JPH02181924A - Method of polishing silicon - Google Patents

Method of polishing silicon

Info

Publication number
JPH02181924A
JPH02181924A JP300389A JP300389A JPH02181924A JP H02181924 A JPH02181924 A JP H02181924A JP 300389 A JP300389 A JP 300389A JP 300389 A JP300389 A JP 300389A JP H02181924 A JPH02181924 A JP H02181924A
Authority
JP
Japan
Prior art keywords
polishing
liquid
silicon
polished
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP300389A
Other languages
Japanese (ja)
Inventor
Yasuhiko Matsumoto
康彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP300389A priority Critical patent/JPH02181924A/en
Publication of JPH02181924A publication Critical patent/JPH02181924A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE:To control a polishing operation of silicon on a substrate by a method wherein the surface of silicon is polished by using a polishing liquid composed of an aqueous solution containing silica particles and a prescribed polishing operation is then executed by using a polishing liquid composed of an amine aqueous solution. CONSTITUTION:A silicon substrate 12 on which a selective epitaxial layer (SEG layer) has been grown is sucked to a pressurization head 13; while a lower surface plate 10 is being turned, e.g. at 50rpm, a polishing liquid A is dripped. The pressurization head 13 is turned and lowered; the surface of the silicon substrate 12 is pressed gradually to the surface of a polishing pad 11; the substrate is polished finally under a load of 100g/cm<2>. After the substrate has been polished for 2min in this state, the liquid A is stopped; a liquid B flows; the substrate is polished additionally for 15min. A spontaneous oxide film on the surface of the SEG layer 4 is removed by a polishing operation using the initial liquid A for 2min; after the 2min has elapsed, the liquid is switched to the liquid B; then, a concentration of silica particles in the polishing liquid on the pad is lowered gradually; lastly, the liquid is replaced by an amine aqueous solution; accordingly, a silicon oxide film 2 is not polished; the SEG layer 4 can be polished to be flat.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に半導体基板
表面に部分的あるいは全面に形成されたシリコン(単結
晶シリコン−ポリシリコン)の研磨方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for polishing silicon (single crystal silicon-polysilicon) formed partially or entirely on the surface of a semiconductor substrate. .

〔従来の技術〕[Conventional technology]

半導体装置の製造工程中には、半導体基板の表面に部分
的あるいは全面に形成されたシリコンを、前者の場合に
はシリコンの形成されない部分に、後者の場合には表面
下に形成された素子部分に損傷を与えないようにして研
磨しなければならない工程が含まれることが多い。
During the manufacturing process of semiconductor devices, silicon formed partially or completely on the surface of the semiconductor substrate is removed, and in the former case, the silicon is not formed, and in the latter case, the element part formed below the surface is removed. It often involves steps that require polishing without damaging the surface.

従来この種の研磨方法としては、アミンの水溶液からな
る研磨液だけを用いて、シリコンを研磨する方法がある
。(例えば特許58−004348以下に、上記研磨方
法を選択エピタキシアル成長技術(Selective
 Epitaxial Growth : 5EG)を
用いた素子分離の製造方法を例にとり説明する。第4図
はSEG層の形成と、SEG層の研磨による素子分離を
図示したもので、第4図(a)に示すように、先ずシリ
コン基板1の表面に熱酸化法あるいは化学気相成長法に
より1.51Lmのシリコン酸化膜2を形成し、ホトレ
ジスト技術とドライエツチング技術を用いて、素子を形
成する予定領域に開孔3を形成する0次に第4図(b)
に示すようにジクロルシラン(Si820M ?)・k
nf!a(HCI ) ”ホス747(PH3)・水素
を反応ガスとして成長温度900℃、圧力30Torr
テS E G層4を3.0pm成長させる0次に研磨用
パッドの表面にアミンの水溶液からなる研磨液を滴下し
ながら、 100g/c■2の圧力でこのパッドにシリ
コン基板の表面を押さえつけて研磨用パッドを回転させ
、シリコン4の突出部を研磨する。 (研磨方法に関し
ては例えば電子通信学会技術研究報告Va1.8B N
o、1313p、37〜42) 〔発明が解決しようとする課題〕 上述した従来の研磨方法によって、第4図(C)の点線
で示すように、シリコン研磨が分離酸化膜の上面で停止
し、平坦なプロファイル5をもつシリコンの研磨が可能
である。しかし場合によっては、研磨が全く進行しない
という現象が発生することがある。このように研磨の進
行しないウェーハも希HF液で軽くエツチングを行なう
と研磨が可能になることがわかった。
As a conventional polishing method of this type, there is a method of polishing silicon using only a polishing liquid consisting of an aqueous solution of amine. (For example, in Patent No. 58-004348 and below, the above polishing method is used as a selective epitaxial growth technique.
A manufacturing method for element isolation using epitaxial growth (5EG) will be explained as an example. FIG. 4 illustrates the formation of the SEG layer and the device isolation by polishing the SEG layer. As shown in FIG. A silicon oxide film 2 with a thickness of 1.51 Lm is formed by etching, and an opening 3 is formed in the area where the element is to be formed using photoresist technology and dry etching technology.
Dichlorosilane (Si820M?)・k as shown in
nf! a(HCI) ``Growth temperature 900℃, pressure 30Torr using Phos747 (PH3)/hydrogen as reaction gas
Next, while dropping a polishing liquid consisting of an aqueous amine solution onto the surface of a polishing pad, the surface of the silicon substrate was pressed against the pad with a pressure of 100 g/c2. The polishing pad is rotated to polish the protruding portion of the silicon 4. (For polishing methods, see, for example, the Institute of Electronics and Communication Engineers Technical Research Report Va1.8B N
o, 1313p, 37-42) [Problems to be Solved by the Invention] With the conventional polishing method described above, silicon polishing stops at the upper surface of the isolation oxide film, as shown by the dotted line in FIG. 4(C), Polishing of silicon with a flat profile 5 is possible. However, in some cases, a phenomenon may occur in which polishing does not proceed at all. It has been found that even wafers that cannot be polished can be polished by lightly etching them with a dilute HF solution.

アミン液を用いたシリコン研磨は、まずシリコンとアミ
ンが反応し5i(OH)62−がシリコン表面に形成さ
れ、次に研磨パッドでこの5i(0)1)62−をふき
堆り除去することで進行するものと考えられている。と
ころで、シリコン表面には常に自然酸化膜が存在するの
で、この酸化膜が非常に強固な場合、このアミンとシリ
コンの反応が阻止されて、上記のような研磨が進行しな
い現象が生ずるものと考えられる。そこで、シリコン酸
化膜を機械的に研磨除去することが可能なシリカ粒子を
含む研磨液を用いて研磨を行なってみたところ、研磨は
安定的に進行するが、第4図(C)に示すように分離の
ためのシリコン酸化膜2が膜減りしたり、SEG層4表
面に窪みが発生するという問題が生じた。
Silicon polishing using an amine solution involves first reacting silicon and amine to form 5i(OH)62- on the silicon surface, and then wiping away this 5i(0)1)62- with a polishing pad. It is thought that it will proceed. By the way, there is always a natural oxide film on the silicon surface, so if this oxide film is very strong, it is thought that the reaction between the amine and silicon will be blocked, causing the phenomenon that polishing does not proceed as described above. It will be done. Therefore, when we tried polishing using a polishing liquid containing silica particles that can mechanically remove the silicon oxide film, the polishing proceeded stably, but as shown in Figure 4 (C). Problems arose in that the silicon oxide film 2 for isolation was thinned and a depression was formed on the surface of the SEG layer 4.

一方、半導体基板の表面の全面に形成したシリコンを所
定の厚さだけ研磨する場合にも、場所的に研磨が進まず
、不均一になることがあるが、このことも同一原因によ
るものと考えられる。
On the other hand, even when polishing silicon formed on the entire surface of a semiconductor substrate to a predetermined thickness, the polishing may not progress in some places and become uneven, but this is also thought to be due to the same cause. It will be done.

本発明の目的は、上記の事情に鑑み、半導体基板上のシ
リコンを制御可能に研磨しうる研磨方法を提供すること
にある。
In view of the above circumstances, an object of the present invention is to provide a polishing method that can controllably polish silicon on a semiconductor substrate.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の方法は、シリカ粒子を含む水溶液からなる研磨
液を用い、シリコン表面を研磨する予備研磨工程と、次
にアミン水溶液からなる研磨液を用いて所定の研磨を行
なう研磨工程とを含むものである。
The method of the present invention includes a preliminary polishing step of polishing the silicon surface using a polishing liquid made of an aqueous solution containing silica particles, and a polishing step of performing a predetermined polishing using a polishing liquid made of an amine aqueous solution. .

なお、ここでシリコンとはポリシリコンを含む。Note that silicon includes polysilicon here.

〔作用〕[Effect]

予備研磨工程によりシリコン表面の強固な酸化膜も水溶
液に含まれるシリカ粒子によって、簡単に除去される。
During the pre-polishing step, even the strong oxide film on the silicon surface is easily removed by the silica particles contained in the aqueous solution.

したがって、この状態でアミン水溶液によって行なわれ
る研磨は均一に進行する。
Therefore, in this state, the polishing performed using the amine aqueous solution proceeds uniformly.

〔実施例〕〔Example〕

以下1本発明の一実施例につき1図面を参照して説明す
る。第1図は、本発明を実施するために、2種類の研磨
液を供給するようにした研磨装置である。10は下定盤
、11は研磨ノくラド、12は選択エピタキシャル層(
SEG層)形成後のシリコン基板、l・3は加圧ヘッド
、14はアミンとシリカ粒子の水溶液、からなる研磨液
Aのびん、15.16は研磨液Aを送るポンプと配管、
17はアミンの水溶液からなる研磨液Bのびん、18.
19は研磨液Bを送るポンプと配管である。
Hereinafter, one embodiment of the present invention will be explained with reference to one drawing. FIG. 1 shows a polishing apparatus in which two types of polishing liquids are supplied to carry out the present invention. 10 is a lower surface plate, 11 is a polishing pad, and 12 is a selective epitaxial layer (
1.3 is a pressure head, 14 is a bottle of polishing liquid A consisting of an aqueous solution of amine and silica particles, 15.16 is a pump and piping for feeding polishing liquid A,
17 is a bottle of polishing liquid B consisting of an aqueous solution of amine; 18.
Reference numeral 19 denotes a pump and piping for feeding the polishing liquid B.

5EGNを成長したシリコン基板12を加圧へラド13
に吸着させ、下定盤lOを50rp量で回転させながら
研磨液Aを滴下する。加圧へラド13を回転・降下させ
、シリコン基板12の表面を研磨パッド11の表面に除
々に押えつけ最終的には100 g / c m 2の
加重で研磨する。この状態で2分間研磨した後、A液を
止めてB液を流しさらに15分間研磨する。
The silicon substrate 12 on which 5EGN has been grown is pressed by a rad 13.
The polishing liquid A is dripped while rotating the lower surface plate 10 at a rate of 50 rpm. The pressure pad 13 is rotated and lowered to gradually press the surface of the silicon substrate 12 against the surface of the polishing pad 11 and finally polish it with a load of 100 g/cm 2 . After polishing in this state for 2 minutes, stop the liquid A and pour in the liquid B and polish for another 15 minutes.

最初のA液による2分間の研磨で、SEG層4表面の自
然酸化膜が除去され、2分経過後、B液に切り換えるこ
とにより、パッド上の研磨液中のシリカ粒子の濃度が除
々に低下し最後にはアミン水溶液のみに置換されるため
第2図に示すように、シリコン酸化1g!2が研磨され
ることなく SEG層4の平坦な研磨が回走となる。
The initial polishing with liquid A for 2 minutes removes the natural oxide film on the surface of the SEG layer 4, and after 2 minutes, by switching to liquid B, the concentration of silica particles in the polishing liquid on the pad gradually decreases. In the end, only the amine aqueous solution is substituted, so as shown in Figure 2, 1 g of silicon oxide! The flat polishing of the SEG layer 4 is performed without polishing the SEG layer 2.

上記実施例は、選択エピタキシャル成長シリコンに適用
したものが、ポリシリコンについても同様な効果が得ら
れる。第3図は、シリコン基板!上に、形成した厚さ1
.0μmのシリコン酸化膜2の開孔部にポリシリコンロ
を埋め込む場合を示したものである。第3図(a)に示
すようにシリコン酸化I8!2上で0 、8 gmの高
さになるまで全面にポリシリコン酸化膜6を成長後、研
磨液Aで2分間研磨を行い自然酸化膜を除去した後、B
液に切り換え10分間研磨を行うと、シリコン酸化!I
2が研磨されることなく第3図(b)に示すようにポリ
シリコンロを以上説明したように、本発明はまず最初に
シリカ粒子を含む水溶液からなる研磨液を用いて研磨を
行いシリコン表面の自然酸化膜を除去し、次にアミンの
水溶液からなる研磨液を用いて研磨を行うので分離用の
シリコン酸化膜を削ることなくシリコンを平坦に研磨す
ることが、安定して可能になる。
Although the above embodiment is applied to selectively epitaxially grown silicon, similar effects can be obtained with polysilicon. Figure 3 is a silicon substrate! On top, the formed thickness 1
.. This figure shows the case where polysilicon is embedded in an opening in a silicon oxide film 2 having a thickness of 0 μm. As shown in FIG. 3(a), after growing a polysilicon oxide film 6 on the entire surface of silicon oxide I8!2 to a height of 0.8 gm, polishing was performed for 2 minutes with polishing solution A to remove the natural oxide film. After removing B
When you switch to liquid and polish for 10 minutes, silicon oxidizes! I
As explained above, the present invention first polishes the silicon surface using a polishing solution consisting of an aqueous solution containing silica particles. Since the native oxide film is removed and then polishing is performed using a polishing solution consisting of an aqueous amine solution, it is possible to stably polish silicon to a flat surface without scraping the isolation silicon oxide film.

また、シリコンが半導体基板上に全面に形成された場合
にも、この方法により均一に厚みのむらなく研磨が可f
@になるので基板上の素子を損傷することがない。
In addition, even if silicon is formed on the entire surface of a semiconductor substrate, this method allows polishing to be uniform and even in thickness.
Since it becomes @, it does not damage the elements on the board.

自然酸化膜をとる手段としては、研磨前にHF液処理す
ることも考えられるが、自然酸化膜除去と研磨とを同一
装置で行うことができ、工程管理上の効果が大きい。
As a means of removing the natural oxide film, HF solution treatment before polishing may be considered, but the removal of the natural oxide film and the polishing can be performed in the same device, which is highly effective in terms of process control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する研磨装置の概略図、第
2図・第3図は実施例でそれぞれ分離酸化膜にかこまれ
た領域のシリコンΦポリシリコン研磨に適用した断面図
、第4図は従来方法による断面図である。 1・・・シリコン基板、  2・・・シリコン酸化膜、
3・・・開孔、      4・・・S E GM。 5・・・プロファイル、  6・・・ポリシリコン。 石llFベクンと 第3図 (dl 第2図
FIG. 1 is a schematic diagram of a polishing apparatus for carrying out the method of the present invention, FIGS. 2 and 3 are cross-sectional views of an example applied to silicon Φ polysilicon polishing of a region surrounded by an isolation oxide film, and FIG. FIG. 4 is a cross-sectional view of the conventional method. 1... Silicon substrate, 2... Silicon oxide film,
3... Open hole, 4... S E GM. 5...Profile, 6...Polysilicon. SekillF Baekun and Figure 3 (dl Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板面に形成されたシリコンを研磨する方法にお
いて、シリカ粒子を含む水溶液からなる研磨液を用い、
シリコン表面を研磨する予備研磨工程と、次にアミン水
溶液からなる研磨液を用いて所定の研磨を行なう研磨工
程とを含むことを特徴とするシリコン研磨方法。
In a method of polishing silicon formed on a semiconductor substrate surface, using a polishing liquid consisting of an aqueous solution containing silica particles,
A silicon polishing method comprising a preliminary polishing step of polishing a silicon surface, and a polishing step of performing a predetermined polishing using a polishing liquid made of an amine aqueous solution.
JP300389A 1989-01-09 1989-01-09 Method of polishing silicon Pending JPH02181924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP300389A JPH02181924A (en) 1989-01-09 1989-01-09 Method of polishing silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP300389A JPH02181924A (en) 1989-01-09 1989-01-09 Method of polishing silicon

Publications (1)

Publication Number Publication Date
JPH02181924A true JPH02181924A (en) 1990-07-16

Family

ID=11545186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP300389A Pending JPH02181924A (en) 1989-01-09 1989-01-09 Method of polishing silicon

Country Status (1)

Country Link
JP (1) JPH02181924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216093A (en) * 1993-01-18 1994-08-05 Mitsubishi Materials Shilicon Corp Polishing method for semiconductor substrate and manufacture of the substrate using same
JP2008091383A (en) * 2006-09-29 2008-04-17 Sumco Techxiv株式会社 Method of roughly grinding semiconductor wafer, and apparatus of grinding the semiconductor wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120439A (en) * 1982-12-16 1984-07-12 ザ・グツドイア−・タイヤ・アンド・ラバ−・コンパニ− Tire tread belt and its manufacture
JPS59129439A (en) * 1983-01-14 1984-07-25 Nec Corp Manufacture of substrate for semiconductor device
JPS62162462A (en) * 1986-01-10 1987-07-18 Rohm Co Ltd Finishing of wafer surface
JPS62259769A (en) * 1986-05-02 1987-11-12 Nec Corp Silicon wafer processing device
JPH01193170A (en) * 1988-01-27 1989-08-03 Mitsubishi Metal Corp Specular face grinding/polishing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120439A (en) * 1982-12-16 1984-07-12 ザ・グツドイア−・タイヤ・アンド・ラバ−・コンパニ− Tire tread belt and its manufacture
JPS59129439A (en) * 1983-01-14 1984-07-25 Nec Corp Manufacture of substrate for semiconductor device
JPS62162462A (en) * 1986-01-10 1987-07-18 Rohm Co Ltd Finishing of wafer surface
JPS62259769A (en) * 1986-05-02 1987-11-12 Nec Corp Silicon wafer processing device
JPH01193170A (en) * 1988-01-27 1989-08-03 Mitsubishi Metal Corp Specular face grinding/polishing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216093A (en) * 1993-01-18 1994-08-05 Mitsubishi Materials Shilicon Corp Polishing method for semiconductor substrate and manufacture of the substrate using same
JP2008091383A (en) * 2006-09-29 2008-04-17 Sumco Techxiv株式会社 Method of roughly grinding semiconductor wafer, and apparatus of grinding the semiconductor wafer

Similar Documents

Publication Publication Date Title
US7781309B2 (en) Method for manufacturing direct bonded SOI wafer and direct bonded SOI wafer manufactured by the method
US6417108B1 (en) Semiconductor substrate and method of manufacturing the same
JP2876470B2 (en) Method for manufacturing semiconductor device
TWI337769B (en) Method for recycling an epitaxied donor wafer
JPH0636414B2 (en) Manufacturing method of semiconductor element forming substrate
US6113721A (en) Method of bonding a semiconductor wafer
KR100382325B1 (en) Wafer processing apparatus and method, wafer convey apparatus, and semiconductor fabrication apparatus
EP0938132A2 (en) Porous region removing method and semiconductor substrate manufacturing method
EP2461359B1 (en) Method for forming substrate with insulating buried layer
JPH02181924A (en) Method of polishing silicon
JP2013516085A5 (en)
JPH02267950A (en) Semiconductor substrate
JPH10199840A (en) Manufacture of soi substrate
JP2779659B2 (en) Method for manufacturing semiconductor device
KR100806403B1 (en) Method of manufacturing a semicondcutor device by using chemical mechanical polishing
JP2002057310A (en) Method of forming soi substrate
JPH01305534A (en) Manufacture of semiconductor substrate
JP2002057309A (en) Method of forming soi substrate
JPH05109693A (en) Manufacture of soi substrate
JP2002343972A (en) Method of manufacturing semiconductor device
JPH08191138A (en) Manufacture of soi substrate
KR20010005151A (en) Isolation using chemical mechanical polishing
KR100560288B1 (en) A method for forming isolation layer of semiconductor device
JP3147073B2 (en) Method for manufacturing semiconductor device
JP2762503B2 (en) Semiconductor substrate manufacturing method