JPH02182823A - Method for vacuum degassing and decarburization of molten steel - Google Patents

Method for vacuum degassing and decarburization of molten steel

Info

Publication number
JPH02182823A
JPH02182823A JP193189A JP193189A JPH02182823A JP H02182823 A JPH02182823 A JP H02182823A JP 193189 A JP193189 A JP 193189A JP 193189 A JP193189 A JP 193189A JP H02182823 A JPH02182823 A JP H02182823A
Authority
JP
Japan
Prior art keywords
gas
molten steel
decarburization
steel
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP193189A
Other languages
Japanese (ja)
Inventor
Yasuo Kishimoto
康夫 岸本
Toshikazu Sakuratani
桜谷 敏和
Tetsuya Fujii
徹也 藤井
Kyoichi Kameyama
恭一 亀山
Hiroshi Nishikawa
廣 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP193189A priority Critical patent/JPH02182823A/en
Publication of JPH02182823A publication Critical patent/JPH02182823A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To quicken decarburization in an extremely low carbon range and to quickly obtain extremely low carbon steel without degrading workability by blowing steam and/or water-containing gas in the prescribed timing at the time of top-blowing O2-series gas into a treating vessel to execute the subject treatment. CONSTITUTION:A circulating flow tube 4 at lower end of the vacuum vessel 3 is submerged into upper part of molten steel 2 in a ladle 1 and Ar gas for circulating flow is blown from an introducing pipe 5 to circulate the molten steel 2 into the vacuum vessel 3. At first, in the high carbon range, O2 gas is blown to the upper part of the molten steel surface in the vacuum vessel 3 with a top-blowing lance 6 to progress the decarburizing reaction in the molten steel 2 and also CO gas generated during degassing treatment is burnt. In this method, the carbon content in the molten steel is lowered and at the time of getting behind with the decarburizing reaction, the steam or water-containing gas is blown from the lance 6. By this method, the decarburization in the extremely low carbon range is quickly executed and the extremely low carbon steel having <=10ppm carbon content can be stably obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、溶鋼の真空脱ガス処理によって、極低炭素鋼
を迅速に、かつ該装置の操業性を損なうことなく製造す
ることができる真空脱ガス処理による極低酸素鋼の製造
方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a vacuum degassing process for molten steel that enables the rapid production of ultra-low carbon steel without impairing the operability of the equipment. The present invention relates to a method for producing ultra-low oxygen steel through degassing treatment.

〈従来の技術〉 冷延鋼板の焼鈍プロセスの連続化、能率向上の観点から
、連続焼鈍設備の採用が近年盛んであるが、これに適合
する素材として炭素含有量10ppmあるいはシングル
pp鍾の極低炭素鋼が要求されるようになってきた。従
来から低炭素鋼は転炉においてC70,02〜0.05
重量%(以下%と略す)迄脱炭した溶鋼を、RH法など
の真空脱ガス装置を用いて、減圧下に脱炭する手法によ
り溶製されてきた。
<Conventional technology> In recent years, continuous annealing equipment has been increasingly adopted in order to make the annealing process of cold-rolled steel sheets continuous and improve efficiency. Carbon steel is now in demand. Traditionally, low carbon steel has been used in converters at C70.02 to 0.05.
Molten steel that has been decarburized to % by weight (hereinafter referred to as %) has been decarburized under reduced pressure using a vacuum degassing device such as the RH method.

減圧下の脱炭プロセスに関する検討も相当程度行なわれ
てきており、その主要な理論は、鉄と鋼、vo jj 
69 (1983) A 37に示されるように、脱炭
速度は(1)式で示される。
A considerable amount of research has been conducted on the decarburization process under reduced pressure, and the main theory is iron and steel, vo jj
69 (1983) A 37, the decarburization rate is expressed by equation (1).

d (C) d t = (C) * exp(−K 
c t L−−−41)また、その速度定数Kcは、(
2)式で示される。
d (C) d t = (C) * exp(-K
c t L---41) Also, the rate constant Kc is (
2) It is shown by the formula.

Kc= (Q’ /V)(ak/ (Q’ +a k)
1・−・・・・・(2) ここに、(C)。:処理開始時の(C11度、Kc:見
かけの速度定数(eiin−’) 。
Kc= (Q' /V) (ak/ (Q' + a k)
1・-・・・・・・(2) Here, (C). : (C11 degrees, Kc: apparent rate constant (eiin-') at the start of treatment.

ak:真空槽内の物質移動容量係数(nf/s)。ak: Mass transfer capacity coefficient (nf/s) in the vacuum chamber.

Q′ :溶鋼の循環流量(ポ/S)。Q': Circulation flow rate of molten steel (Po/S).

V :溶鋼量(ポ)。V: Molten steel amount (po).

従って脱炭効率を向上させようとする場合には、Q’、
akを増大せしめる対策を取るべきことが公知となって
いる。
Therefore, when trying to improve decarburization efficiency, Q',
It is known that measures should be taken to increase ak.

溶鋼の循環流flQ’を増大せしめるためには、環流管
径を拡大する方法、環流用に吹込むA「ガス量を増す方
法が採用されるが、前者には耐火レンガ施工上の問題か
ら還流管寿命が短いという問題、後者には極低炭素域で
必要とされる高真空度を損なうという問題がある。
In order to increase the circulating flow flQ' of molten steel, there are two methods: enlarging the diameter of the reflux pipe and increasing the amount of gas blown into the reflux. The problem is that the tube life is short, and the latter problem is that it impairs the high degree of vacuum required in the ultra-low carbon range.

一方、物質移動容量係数akを増大せしめるためには、
C≦soppmの極低炭素域ではCの反応サイトへの物
質移動過程が反応を律速することになるので、反応界面
積a (rrr)を増大せしめることが必須となる0反
応サイトとしては、溶鋼内ガス気泡/溶鋼界面、真空槽
内鋼浴表面、ガス気泡が鋼浴を離脱する際に随伴するス
プラッシュの各々が想定されるが、その各々の寄与は必
ずしも明確ではなく、環流用^「ガス量を増すことが、
上記三点に有効であろうとの観点から、5000 N 
(1/ minにも及ぶ大量の静ガス吸込みを行なう技
4+7が採用されているのが現状である。
On the other hand, in order to increase the mass transfer capacity coefficient ak,
In the extremely low carbon region where C≦soppm, the mass transfer process of C to the reaction site is the rate-determining reaction rate, so it is essential to increase the reaction interfacial area a (rrr).The zero reaction site is molten steel. The internal gas bubbles/molten steel interface, the surface of the steel bath in the vacuum chamber, and the splash that accompanies gas bubbles when they leave the steel bath are all assumed, but their respective contributions are not necessarily clear. Increasing the amount
From the viewpoint that it would be effective for the above three points, 5000 N
(Currently, Technique 4+7, which involves sucking in a large amount of static gas as much as 1/min, is being adopted.

ところで、このように大量の静ガスを吹込むと、真空排
気装置の高真空下の排気特性から高真空の維持が難しく
、極低炭素域の脱炭速度をむしろ低下せしめること及び
大量に発生するスプラッシュの真空槽内面への付着に対
処する手段がなく、操業性を損うなどの問題があり、炭
素含有量が10pp腫以下の迅速脱炭技術の観点からは
、技術的にまだ不十分な状況にある。
By the way, when a large amount of static gas is injected in this way, it is difficult to maintain a high vacuum due to the exhaust characteristics of the vacuum evacuation equipment under high vacuum, and the decarburization rate in the extremely low carbon range is actually reduced and a large amount of gas is generated. There is no means to deal with the adhesion of splash to the inner surface of the vacuum chamber, which causes problems such as impairing operability, and is still technically insufficient from the viewpoint of rapid decarburization technology with a carbon content of 10 ppm or less. I am in a situation.

さらに極低炭素鋼を溶製するには酸素や二酸化炭素など
のガス、又は酸化鉄等の粉末を添加して溶鋼中の溶存酸
素を富化し、脱炭反応を促進する試みがなされている(
特開昭49−34414号公報、特開昭51−1512
11号公報、特開昭51−151212号公報など参照
)、シかし、c <5opp−での極低炭素域では先に
述べたようにCの反応サイトへの物質移動過程が反応を
律速している点でこれらの方法は有効ではなく、さらに
脱炭後の脱酸反応により大量の脱酸生成物が発生し非金
属介在物の増加を生じ良加工性鋼板製造という点で好ま
しくない。
Furthermore, in order to produce ultra-low carbon steel, attempts have been made to enrich the dissolved oxygen in the molten steel by adding gases such as oxygen and carbon dioxide, or powders such as iron oxide, and to accelerate the decarburization reaction (
JP-A-49-34414, JP-A-51-1512
11, JP-A-51-151212, etc.), but in the extremely low carbon region where c<5opp-, the mass transfer process of C to the reaction site is the rate-determining reaction rate. These methods are not effective in that the deoxidation reaction after decarburization generates a large amount of deoxidation products, resulting in an increase in nonmetallic inclusions, which is undesirable in terms of producing a steel sheet with good workability.

また、脱炭反応を進行させる方法として、溶鋼を真空脱
炭処理する際に水素ガスを浸漬管から吹きこみ溶鋼中の
水素濃度を高めた後に、脱水素することにより脱炭反応
を促進する方法が、特開昭57−194206号公報に
開示されている。しかしながらこの方法では、還元性の
水素ガスが耐火物中の酸化物を還元し、耐火物が溶損さ
れるという問題がある。また水素はガスコストが高いの
で経済性の点でも難がある。
In addition, as a method to advance the decarburization reaction, when molten steel is subjected to vacuum decarburization treatment, hydrogen gas is blown into the molten steel through an immersion tube to increase the hydrogen concentration in the molten steel, and then dehydrogenation is performed to promote the decarburization reaction. is disclosed in Japanese Patent Application Laid-Open No. 194206/1983. However, this method has a problem in that the reducing hydrogen gas reduces oxides in the refractory, causing the refractory to be eroded. Hydrogen is also difficult to use economically due to its high gas cost.

〈発明が解決しようとする課題〉 本発明は、前述のような現状に鑑み、1oppm以下迄
の極低炭素域での脱炭を迅速に行ない、かつ真空槽内へ
のスプラッシュ地金付着を防止しうる有効かつ簡便な方
法を提供するためになされたものである。すなわち、極
低炭素域での脱炭を迅速ならしめるために、環流用Ar
ガス量増大に伴う真空度低下を抑えつつ、かつ反応界面
積a (rrf)を増大せしめる手法を提供し、さらに
a増大の一手法であるスプラッシュ増加という条件下で
もその真空槽内面への地金付着を防止し得る簡便な方法
を提供するものである。
<Problems to be Solved by the Invention> In view of the above-mentioned current situation, the present invention is designed to quickly decarburize in an extremely low carbon range of 1 oppm or less, and to prevent splash metal from adhering to the inside of a vacuum chamber. This was done in order to provide an effective and simple method that can be used. In other words, in order to speed up decarburization in the extremely low carbon range, Ar
The present invention provides a method for increasing the reaction interface area a (rrf) while suppressing the decrease in the degree of vacuum due to an increase in the amount of gas, and furthermore, provides a method for increasing the reaction interface area a (rrf), which is one method for increasing the amount of gas. This provides a simple method that can prevent gold adhesion.

く課題を解決するための手段〉 本発明は、 ■製鋼炉で溶製された未脱酸溶鋼もしくは弱脱酸溶鋼を
RH法、D11法又はVOD法等を適用して真空脱ガス
処理するに当り、真空脱ガス処理槽内における溶鋼の浴
面上部から酸素ガス、又は酸素含有ガスを吹き込み、溶
鋼の脱炭反応を進行させるとともに、脱ガス処理中に発
生するCOガスを燃焼させる方法において、上吹きラン
スから脱炭反応が停滞する時期に、水蒸気および、また
は水を含有するガスを吹き込むことを特徴とする溶鋼の
真空脱ガス・脱炭処理方法であり、 ■上吹きランスから水蒸気および、または水を含有する
ガスを吹き込む時期が脱炭反応末期で鋼中炭素濃度が5
0ppm以下である前項■記載の溶鋼の真空脱ガス・脱
炭処理方法で、かつ ■水を含有するガスが不活性ガスである前項■又は前項
■記載の溶鋼の真空脱ガス・脱炭処理方法である。
Means for Solving the Problems> The present invention provides: (1) Vacuum degassing treatment of undeoxidized molten steel or weakly deoxidized molten steel produced in a steelmaking furnace by applying the RH method, D11 method, VOD method, etc. In a method in which oxygen gas or oxygen-containing gas is blown from above the bath surface of molten steel in a vacuum degassing treatment tank to advance the decarburization reaction of molten steel and to burn CO gas generated during the degassing treatment, This is a method for vacuum degassing and decarburization of molten steel, which is characterized by blowing steam and/or water-containing gas through a top blowing lance when the decarburization reaction is stagnant. Or, the time when water-containing gas is blown is at the end of the decarburization reaction, and the carbon concentration in the steel is 5.
The method for vacuum degassing and decarburization of molten steel as described in the preceding paragraph (■) in which the concentration is 0 ppm or less, and the method for vacuum degassing and decarburization of molten steel as described in the preceding paragraph (■) or the preceding paragraph (■) in which the water-containing gas is an inert gas. It is.

〈発明をなすに至った経過及び作用〉 本発明者らは特に脱炭反応が停滞する〔C〕く50pp
m+での脱炭反応の改善のために検討を行い、以下の知
見を得た。すなわち、(C)<50ρρmでの脱炭反応
の低下の理由としては、COガス発生量の減少による溶
鋼の攪拌力が不足することや脱炭反応が化学反応律速(
脱炭反応が気液界面反応で律速される)となることなど
あげられているが、理由は明確にはなっていない、しか
しながらいずれにせよ気液反応界面積の増大が脱炭反応
の向上には有効である。ところが単純に吹き込みガス量
を増加させるだけでは、ガス気泡の溶鋼離脱時の気泡径
は単調に大きくなってしまい、また気泡に随伴する溶鋼
の液滴も大径のものが大半を占めること、またスプラッ
シュ量も大となり真空槽の地金付着が大となることを本
発明者らは見出した。
<Process and effects that led to the invention> The present inventors have found that the decarburization reaction is particularly stagnant [C] at 50pp.
We conducted a study to improve the decarburization reaction in m+ and obtained the following findings. In other words, the reasons for the decrease in the decarburization reaction when (C)
It has been suggested that the decarburization reaction is rate-limited by the gas-liquid interfacial reaction, but the reason is not clear.However, in any case, increasing the gas-liquid reaction interface improves the decarburization reaction. is valid. However, if the amount of blown gas is simply increased, the diameter of the gas bubbles when they separate from the molten steel will monotonically increase, and the majority of the molten steel droplets that accompany the bubbles will also be of large diameter. The inventors have found that the amount of splash increases and the amount of base metal adhering to the vacuum chamber increases.

WL滴が大径であれば、極低炭素N域では反応律速過程
が溶鋼中のC拡散律速であり脱炭反応に充分に寄与でき
ない、そこで液滴を小さくすること、さらには気液界面
下での攪拌を大とすること、および気液界面の00分圧
を低下させることのために本発明者らは水蒸気および、
または水を含有するガスを用いることに着目した。すな
わち真空槽内の鋼浴表面に水蒸気および、または水を含
有するガスを吹きつけることによって、鋼浴面で容易に
小径の液滴が得られること、さらに気液界面下の攪拌が
大となることおよび気液界面のCOガス分圧を低下させ
ガス側の境膜厚みを小さくすることにより、低炭素域で
の脱炭速度を向上させることが可能となることを見出し
たのである。これは、水蒸気および、または水を含有す
るガスを吹きつけた際には、吹きつけられた表面で11
□0が分解し、112が発生するために液滴表面で小径
の液滴が大量に発生すること、またllxの発生により
気液界面の撹拌が大きくなり、さらに発生するH2によ
り気液界面でのCOガス分圧を低下させガス側の境膜厚
みを小さ(することにより脱炭を有利に導くことができ
るためである。
If the WL droplet has a large diameter, in the extremely low carbon N range, the reaction rate-limiting process is C diffusion in the molten steel, and it cannot fully contribute to the decarburization reaction. In order to increase the stirring at
Alternatively, they focused on using a gas containing water. In other words, by blowing steam and/or water-containing gas onto the surface of a steel bath in a vacuum chamber, small-diameter droplets can be easily obtained on the surface of the steel bath, and furthermore, agitation under the gas-liquid interface can be increased. In addition, they discovered that by lowering the CO gas partial pressure at the gas-liquid interface and reducing the thickness of the film on the gas side, it is possible to improve the decarburization rate in the low carbon region. When a gas containing water vapor and/or water is blown, the blown surface has a
□ Since 0 decomposes and 112 is generated, a large number of small-diameter droplets are generated on the droplet surface, and the generation of llx increases the agitation at the gas-liquid interface, and the generated H2 causes This is because decarburization can be advantageously led by lowering the CO gas partial pressure and reducing the thickness of the gas-side film.

この方法を用いれば鋼浴内にArガス量を増加させるこ
とが不要であるため、高真空を維持しかつ高効率の脱炭
を行うことが可能となる。
If this method is used, it is not necessary to increase the amount of Ar gas in the steel bath, so it is possible to maintain a high vacuum and perform highly efficient decarburization.

特公昭49−12810号公報に真空槽内に酸素ガスを
吹きつける方法が提示されているが、これは鋼浴中に0
8を供給することを目的とするものであり、鋼浴中Oが
過剰に存在し脱炭がC拡散律速である極低炭素領域では
08を供給しても無意味であるし、島は溶鋼に速やかに
吸収されるため気液界面の反応面積増加には無効である
ことを見出した。
Japanese Patent Publication No. 49-12810 proposes a method of blowing oxygen gas into a vacuum chamber;
However, in the extremely low carbon region where O is present in excess in the steel bath and decarburization is rate-limited by C diffusion, it is meaningless to supply 08. It was found that it is ineffective in increasing the reaction area of the gas-liquid interface because it is rapidly absorbed by the gas-liquid interface.

また、気液界面の反応面積の増加を狙って上吹きランス
から^rガスを吹きつける方法も神戸製鋼技報36 (
1986) 、p、40に提示されているが、^「ガス
を単に吹きつけても反応界面積の増加につながらないこ
とも本発明者らは確認した。この理由は鋼浴から離脱し
つつあるガス気泡表面を被覆するガス気泡表面に11□
0を吹きつけると、その表面で直ちに分解反応が生じそ
の結果気液反応界面積が増加し、攪拌力が増加され、生
成したhにより00分圧低下も期待できるのに対して、
静ガスなどの反応を伴わないガスを吹きつけた場合では
そうした効果が期待できず気泡の小径化・数の増加が余
り得られないからである。
In addition, a method of blowing ^r gas from a top-blowing lance with the aim of increasing the reaction area at the gas-liquid interface is also proposed in Kobe Steel Technical Report 36 (
1986), p. 40, ``The present inventors also confirmed that simply blowing gas does not lead to an increase in the reaction interfacial area.The reason for this is that the gas leaving the steel bath 11□ on the gas bubble surface covering the bubble surface
When 0 is sprayed, a decomposition reaction occurs immediately on the surface, resulting in an increase in the gas-liquid reaction interface area, an increase in stirring power, and a decrease in the 00 partial pressure due to the generated h.
This is because when a gas that does not involve a reaction, such as a static gas, is blown, such an effect cannot be expected and it is not possible to reduce the diameter of the bubbles or increase the number of bubbles.

極低炭素域で大量にスプラッシュを発生させる方法は、
脱炭速度の向上に有効ではあるが、地金付きによる操業
トラブルが付随する。この対策として脱炭中に発生する
COを槽内で008迄燃焼させた熱により地金を溶解除
去する方法を本発明では採用した。地金溶解あるいは地
金付きを防止するための槽内耐大物を過熱状態におくた
めに必要な発生COガス燃焼を目的とする02吹付けは
、脱炭反応を阻害しない高炭素濃度域、望ましくはC濃
度カ1100pp以上の条件に限定すべきことを一連の
実験の中で本発明者らは見い出した。
The method for generating a large amount of splash in the extremely low carbon range is as follows:
Although it is effective in improving the decarburization speed, it is accompanied by operational troubles due to metal attachment. As a countermeasure to this problem, the present invention adopts a method in which the base metal is dissolved and removed using the heat of burning CO generated during decarburization to 008 in a tank. The purpose of 02 spraying, which aims to burn the generated CO gas necessary to overheat large objects in the tank to prevent metal melting or metal adhesion, is preferably in a high carbon concentration range that does not inhibit the decarburization reaction. The present inventors found through a series of experiments that the C concentration should be limited to 1100 pp or more.

本発明は、真空脱ガス装置による極低炭素域迄の脱炭を
行なうに際して、真空槽内鋼浴表面上に向けてガスを供
給する上吹きランスを設けて、鋼浴炭素濃度が高い時期
、好ましくはC濃度が100pps+に達するまで、該
上吹きランスより酸素ガスを供給し、鋼浴炭素濃度が低
下した時期、好ましくは50pp−以下となるときに該
上吹きランスより水蒸気又は水を含むガス(通常は少量
の不活性ガス)を供給することにより地金付きトラブル
なく極低炭素域迄の迅速脱炭を実現する方法である。
In the present invention, when performing decarburization to an extremely low carbon range using a vacuum degassing device, a top-blowing lance is provided to supply gas onto the surface of the steel bath in the vacuum chamber, and when the steel bath carbon concentration is high, Preferably, oxygen gas is supplied from the top-blown lance until the C concentration reaches 100 pps+, and when the steel bath carbon concentration has decreased, preferably 50 pp- or less, water vapor or water-containing gas is supplied from the top-blown lance. This is a method that achieves rapid decarburization to an extremely low carbon range by supplying a small amount of inert gas (usually a small amount of inert gas) without causing problems with metal ingots.

また本発明によれば転炉における出鋼でも吹き止め(C
)を高くし、従来法より(0)が低いままで出鋼できる
。何故ならば上吹きランスがら高炭素域では0!を、低
炭素域でも分解してo2を発生する水蒸気を供給するか
らである。その結果転炉での低温出鋼が可能となり炉体
寿命の延長が図れること、さらにスラグの過酸化を防止
できるので品質向上が図れる。
Furthermore, according to the present invention, even when steel is tapped in a converter, it is possible to stop blowing (C).
) can be raised and steel can be tapped while (0) remains lower than in the conventional method. This is because the top-blown lance has 0 in the high carbon range! This is because it supplies water vapor that decomposes and generates O2 even in a low carbon region. As a result, low-temperature steel tapping in the converter becomes possible, extending the life of the furnace body, and further improving quality by preventing overoxidation of the slag.

〈実施例〉 第1図に示すような230を規模のRH法真空槽を使用
した実施例を以下に説明する。
<Example> An example using a RH vacuum chamber of scale 230 as shown in FIG. 1 will be described below.

真空槽3の下端の環流管4を取El l内の23OLの
溶鋼2の上部に浸漬し、環流用Arガス導入管5より計
ガスを吹込みリフトポンプ効果により溶鋼を真空槽内に
環流させる方法は周知のRH法である。
The reflux pipe 4 at the lower end of the vacuum tank 3 is immersed in the upper part of the molten steel 2 of 23OL in El l, and meter gas is blown through the reflux Ar gas introduction pipe 5 to circulate the molten steel into the vacuum tank by the lift pump effect. The method is the well-known RH method.

本発明では、まず高炭素域で、脱ガス処理真空槽内にお
ける浴面上部より酸素ガスを吹きつけて溶鋼の脱炭反応
を進行させると共に、脱ガス処理中に発生するCOガス
を燃焼させる。これにより溶鋼の脱炭反応を進行させる
と共に真空槽内の地金の付着を防止する。
In the present invention, first, in a high carbon region, oxygen gas is blown from above the bath surface in a degassing treatment vacuum chamber to advance the decarburization reaction of molten steel, and at the same time, the CO gas generated during the degassing treatment is combusted. This allows the decarburization reaction of the molten steel to proceed and prevents metal from adhering within the vacuum chamber.

さらにこの酸素上吹きにより溶鋼温度の上昇と溶存酸素
の上昇が可能となるので、転炉での脱炭を省略し、(C
)を従来の200〜300pp鋼より高くし400〜5
00pρ謂で出鋼する。その結果(0)は500〜60
0ppmから200〜300ppmと低下させることが
可能となり、それに伴いスラグの酸化鉄濃度(T・Fe
)を低くすることができるので、溶鋼温度の低下と共に
転炉の炉体レンガの寿命を長(するこ゛とができる。
Furthermore, this oxygen top blowing makes it possible to raise the molten steel temperature and the dissolved oxygen, so decarburization in the converter can be omitted and (C
) is higher than conventional 200-300pp steel, making it 400-5
Steel is tapped at 00 pρ. The result (0) is 500-60
It is now possible to reduce the iron oxide concentration (T・Fe) from 0 ppm to 200-300 ppm, and accordingly
), it is possible to lower the molten steel temperature and extend the life of the converter bricks.

さて、本発明において真空槽上部より、上吹きランス6
から上述した通り酸素を吹きこみ脱炭・昇温を行う、こ
の上吹きランスには酸素ガス配管7の他に水蒸気配管8
およびArガス配管9を連結し、低炭素域になった時点
で水蒸気を吹きこんだ。
Now, in the present invention, from the top of the vacuum chamber, the top blow lance 6
As mentioned above, oxygen is blown into this lance to decarburize and raise the temperature.In addition to the oxygen gas pipe 7, this top-blowing lance has a steam pipe 8.
and Ar gas piping 9 were connected, and water vapor was blown in when the low carbon region was reached.

比較例では上吹きガスを用いないで脱炭を行った。なお
、転炉では温度1620″C1(C) −0,04〜0
.05%、(0) −300〜350ppmで出鋼した
In the comparative example, decarburization was performed without using top-blown gas. In addition, in the converter, the temperature is 1620"C1 (C) -0.04~0
.. 05%, (0) -300 to 350 ppm.

上記の実施例、比較例の実施態様と15分の脱炭処理後
に得られた結果を第1表に示す。
Table 1 shows the embodiments of the above Examples and Comparative Examples and the results obtained after 15 minutes of decarburization treatment.

なお、上吹きランスから酸素ガスを吹きこんだ場合の真
空到達度は8〜12torrであった。また上吹きラン
スと真空槽の溶鋼との距離は、酸素ガスを吹きこむ際は
2〜2.5mとし、水蒸気を吹きこむ場合の距離は1=
1.3m+とじた。
The degree of vacuum achieved when oxygen gas was blown from the top blowing lance was 8 to 12 torr. In addition, the distance between the top blowing lance and the molten steel in the vacuum chamber is 2 to 2.5 m when blowing oxygen gas, and the distance when blowing steam is 1 =
1.3m + closed.

第1表で示される脱炭速度定数Kcは、(I)式で定義
されるものである0表より明らがな様に実施例では速度
定数が低炭素域で著しく大きく、水蒸気上吹きにより低
炭素域での脱炭処理が改善されていることがわかる。そ
の結果、15分の短時間の処理で安定して(C)は10
ppm以下にでき、従来の処理では20ppm程度にし
か溶製できないのに対して、有利に高品質の連続焼鈍処
理向は冷延板素材を?8製できる。
The decarburization rate constant Kc shown in Table 1 is defined by formula (I).As is clear from Table 0, the rate constant in the examples is significantly large in the low carbon region, and due to the top blowing of steam, It can be seen that the decarburization process in the low carbon region has been improved. As a result, (C) was stable at 10 after a short treatment of 15 minutes.
ppm or less, and while conventional processing can only produce ingots of about 20 ppm, cold-rolled plate material is advantageously suitable for high-quality continuous annealing. 8 can be made.

また、スプラッシュの積極的な発生による槽内地金付き
は連続的な処理の場合大きな問題となるが、本発明の脱
炭反応前半に、発生するCOガスの一部をCO2に燃焼
するために、鵠ガスを酸ランスより吹き付けることによ
る真空槽内耐火物の昇熱効果が地金付着防止に有効なこ
とも111認した9本方法は、鋼浴面下から鋼浴攪拌用
に計ガスを導入する真空精釧法、即ちDH法、l’OD
法にも同様に適用できる。
In addition, in the case of continuous treatment, metal buildup in the tank due to the active generation of splash is a big problem, but in the first half of the decarburization reaction of the present invention, in order to combust a part of the generated CO gas into CO2, The 9 methods have also been recognized as effective in preventing metal adhesion due to the effect of elevating the temperature of the refractories in the vacuum chamber by spraying gas from an acid lance.The method involves introducing metering gas from below the surface of the steel bath for stirring the steel bath. Vacuum precision method, i.e. DH method, l'OD
The same applies to law.

〈発明の効果〉 本発明方法によると、極低炭素域での脱炭が迅速に行え
、かつ炭素含有量が1Qpps+以下の極低炭素鋼を安
定して得ることができ、また真空槽内で大量に発生する
スプラッシュの真空槽内への付着を防止することができ
る。
<Effects of the Invention> According to the method of the present invention, decarburization in the ultra-low carbon range can be performed quickly, and ultra-low carbon steel with a carbon content of 1Qpps+ or less can be stably obtained. It is possible to prevent a large amount of splash from adhering to the inside of the vacuum chamber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を実施する設備の一態様を示す断面図
である。 ・・・取鍋、 ・・・真空槽、 ・・・環流用針ガス導入管、 ・・・酸素ガス配管、 ・・・^rガス配管。 2・・・溶鋼、 4・・・環流管、 6・・・上吹きランス、 8・・・水蒸気配管、
FIG. 1 is a sectional view showing one aspect of equipment for implementing the present invention. ...Ladle, ...Vacuum chamber, ...Recirculation needle gas introduction pipe, ...Oxygen gas piping, ...^rGas piping. 2... Molten steel, 4... Circulation pipe, 6... Top blowing lance, 8... Steam piping,

Claims (1)

【特許請求の範囲】 1、製鋼炉で溶製された未脱酸溶鋼もしくは弱脱酸溶鋼
をRH法、DH法又はVOD法等を適用して真空脱ガス
処理するに当り、真空脱ガス処理槽内における溶鋼の浴
面上部から酸素ガス又は酸素含有ガスを吹き込み、溶鋼
の脱炭反応を進行させるとともに、脱ガス処理中に発生
するCOガスを燃焼させる方法において、上吹きランス
から脱炭反応が停滞する時期に、水蒸気および、または
水を含有するガスを吹き込むことを特徴とする溶鋼の真
空脱ガス・脱炭処理方法。 2、上吹きランスから水蒸気および、または水を含有す
るガスを吹き込む時期が脱炭反応末期で鋼中炭素濃度が
50ppm以下である請求項1記載の溶鋼の真空脱ガス
・脱炭処理方法。 3、水を含有するガスが、不活性ガスである請求項1又
は請求項2記載の溶鋼の真空脱ガス・脱炭処理方法。
[Claims] 1. Vacuum degassing treatment in vacuum degassing treatment of undeoxidized molten steel or weakly deoxidized molten steel melted in a steelmaking furnace by applying the RH method, DH method, VOD method, etc. A method in which oxygen gas or oxygen-containing gas is blown into the molten steel from above the bath surface in the tank to advance the decarburization reaction of the molten steel and to burn the CO gas generated during the degassing process. A method for vacuum degassing and decarburization of molten steel, characterized by blowing in a gas containing steam and/or water during a period of stagnation. 2. The method for vacuum degassing and decarburization of molten steel according to claim 1, wherein the gas containing steam and/or water is blown from the top blowing lance at the end of the decarburization reaction, when the carbon concentration in the steel is 50 ppm or less. 3. The method for vacuum degassing and decarburization of molten steel according to claim 1 or 2, wherein the water-containing gas is an inert gas.
JP193189A 1989-01-10 1989-01-10 Method for vacuum degassing and decarburization of molten steel Pending JPH02182823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP193189A JPH02182823A (en) 1989-01-10 1989-01-10 Method for vacuum degassing and decarburization of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP193189A JPH02182823A (en) 1989-01-10 1989-01-10 Method for vacuum degassing and decarburization of molten steel

Publications (1)

Publication Number Publication Date
JPH02182823A true JPH02182823A (en) 1990-07-17

Family

ID=11515352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP193189A Pending JPH02182823A (en) 1989-01-10 1989-01-10 Method for vacuum degassing and decarburization of molten steel

Country Status (1)

Country Link
JP (1) JPH02182823A (en)

Similar Documents

Publication Publication Date Title
JP2009263783A (en) Method for refining molten steel in rh vacuum degassing apparatus
JP2776118B2 (en) Melting method for non-oriented electrical steel sheet
JPH01246314A (en) Production of extremely low carbon steel by vacuum degassing treatment
JPH02182823A (en) Method for vacuum degassing and decarburization of molten steel
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JP2724035B2 (en) Vacuum decarburization of molten steel
JPH06116626A (en) Method for smelting low carbon steel by using vacuum refining furnace
JP2795597B2 (en) Vacuum degassing and decarburization of molten stainless steel
JP2746630B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JPH01156416A (en) Method for decarburizing high-chromium steel having excellent decarburizing characteristic under reduced pressure
JPH04214817A (en) Method for smelting extremely low carbon and extremely low nitrogen steel
JPH05247522A (en) Refining method of highly clean stainless steel
JPH05239537A (en) Method for melting cleanliness and extreme-low carbon steel
JP2675432B2 (en) Melting method of ultra low carbon steel
JP5777369B2 (en) How to prevent nitrogen absorption when melting stainless steel
JPH03107412A (en) Method for producing extremely low carbon steel
JPH06256836A (en) Production of high cleanliness and ultra-low carbon steel
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
CN117701823A (en) Method for smelting non-oriented silicon steel by vanadium extraction semisteel
JPH06116625A (en) Method for degassing and decarburizing molten stainless steel
JPH04141512A (en) Method for refining ultra low carbon steel by rh process
JPH0456716A (en) Method for smelting dead soft steel
JPH05239526A (en) Method for melting grain oriented electrical steel sheet
JPH08283828A (en) Method for vacuum-refining dead-soft steel