層上部にn゛ソース層設け、このn°ソー
ス層から前記P層にかけてソース電極を接合してなる堅
型バイポーラMO8FET又は堅型バイポーラVMO8
PETにおいて、面記n゛ソース層を、n  −GaS
iエピタキシャル層とすると共に、前記P層の反転層よ
り離れた位置の上部にP゛拡散層を設け、前記ソース電
極を前記n  −GaAsエピタキシャル層及びP″″
拡散上に接合してなるものである。
■Means for Solving Problem 0 In order to achieve object 1 above, the field effect transistor of the present invention has an n source layer provided above the P layer, and a source electrode extending from the n source layer to the P layer. Rigid bipolar MO8FET or rigid bipolar VMO8 made by joining
In PET, the planar n source layer is made of n-GaS
In addition to forming an i epitaxial layer, a P diffusion layer is provided above the P layer at a position away from the inversion layer, and the source electrode is connected to the n-GaAs epitaxial layer and the P''''.
It is formed by bonding on diffusion.

F9作用 電子はn  −GaAsエピタキシャル層からnチャネ
ルに注入されドレイン側に流れる。
F9 working electrons are injected into the n channel from the n -GaAs epitaxial layer and flow toward the drain side.

n  −GaAsエピタキシャル層とP層間のホールに
対する障壁は、従来n  −3i層とのP層間の障壁よ
り0.3eV程高くなっているので、ホールの流れのブ
ロック効果が大きくなる。
Since the barrier to holes between the n-GaAs epitaxial layer and the P layer is about 0.3 eV higher than the conventional barrier between the n-3i layer and the P layer, the effect of blocking the flow of holes is increased.

P層とソース電極間にはP°拡散層があるので、ホール
はP“拡散層を通ってソース電極へ流れる。
Since there is a P° diffusion layer between the P layer and the source electrode, holes flow to the source electrode through the P'' diffusion layer.

G、実施例 本発明の実施例にかかる電界効果トランジスタをその製
造方法と共に説明する。
G. Example A field effect transistor according to an example of the present invention will be described together with a method for manufacturing the same.

第1図において、P゛シリコン基板l上に、nエピタキ
シャルfi2’、n−エピタキシャル層3゜Pエピタキ
シャル層4を順次設ける。この2層4の北部に所定間隔
でP°拡散層5.5を設け、このP′″層5,5に跨が
るように2層4の上面にn−GaAsのエピタキシャル
層6を形成し、P−nヘテロ接合を作る。
In FIG. 1, an n epitaxial layer fi2', an n-epitaxial layer 3, and a P epitaxial layer 4 are sequentially provided on a P silicon substrate l. P° diffusion layers 5.5 are provided at predetermined intervals in the northern part of the two layers 4, and an n-GaAs epitaxial layer 6 is formed on the upper surface of the two layers 4 so as to straddle the P'' layers 5,5. , creating a P-n heterojunction.

このn7GaAs層6の中央部に■溝7を設け、このV
 1I147からn  −GaAs層の内端−上面にか
けてS i O!ゲート酸化膜8を施す。そして、ゲー
ト酸化膜8のV溝部分にゲート電極9を設けると共に、
n  −GaAs層6からP°層5及び2層4にかけて
ソース(エミッタ)電極10を設け、P″基板Iの裏側
にドレイン電極11を設けて構成されている。
A groove 7 is provided in the center of this n7GaAs layer 6, and this V
S i O! from 1I147 to the inner end-top surface of the n-GaAs layer. A gate oxide film 8 is applied. Then, a gate electrode 9 is provided in the V-groove portion of the gate oxide film 8, and
A source (emitter) electrode 10 is provided from the n-GaAs layer 6 to the P° layer 5 and the second layer 4, and a drain electrode 11 is provided on the back side of the P'' substrate I.

このように、本発明の電界効果トランジスタは構成され
ているので、電子電流1.は、n−GaAs層6からゲ
ート電極9.ゲート酸化膜8,2層4により形成される
nチャンネル4′に注入され、n”層3.n°層2.P
0基板1.ドレイン電極11に流れる。一方ホール電流
■、は、ドレイン電極IIからP゛基板1.n”層2.
n−層3゜2層4からソース電極lOへ流れるが、n−
GaAs層6と2層4とのP−nへテロ接合部分ではブ
ロックされる。この段階で寄生サイリスク構造が作られ
るが、ヘテロ接合により、ホールに対する障壁は、5i
−5tのホモ接合を使った従来のものより、0.3eV
程高くなる。しかして、ソース電極10.n−GaAs
層6.P−S3層4.n−5i層3の結合のエネルギー
状態は第2図のようになり、電子eは障壁イを越えて流
れる。一方ホールhは障壁口を越えてソース電極10側
へ流れる。
Since the field effect transistor of the present invention is configured in this way, the electron current 1. , from the n-GaAs layer 6 to the gate electrode 9. Injected into the n-channel 4' formed by the gate oxide film 8 and the two layers 4, the n'' layer 3.n° layer 2.P
0 board 1. The current flows to the drain electrode 11. On the other hand, the Hall current (2) is from the drain electrode II to the P'substrate 1. n” layer 2.
It flows from the n- layer 3゜2 layer 4 to the source electrode lO, but the n-
It is blocked at the Pn heterojunction between the GaAs layer 6 and the second layer 4. At this stage, a parasitic silicon structure is created, but due to the heterojunction, the barrier to holes is 5i
-0.3 eV compared to the conventional one using a homojunction of -5t
moderately high. Therefore, the source electrode 10. n-GaAs
Layer 6. P-S3 layer 4. The energy state of the bond in the n-5i layer 3 is as shown in FIG. 2, and electrons e flow across the barrier a. On the other hand, the holes h flow to the source electrode 10 side beyond the barrier port.

寄生サイリスタのラッチアップ防止には、障壁口の高い
方が有利であるが、従来のように5iSiのホモ接合を
使う限り、伝導帯と価電子帯との幅は1.12eVであ
り、障壁19口は同じ高さしか持たない。これに対して
本発明のようにGaAsのへテロ接合を用いると、Ga
AsがStに比して大きな禁制帯を持つために、障壁口
はイに比べて0.3eV程高くなり、ホールに対するブ
ロック効果が大きくなる。一般に障壁口における最低許
容電位差は、0.6〜0.7eVまでと云われているか
ら、0.3eVのブロック効果の寄与は大きい。従って
、最終的にホールは2層4からP゛層5通ってソース電
極10へ抜ける。なお、n−GaAsエピタキシャル層
6はM i(I’:(Mo12 ecu12 ar  
Beam rap i f ax 1aC)法等により
形成する。
In order to prevent parasitic thyristor latch-up, it is advantageous to have a higher barrier opening, but as long as a 5iSi homojunction is used as in the past, the width between the conduction band and the valence band is 1.12 eV, and the barrier 19 The mouths should only be at the same height. On the other hand, when a GaAs heterojunction is used as in the present invention, GaAs
Since As has a larger forbidden band than St, the barrier opening is about 0.3 eV higher than that of A, which increases the blocking effect against holes. Generally, the minimum allowable potential difference at the barrier port is said to be 0.6 to 0.7 eV, so the contribution of the blocking effect of 0.3 eV is large. Therefore, the holes finally escape from the second layer 4 through the P' layer 5 to the source electrode 10. Note that the n-GaAs epitaxial layer 6 has M i (I': (Mo12 ecu12 ar
It is formed by a beam rap i f ax 1aC) method or the like.

−1−記実施例はP層をエピタキシャル層としているが
拡散層としてもよい。
-1- In the embodiment described above, the P layer is an epitaxial layer, but it may also be a diffusion layer.

1−1 、発明の効果 本発明は、上述のとおり構成されているので、寄生サイ
リスタのラブチアツブ現象の起こる電圧を大iJに高く
することができる。
1-1. Effects of the Invention Since the present invention is configured as described above, it is possible to increase the voltage at which the love-throttle phenomenon of the parasitic thyristor occurs to a large iJ.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す要部正断面図、第2図(
改)、(b)は接合部のエネルギー状態説明図、第3図
はラブチアツブ現象の起こる電圧曲線図、第4図乃至第
6図は夫々異なる従来電界効果トランジスタを示す要部
正断面図、第7図は寄生サイリスクの構成図、第8図(
a)は電子及びホールの経路説明図、第8図(b)は経
路抵抗外2名 第3図 第5図 第4図 第6図 第7図 第8図
Figure 1 is a front sectional view of the main part showing an embodiment of the present invention, Figure 2 (
(revised), (b) is an explanatory diagram of the energy state of the junction, Figure 3 is a voltage curve diagram where the love-bubble phenomenon occurs, Figures 4 to 6 are front cross-sectional views of main parts showing different conventional field effect transistors, respectively. Figure 7 is a diagram of the structure of a parasitic rhinoceros risk, and Figure 8 (
a) is an explanatory diagram of the paths of electrons and holes, and Fig. 8 (b) is an illustration of the path resistance for two people. Fig. 3 Fig. 5 Fig. 4 Fig. 6 Fig. 7 Fig. 8

Claims (1)

【特許請求の範囲】[Claims] (1)P層上部にn^+ソース層を設け、このn^+ソ
ース層から前記P層にかけてソース電極を接合してなる
堅型バイポーラMOSFET又は堅型バイポーラVMO
SFETにおいて、 前記n^+ソース層を、n^+−GaSiエピタキシャ
ル層とすると共に、前記P層の反転層より離れた位置の
上部にP^+拡散層を設け、前記ソース電極を前記n^
+−GaAsエピタキシャル層及びP^+拡散上に接合
してなることを特徴とする電界効果トランジスタ。
(1) A hard bipolar MOSFET or a hard bipolar VMO in which an n^+ source layer is provided above the P layer and a source electrode is connected from this n^+ source layer to the P layer.
In the SFET, the n^+ source layer is an n^+-GaSi epitaxial layer, a P^+ diffusion layer is provided above a position away from the inversion layer of the P layer, and the source electrode is formed as the n^+ GaSi epitaxial layer.
A field effect transistor characterized in that it is bonded to a +-GaAs epitaxial layer and a P^+ diffusion.
JP408589A 1989-01-11 1989-01-11 Field-effect transistor Pending JPH02184078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP408589A JPH02184078A (en) 1989-01-11 1989-01-11 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP408589A JPH02184078A (en) 1989-01-11 1989-01-11 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH02184078A true JPH02184078A (en) 1990-07-18

Family

ID=11574949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP408589A Pending JPH02184078A (en) 1989-01-11 1989-01-11 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH02184078A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010204A1 (en) * 1998-08-14 2000-02-24 Koninklijke Philips Electronics N.V. Trench-gate semiconductor device
RU2472248C2 (en) * 2010-03-03 2013-01-10 Общество с ограниченной ответственностью "Интелсоб" (ООО "Интелсоб") High-voltage high-temperature quick-acting thyristor with field control
JP2013034031A (en) * 2012-11-20 2013-02-14 Nissan Motor Co Ltd Semiconductor device and manufacturing method of the same
CN110752254A (en) * 2019-10-25 2020-02-04 上海华力集成电路制造有限公司 Stress channel transistor and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010204A1 (en) * 1998-08-14 2000-02-24 Koninklijke Philips Electronics N.V. Trench-gate semiconductor device
US6255692B1 (en) 1998-08-14 2001-07-03 U.S. Philips Corporation Trench-gate semiconductor device
RU2472248C2 (en) * 2010-03-03 2013-01-10 Общество с ограниченной ответственностью "Интелсоб" (ООО "Интелсоб") High-voltage high-temperature quick-acting thyristor with field control
JP2013034031A (en) * 2012-11-20 2013-02-14 Nissan Motor Co Ltd Semiconductor device and manufacturing method of the same
CN110752254A (en) * 2019-10-25 2020-02-04 上海华力集成电路制造有限公司 Stress channel transistor and manufacturing method thereof
CN110752254B (en) * 2019-10-25 2023-09-19 上海华力集成电路制造有限公司 Stress channel transistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4717940A (en) MIS controlled gate turn-off thyristor
ITMI951588A1 (en) THREE TERMINAL THYRISTOR WITH GATE CONTROLLED FEATURES OR SINGLE MOS HOLDER
JPH01198076A (en) Semiconductor device
JP3135762B2 (en) Semiconductor integrated circuit device
US9893065B2 (en) Semiconductor integrated circuit
JP3119931B2 (en) Thyristor
JPH02184078A (en) Field-effect transistor
JPS61292965A (en) Semiconductor integrated circuit device
JPH0654796B2 (en) Composite semiconductor device
JP3211529B2 (en) Vertical MIS transistor
JPH0428149B2 (en)
JP2576173B2 (en) Insulated gate semiconductor device
JP2020088287A (en) Semiconductor integrated circuit
JPS6228586B2 (en)
JPH03105977A (en) Semiconductor device
JP2682088B2 (en) Field effect transistor and method of manufacturing the same
JP3249175B2 (en) Thyristor with insulated gate and high breakdown voltage semiconductor device
JPH02156678A (en) Field effect transistor and manufacture thereof
JPH02156679A (en) Field effect transistor and manufacture thereof
JPS6025905B2 (en) semiconductor equipment
JPH0472670A (en) Insulated-gate bipolar transistor
JPS63160280A (en) Gallium arsenioe semiconductor device
JPH11186569A (en) Horizontal diode
JPS62242419A (en) Compound semiconductor integrated circuit
JPH04212464A (en) Horizontal conductivity modulation type semiconductor device