JPH02183917A - Method for measuring flat cable conductor position - Google Patents

Method for measuring flat cable conductor position

Info

Publication number
JPH02183917A
JPH02183917A JP195789A JP195789A JPH02183917A JP H02183917 A JPH02183917 A JP H02183917A JP 195789 A JP195789 A JP 195789A JP 195789 A JP195789 A JP 195789A JP H02183917 A JPH02183917 A JP H02183917A
Authority
JP
Japan
Prior art keywords
light
conductor
flat cable
signal
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP195789A
Other languages
Japanese (ja)
Inventor
Motohiro Yamane
基宏 山根
Fumihiko Abe
文彦 安倍
Yasushi Hayashi
泰志 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP195789A priority Critical patent/JPH02183917A/en
Publication of JPH02183917A publication Critical patent/JPH02183917A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To allow conductor pitch to be determined by measuring the position of a conductor within a flat cable by the distribution of light that passes through the flat cable and is received for measurement and by the distribution of light that is reflected by the flat cable. CONSTITUTION:Light L sent out from a light source 11 passes through a half mirror 12 and a strikes a covering layer 2 of a flat cable 1 that moves in an 'A' direction indicated by an arrow. The light L striking a portion of the covering layer 2 where there is no conductor 3 passes through it and enters a light receiving element 13. The light L, on the other hand, is cut off when it hits a portion where there is a conductor 3. Thus, an output signal Ea from the light receiving element 13 goes to either 'H' or 'L' depending on the presence or absence of a conductor 3. The light L which has been reflected by a conductor 3 in the cable 1 is again reflected by the half mirror 12 and enters a light receiving element 14 as reflected light L', causing output of a signal Eb. Each conductor 3 is recognized by detecting the peak value of the output signal Eb. A signal processing circuit 16 measures the width T of the incoming signal Ea at its 'L' level to determine the conductor pitch when T is equal to the diameter of the conductor 3.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フラットケーブルの導体位置測定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the position of a conductor in a flat cable.

(従来の技術) 電子機器の普及に伴いフラットケーブル即ち、金属線(
以下導体という)を僅かな間隔で多数本平行に配列し、
絶縁部材により一体的に絶縁して帯状に形成したケーブ
ルの需要が増大し、これに応して前記フラットケーブル
の多数の並列せる導体の各端末のコネクタへの接続作業
を自動化することが強く要望されている。このような多
数の並列導体とコネクタとの接続を自動化するためには
フラットケーブルの全幅、マージン(フラットケーブル
のエツジから最も外側に位置する導体の中心までの距離
)、並列せる各導体の中心距離(ピッチ)及び両側の導
体の中心距離(全ピッチ)等の各部の寸法が正確に規定
値に設定されていることが必要である。従って、これら
の各部の寸法を高精度に測定する必要があり、普通目視
により測定している。
(Prior art) With the spread of electronic equipment, flat cables, i.e. metal wires (
A large number of conductors (hereinafter referred to as conductors) are arranged in parallel at small intervals,
Demand for cables that are integrally insulated by insulating materials and formed into a band shape is increasing, and in response to this, there is a strong demand for automating the process of connecting each terminal of a large number of parallel conductors of the flat cable to a connector. has been done. In order to automate the connection of such a large number of parallel conductors and connectors, the total width of the flat cable, the margin (distance from the edge of the flat cable to the center of the outermost conductor), and the center distance of each parallel conductor are required. It is necessary that the dimensions of each part, such as (pitch) and the distance between the centers of the conductors on both sides (total pitch), are accurately set to specified values. Therefore, it is necessary to measure the dimensions of each of these parts with high precision, and this is usually done visually.

(発明が解決しようとする課題) しかしながら、僅かな間隔で配列された多数の導体間の
各中心距離(以下ピッチという)や、マージン等の各寸
法を目視により正確に測定することは極めて困難な作業
であり、且つ作業効率も悪い。
(Problem to be solved by the invention) However, it is extremely difficult to accurately measure each dimension such as the center distance (hereinafter referred to as pitch) and the margin between a large number of conductors arranged at small intervals by visual inspection. It is a lot of work, and the work efficiency is also poor.

二のようなフラットケーブルの導体位置即ち、ピッチを
測定する場合、第5図(ハ)に示すようにフラットケー
ブルlの被覆層2が透明或いは半透明である場合、当該
フラットケーブル1に光りを照射すると、その透過光量
分布は同図(a)に示すように導体3のある部分が暗部
となるために当該暗部を測定することにより各導体3間
のピッチを知ることができる。透過光量分布を測定する
方法としては、光源と反対側にTVカメラ等を配置し、
画像処理を施すことにより行う。
When measuring the conductor position, that is, the pitch, of a flat cable as shown in Figure 5 (c), if the coating layer 2 of the flat cable l is transparent or semi-transparent, the flat cable 1 should be illuminated with light. When irradiated, the transmitted light amount distribution becomes a dark part in a certain part of the conductor 3 as shown in FIG. The method of measuring the transmitted light amount distribution is to place a TV camera etc. on the opposite side of the light source,
This is done by performing image processing.

しかしながら、隣合う導体3.3が図示のように密着し
ていたり、或いは隙間が極値な場合には透過光分布は、
暗部が一つとなり隣合う二本の導体3.3を分離して認
識することが出来なくなり、太い1本の導体として認識
することとなる。この結果、ピッチ測定に重大なミスを
起こす要因となる。
However, if the adjacent conductors 3.3 are in close contact with each other as shown in the figure, or if the gap is at an extreme value, the transmitted light distribution will be
The dark portion becomes one, and the two adjacent conductors 3.3 cannot be recognized separately, and are recognized as one thick conductor. As a result, this causes a serious error in pitch measurement.

本発明は上述の点に鑑みてなされたもので、フラットケ
ーブル内の隣合う導体が密着している場合でも各導体の
中心を認識してピッチを測定することが可能なフラット
ケーブルの導体位置測定方法を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned points, and is a flat cable conductor position measurement system that is capable of recognizing the center of each conductor and measuring the pitch even when adjacent conductors in the flat cable are in close contact with each other. The purpose is to provide a method.

(課題を解決するための手段) 上記目的を達成するために本発明によれば、フラットケ
ーブルの一側から光を照射し、当該フラットケーブルの
他側で受光して当該フラットケーブルを透過する光の分
布を測定し、前記フラットケーブルの前記一側において
当該フラットケーブルで反射される光の分布を測定し、
これらの透過する光の分布と反射される光の分布とによ
り前記フラットケーブル内の導体の位置を測定するよう
にしたものである。
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, light is emitted from one side of a flat cable, light is received on the other side of the flat cable, and light is transmitted through the flat cable. measuring the distribution of light reflected by the flat cable on the one side of the flat cable,
The position of the conductor within the flat cable is measured based on the distribution of transmitted light and the distribution of reflected light.

(作用) フラットケーブルの透過光の明部は導体の無い部分を、
暗部は各導体の有る部分を表し、反射光の各ピーク値は
フラットケーブル内の各導体の頂点を表す、そこで、フ
ラットケーブル内の導体が密着している虞れのない場合
には透過光により各導体間のピンチを測定し、隣合う導
体が密着している虞れのある場合には反射光分布により
各導体間のピッチを測定する。これにより、フラットケ
ーブル内の導体の位置を正確に測定することが可能とな
る。
(Function) The bright part of the transmitted light of the flat cable is the part without conductor,
The dark area represents a certain part of each conductor, and each peak value of reflected light represents the apex of each conductor in the flat cable.Therefore, if there is no possibility that the conductors in the flat cable are in close contact, the transmitted light The pinch between each conductor is measured, and if there is a possibility that adjacent conductors are in close contact, the pitch between each conductor is measured based on the reflected light distribution. This makes it possible to accurately measure the position of the conductor within the flat cable.

(実施例) 以下本発明の一実施例を添付図面に基づいて詳述する。(Example) An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明方法を実施するための測定装置を示し、
測定装置10は、光源11と、ハーフミラ−12と、2
個の受光素子13.14とを備えている。光源11とハ
ーフミラ−12と受光素子13とは光軸15上に配置さ
れており、ハーフミラ−12と一方の受光素子13との
間にフラットケーブルlが幅方向に移動可能とされてい
る。他方の受光素子14はハーフミラ−12の側方に光
軸15と直角をなして配置されている。
FIG. 1 shows a measuring device for carrying out the method of the invention,
The measuring device 10 includes a light source 11, a half mirror 12, and 2
The light receiving elements 13 and 14 are provided. The light source 11, the half mirror 12, and the light receiving element 13 are arranged on the optical axis 15, and a flat cable 1 is movable in the width direction between the half mirror 12 and one of the light receiving elements 13. The other light receiving element 14 is arranged on the side of the half mirror 12 at right angles to the optical axis 15.

光源11は例えば、ビーム状の光りを照射し、光軸15
上に配置されている受光素子13は光源11から照射さ
れ、フラットケーブル1の被覆層2を透過したビーム状
の透過光りを受光検出し、受光量に応じた電気信号Ea
を出力する。受光素子14は、光源11から照射されフ
ラットケーブルlの導体3により反射されてハーフミラ
−12に至り、更に当該ハーフミラ−12により反射さ
れた反射光L゛を受光検出して受光量に応じた電気信号
Ebを出力する。これらの各受光素子13.14の出力
信号Ea、Ebは信号処理回路16に入力される。信号
処理回路16は、入力する各信号Ea、Ebによりフラ
ットケーブル1の各導体3のピッチを測定する。
For example, the light source 11 emits beam-shaped light, and the optical axis 15
The light receiving element 13 arranged above receives and detects the beam-shaped transmitted light that is irradiated from the light source 11 and transmitted through the coating layer 2 of the flat cable 1, and generates an electric signal Ea according to the amount of received light.
Output. The light receiving element 14 receives and detects the reflected light L' that is emitted from the light source 11, is reflected by the conductor 3 of the flat cable l, and reaches the half mirror 12, and is further reflected by the half mirror 12, and generates electricity according to the amount of light received. A signal Eb is output. The output signals Ea and Eb of each of these light receiving elements 13 and 14 are input to the signal processing circuit 16. The signal processing circuit 16 measures the pitch of each conductor 3 of the flat cable 1 based on the input signals Ea and Eb.

以下にフラットケーブル1の各導体3のピッチを測定す
る方法について説明する。
A method of measuring the pitch of each conductor 3 of the flat cable 1 will be described below.

光源11から光りを照射し、ハーフミラ−12と受光素
子13との間にフラットケーブル1を配置し、矢印Aで
示す方向に平行移動させる。光源11から照射された光
りは、ハーフミラ−12をi3遇し、フラットケーブル
1の被覆N2に照射される。
Light is irradiated from a light source 11, and a flat cable 1 is placed between a half mirror 12 and a light receiving element 13, and is moved in parallel in the direction shown by arrow A. The light irradiated from the light source 11 is directed to the half mirror 12 and is irradiated to the coating N2 of the flat cable 1.

この光りは、被覆層2内の導体3が無い部分ではそのま
ま透過して受光素子13に至る。また、被覆層2内の導
体3がある部分(第2図(a))ではその透過が阻止さ
れ、受光素子13は信号を出力しない、従って、受光素
子13の出力信号Eaは第2図(b)に示すようにパル
ス状に変化する。即ち、受光素子13の出力信号Eaは
、導体3のない部分ではハイレベルとなり、導体3のあ
る部分ではローレベルとなる。
This light passes through the portions of the covering layer 2 where there is no conductor 3 and reaches the light receiving element 13 . Further, in the portion of the coating layer 2 where the conductor 3 is present (see FIG. 2(a)), its transmission is blocked and the light receiving element 13 does not output a signal. Therefore, the output signal Ea of the light receiving element 13 is It changes in a pulsed manner as shown in b). That is, the output signal Ea of the light receiving element 13 is at a high level in a portion where the conductor 3 is not present, and is at a low level in a portion where the conductor 3 is present.

また、フラットケーブル1の導体3に照射された光りは
、当該導体3により反射されてハーフミラ−12に至り
、更に当該ハーフミラ−12により反射されて反射光L
°として受光素子14に照射される。受光素子14はこ
の反射光L′を受光して第2図(C)に示すようなトリ
ガ状の信号Ebを出力する。この信号Ebの各波形の頂
点は、照射光りの光軸と反射光L°の光軸とが一敗して
いる場合には各導体3の頂点3a(第2図(a))と一
致し、各導体3の中心位置を示す、従って、受光素子1
4の出力信号Ebの各ピーク値を検出することにより、
たとえ隣合う導体3同士が密着している場合でも、夫々
の導体を分離して認識することが可能となる。
Furthermore, the light irradiated onto the conductor 3 of the flat cable 1 is reflected by the conductor 3 and reaches the half mirror 12, and is further reflected by the half mirror 12, resulting in reflected light L.
The light is irradiated onto the light receiving element 14 as .degree. The light receiving element 14 receives this reflected light L' and outputs a trigger-like signal Eb as shown in FIG. 2(C). The apex of each waveform of this signal Eb coincides with the apex 3a of each conductor 3 (FIG. 2(a)) when the optical axis of the irradiated light and the optical axis of the reflected light L° are coincident. , indicates the center position of each conductor 3, therefore, the light receiving element 1
By detecting each peak value of the output signal Eb of 4,
Even if adjacent conductors 3 are in close contact with each other, it is possible to separate and recognize each conductor.

信号処理回路16は、例えば、受光素子13から入力さ
れる信号Eaのローレベルの輻(以下パルス幅という)
Tを測定し、当該パルス幅Tが導体3の直径φと同等(
T=φ)のときには、隣合う導体同士が離隔しているも
のと判断して当該信号Eaにより各導体3間の中心距離
即ち、ピッチを測定する。即ち、この場合には信号Ea
の各ローレベルの部分の中心間の距離を測定してピッチ
とする。尚、導体3の直径φは既知である。
For example, the signal processing circuit 16 processes the low-level amplitude (hereinafter referred to as pulse width) of the signal Ea input from the light receiving element 13.
T is measured, and the pulse width T is equivalent to the diameter φ of the conductor 3 (
When T=φ), it is determined that adjacent conductors are separated from each other, and the center distance between each conductor 3, that is, the pitch is measured using the signal Ea. That is, in this case, the signal Ea
The pitch is determined by measuring the distance between the centers of each low level part of the pitch. Note that the diameter φ of the conductor 3 is known.

また、パルス幅Tが導体3の直径φよりも大きい(T>
φ)のときには隣合う導体3同士が密着しているものと
判断し、受光素子14から入力される信号Ebにより各
導体3間の中心距離を測定する。即ち、この場合には信
号Ebの各頂点間の距離を測定してピッチとする。
Further, the pulse width T is larger than the diameter φ of the conductor 3 (T>
When φ), it is determined that the adjacent conductors 3 are in close contact with each other, and the center distance between each conductor 3 is measured based on the signal Eb inputted from the light receiving element 14. That is, in this case, the distance between each vertex of the signal Eb is measured and used as the pitch.

尚、反射光L°から導体3の中心を検出する方法として
、例えば成る適当な閾値を設け、当該閾値を超えた部分
の信号によりパルス信号を形成し、当該パルス信号の中
心を導体3の中心とし、各導体間のピッチを測定するよ
うにしてもよい。
As a method of detecting the center of the conductor 3 from the reflected light L°, for example, an appropriate threshold value is set, a pulse signal is formed by the signal exceeding the threshold value, and the center of the pulse signal is set as the center of the conductor 3. Alternatively, the pitch between each conductor may be measured.

ところで、−aに反射光L°は微弱であるために、導体
3が密着していない場合には透過光りがら暗部の中心を
導体3の中心として求めた方が安定して測定することが
できる。従って、隣合う導体同士が密着している虞れが
ない場合には透過光りによりピッチを測定し、密着して
いる虞れがある場合にのみ反射光L°から導体3間のピ
ッチを測定するようにすることが好ましい。
By the way, since the reflected light L° at -a is weak, if the conductor 3 is not in close contact, it is more stable to measure by determining the center of the dark part of the transmitted light as the center of the conductor 3. . Therefore, when there is no possibility that adjacent conductors are in close contact with each other, the pitch is measured using transmitted light, and only when there is a possibility that they are in close contact, the pitch between the conductors 3 is measured from the reflected light L°. It is preferable to do so.

また、フラットケーブルlの被覆層2の透明度が低く、
光が十分に通らない場合の当該フラットケーブルl中の
導体3の位置を検出する場合には、導体3からの反射光
を受光する方法が有効である。
In addition, the transparency of the coating layer 2 of the flat cable l is low,
When detecting the position of the conductor 3 in the flat cable 1 when sufficient light does not pass therethrough, a method of receiving reflected light from the conductor 3 is effective.

例えば、第3図(a)に示す被覆層2の光の透過率がさ
ほど悪くない場合には、透過光分布は同図(ト))のよ
うに変化し、導体の位置(被覆層2のエツジからの距離
)は測定できる。
For example, when the light transmittance of the coating layer 2 shown in FIG. 3(a) is not so bad, the transmitted light distribution changes as shown in FIG. distance from the edge) can be measured.

しかし、光の透過率が悪い場合には透過光分布は第3図
(C)に示すようになり、導体3の明確な位置を見出す
ことができない、従って、この場合には導体3からの反
射光を受光すると、反射光分布は同図(d)に示すよう
になり、信号Ebが得られることがある。これは、第4
図に示すように、透過光りは、被覆層2の厚さDによっ
てその減衰量が決定されるのに対して、反射光L°は被
覆層2の上面2bから導体3の頂点3aまでの距離の2
倍(光の往復距離)によって決定され、フラットケーブ
ルlの構造上後者の距離の方が短く、光の減衰量が少な
いためである。この場合、透過光りの波形によりフラッ
トケーブルlの被覆J12の幅を測定し、反射光L°の
波形により導体3の位置を測定することにより被覆層2
中の各導体3の位置を検知することが可能となる。
However, when the light transmittance is poor, the transmitted light distribution becomes as shown in Figure 3 (C), and the clear position of the conductor 3 cannot be found. Therefore, in this case, the reflected light from the conductor 3 When the light is received, the reflected light distribution becomes as shown in FIG. 4(d), and a signal Eb may be obtained. This is the fourth
As shown in the figure, the amount of attenuation of the transmitted light is determined by the thickness D of the coating layer 2, whereas the amount of attenuation of the reflected light L° is determined by the distance from the top surface 2b of the coating layer 2 to the vertex 3a of the conductor 3. 2
This is because the latter distance is shorter due to the structure of the flat cable l, and the amount of light attenuation is smaller. In this case, the width of the coating J12 of the flat cable l is measured based on the waveform of the transmitted light, and the position of the conductor 3 is measured based on the waveform of the reflected light L°.
It becomes possible to detect the position of each conductor 3 inside.

また、受光素子13は、フラットケーブル1の被覆層2
のエツジ2a(第3図(a))が照射光りを横切ると、
透過光りを受光することとなり、この結果、受光量が減
少し、当該受光素子13の出力信号Eaが低下する。こ
のときの信号Eaは第3図(a)の透過光分布と略同様
に変化する。信号処理回路16はこの受光素子13から
入力される信号Eaの低下によりフラットケーブルlの
被覆層2の前記エツジ2aを検出する。そして、このエ
ツジを表すエツジ信号と、当該エツジ信号の検出後の最
初の導体3による受光素子14からの出力信号Ebとに
より当該被覆層2のエツジ2aから当該量も外側にある
導体3の中心までの距離即ち、マージンを測定する。こ
のときの受光素子14の出力信号Ebは第3図(d)に
示す反射光分布と略同様に変化する。
Further, the light receiving element 13 is connected to the coating layer 2 of the flat cable 1.
When the edge 2a (Fig. 3(a)) crosses the irradiation light,
Transmitted light is received, and as a result, the amount of received light decreases, and the output signal Ea of the light receiving element 13 decreases. The signal Ea at this time changes substantially in the same manner as the transmitted light distribution shown in FIG. 3(a). The signal processing circuit 16 detects the edge 2a of the coating layer 2 of the flat cable l based on the decrease in the signal Ea inputted from the light receiving element 13. Then, by the edge signal representing this edge and the output signal Eb from the light receiving element 14 by the first conductor 3 after the detection of the edge signal, the center of the conductor 3 which is also outside by the corresponding amount from the edge 2a of the coating layer 2. Measure the distance, ie, the margin. At this time, the output signal Eb of the light receiving element 14 changes approximately in the same manner as the reflected light distribution shown in FIG. 3(d).

尚、上記実施例においてはフラットケーブルlを移動さ
せ、測定装置10を固定して当該フラットケーブル1の
導体位置を測定する場合について記述したが、フラット
ケーブルlを移動することなく、測定装置10を移動さ
せるようにしてもよい、また、光源11に替えて、小ス
ポット光を平行且つ等速走査し、得られる光分布の時間
間隔から各導体3間のピッチを測定するようにしてもよ
い。
In the above embodiment, a case has been described in which the conductor position of the flat cable 1 is measured by moving the flat cable l and fixing the measuring device 10. However, it is possible to move the measuring device 10 without moving the flat cable l. Alternatively, instead of the light source 11, a small spot light may be scanned in parallel and at a constant speed, and the pitch between each conductor 3 may be measured from the time interval of the obtained light distribution.

また、テレビカメラを使用する方法として、フラツトケ
ーブル1全体を照明して前述と同じように透過画像及び
反射画像とを得るような構成にすることにより、透過光
及び反射光による各信号は前記第2図(b)及び(C)
と同様になり、導体間のピッチを測定することが可能と
なる。
In addition, as a method of using a television camera, by illuminating the entire flat cable 1 and obtaining a transmitted image and a reflected image in the same manner as described above, each signal due to transmitted light and reflected light is Figure 2 (b) and (C)
It becomes possible to measure the pitch between conductors.

尚、マージン及び各ピッチは、例えばエツジ信号と最初
の導体検出信号及び各導体検出信号間にあるクロンクパ
ルス数をカウントすることにより測定する。この場合、
クロックパルス信号として、光源又は被測定物の移動(
走査)に同期したパルス例えば、移動路M1μm毎に1
パルス出力されるパルス信号を使用することにより、前
記光源又は被測定物が不等速に移動した場合でも前記マ
ージン及び各ピッチを正確に測定することが出来る。
The margin and each pitch are measured, for example, by counting the number of clock pulses between the edge signal, the first conductor detection signal, and each conductor detection signal. in this case,
As a clock pulse signal, the movement of the light source or the object to be measured (
For example, pulses synchronized with scanning) are applied every 1 μm of the moving path
By using the pulse signal that is output as a pulse, the margin and each pitch can be accurately measured even when the light source or the object to be measured moves at an inconstant speed.

(発明の効果) 以上説明したように本発明によれば、フラットケーブル
の一側から光を照射し、当該フラットケーブルの他側で
受光して当該フラットケーブルを透過する光の分布を測
定し、前記フラットケーブルの前記一側において当該フ
ラットケーブルで反射される光の分布を測定し、これら
の透過する光の分布と反射される光の分布とにより前記
フラッ4゜ トケーブル内の導体の位置を測定することにより、フラ
ットケーブル内の隣合う導体同士が密着している場合で
も、これらの各導体の中心間のピッチを正確に測定する
ことが可能となる。また、測定方法も簡単である等の優
れた効果がある。
(Effects of the Invention) As explained above, according to the present invention, light is irradiated from one side of a flat cable, the light is received on the other side of the flat cable, and the distribution of light transmitted through the flat cable is measured. Measure the distribution of light reflected by the flat cable on the one side of the flat cable, and determine the position of the conductor in the flat 4° cable based on the distribution of transmitted light and the distribution of reflected light. By measuring, even when adjacent conductors in a flat cable are in close contact with each other, it is possible to accurately measure the pitch between the centers of each of these conductors. Furthermore, the method has excellent effects such as a simple measurement method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るフラットケーブルの導体位置測定
方法の一実施例を示す図、第2図は第1図の測定方法を
実施するための測定装置により検出した信号波形図、第
3図は本発明の測定方法の他の実施例を示す信号波形図
、第4図はフラットケーブルの透過光と反射光との関係
を示す図、第5図は従来のフラットケーブルの導体位置
の測定方法及び当該方法により得られた信号波形図であ
る。 1・・・フラットケーブル、2・・・被覆層、3・・・
導体、10・・・導体位置測定装置、11・・・光源、
12・・・ハーフミラ−113,14・・・受光素子、
16・・・信号処理回路。 第1図 E。 第2図
FIG. 1 is a diagram showing an embodiment of the flat cable conductor position measuring method according to the present invention, FIG. 2 is a signal waveform diagram detected by a measuring device for carrying out the measuring method of FIG. 1, and FIG. 4 is a signal waveform diagram showing another embodiment of the measuring method of the present invention, FIG. 4 is a diagram showing the relationship between transmitted light and reflected light of a flat cable, and FIG. 5 is a conventional method for measuring the conductor position of a flat cable. and a signal waveform diagram obtained by the method. 1... Flat cable, 2... Covering layer, 3...
Conductor, 10... Conductor position measuring device, 11... Light source,
12... Half mirror 113, 14... Light receiving element,
16...Signal processing circuit. Figure 1E. Figure 2

Claims (1)

【特許請求の範囲】[Claims] フラットケーブルの一側から光を照射し、当該フラット
ケーブルの他側で受光して当該フラットケーブルを透過
する光の分布を測定し、前記フラットケーブルの前記一
側において当該フラットケーブルで反射される光の分布
を測定し、これらの透過する光の分布と反射される光の
分布とにより前記フラットケーブル内の導体の位置を測
定することを特徴とするフラットケーブルの導体位置測
定方法。
Light is irradiated from one side of the flat cable, the light is received on the other side of the flat cable, and the distribution of light transmitted through the flat cable is measured, and the light reflected by the flat cable on the one side of the flat cable. A method for measuring the position of a conductor in a flat cable, characterized in that the position of the conductor in the flat cable is measured based on the distribution of transmitted light and the distribution of reflected light.
JP195789A 1989-01-10 1989-01-10 Method for measuring flat cable conductor position Pending JPH02183917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP195789A JPH02183917A (en) 1989-01-10 1989-01-10 Method for measuring flat cable conductor position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP195789A JPH02183917A (en) 1989-01-10 1989-01-10 Method for measuring flat cable conductor position

Publications (1)

Publication Number Publication Date
JPH02183917A true JPH02183917A (en) 1990-07-18

Family

ID=11516075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP195789A Pending JPH02183917A (en) 1989-01-10 1989-01-10 Method for measuring flat cable conductor position

Country Status (1)

Country Link
JP (1) JPH02183917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003080A (en) * 2006-05-25 2008-01-10 Toyoda Suchiirusentaa Kk System and method for measuring plate material width
JP2011228145A (en) * 2010-04-21 2011-11-10 Furukawa Electric Co Ltd:The Flat cable manufacturing method and its manufacturing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008003080A (en) * 2006-05-25 2008-01-10 Toyoda Suchiirusentaa Kk System and method for measuring plate material width
JP2011228145A (en) * 2010-04-21 2011-11-10 Furukawa Electric Co Ltd:The Flat cable manufacturing method and its manufacturing device

Similar Documents

Publication Publication Date Title
KR100261387B1 (en) Method and equipment for inspecting foreign substance
AU607280B2 (en) Optical hole seeking apparatus
US4468120A (en) Foreign substance inspecting apparatus
JPS6017044B2 (en) Printed wiring board pattern inspection equipment
JPS61132818A (en) Detector for position of surface
WO1996019711A1 (en) Optical wafer positioning system
US4395119A (en) Method for automatic, non-destructive measurement of eccentricity of coated electrodes
US4866288A (en) Apparatus for optically scanning a web of material
JPH02183917A (en) Method for measuring flat cable conductor position
US6043876A (en) Method and apparatus for detecting a solder bridge in a ball grid array
KR920002920B1 (en) Method and apparatus for measuring the size of wire rod with laser beam
JP2532025Y2 (en) Inspection equipment for wire termination
JP2873450B2 (en) Defect inspection device using light
JP3020015B2 (en) Inspection method of wire end treatment condition
JPS61154412A (en) Terminal treated state inspector for wire
US5706081A (en) Apparatus for inspecting surface defects with regularly reflected light and peripherally scattered light
JPH06225423A (en) Device for inspecting stripped end of electric wire
JP3322471B2 (en) Explosion-proof area abnormality monitoring device
US4754134A (en) Method of and apparatus for inspecting a stripped wire end
JPH1123226A (en) Inspection device for covered conductor with cap
CA1200905A (en) Photodetector array based optical measurement systems
JPS5761903A (en) Inspecting device for terminal press-fixed of electric wire press-fixed with terminal
JPS61266986A (en) Presence and absence decision system for electric parts
JPH02176513A (en) Defect inspecting device
JPH02124453A (en) Method and apparatus for checking plating on board