JPH0217950B2 - - Google Patents

Info

Publication number
JPH0217950B2
JPH0217950B2 JP18107281A JP18107281A JPH0217950B2 JP H0217950 B2 JPH0217950 B2 JP H0217950B2 JP 18107281 A JP18107281 A JP 18107281A JP 18107281 A JP18107281 A JP 18107281A JP H0217950 B2 JPH0217950 B2 JP H0217950B2
Authority
JP
Japan
Prior art keywords
copper
copper foil
base material
hydrochloric acid
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18107281A
Other languages
Japanese (ja)
Other versions
JPS5884488A (en
Inventor
Takeshi Yamagishi
Kazuyoshi Aso
Takanori Kanamaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP18107281A priority Critical patent/JPS5884488A/en
Publication of JPS5884488A publication Critical patent/JPS5884488A/en
Publication of JPH0217950B2 publication Critical patent/JPH0217950B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、芳香族アミン類を硬化剤に用いる
耐熱性エポキシ樹脂基材と銅箔とを積層してなる
耐塩酸性銅張積層板に関するものである。 さて、ガラスエポキシ樹脂基材と銅箔とからの
積層板の特性は、該基材と使用する硬化剤との組
合わせを変えることにより各種特性の積層板が得
られることは周知である。そして、耐熱性の要求
されない汎用材料の製造には、硬化剤としてジシ
アン・ジアミド(DICY)、硬化促進剤としては
ベンジル・ジメチルアミン(BDMA)、溶剤とし
てメチルオキシドール、メチルセロソルブなどを
配合したものが使われ、一方、耐熱性積層板を得
るには、ハロゲンを導入したハロゲン化ビスフエ
ニール系基材などが使われ、硬化剤としてはメタ
フエニレンジアミン(MPD)、ジアミノ・ジフエ
ニルメタン(DDM)、ジアミノ・ジフエニル・
スルフアン(DDS)、3,3′−ジクロル・ジアミ
ノ・ジフエニルメタンといつた一連の芳香族系ア
ミン類が使われている。さて上記エポキシ樹脂基
材に銅箔を接着させた銅張積層板を印刷回路に使
用するに当つては、基材に対する銅箔の密着性、
半田耐熱性、耐シアン性、耐塩酸性などの諸特性
が要求される。 ところでエポキシ樹脂基材を用い耐熱性銅張積
層板を製造するには、上記のように基材の硬化剤
として芳香族アミン類がしばしば使われている
が、これら硬化剤を用いた積層板の欠点は、その
耐塩酸性が著しく劣るということである。 1例を示すと、ジシアミン・ジアミドを硬化剤
にベンジル・ジメチルアミン、溶剤としてメチル
セロソルブを用いたガラスエポキシ樹脂基材と銅
箔粗面とを積層させた汎用銅張積層板の耐塩酸性
(回路巾0.8mmの試片を試薬塩酸:水=1:1の中
に常温で1時間浸漬後、その剥離強度を測定し、
これを劣化率で表示したもの)は3〜5%であ
り、また耐熱性臭素化エポキシ樹脂基材にジアミ
ノ・ジフエニルスルフアンを硬化剤とし、三フツ
化ホウ素モノエチルアミンを促進剤に、メチルエ
チルケトンを溶剤として得た銅張積層板に対し上
記と同様にして求めた耐塩酸性は30%またはそれ
以上と大きいため、回路を緻密として小型化する
場合には、耐熱性エポキシ樹脂基材の適用は、著
しく制約されることになる。 この発明は、芳香族アミン類を硬化剤とする耐
熱性エポキシ樹脂基材と銅箔粗面または該面に公
知のクロメート処理した銅箔とから耐塩酸性の良
好な銅張積層板を提供できるようなしたものであ
る。 さて本発明者等は、すでに銅箔の粗面または公
知のクロメート処理を施した該粗面を、一般式
YRSiX3(ここにYは高分子物と反応する官能基、
RはYとケイ素原子とを連結する鎖状または環状
炭化水素を含む結合基、Xはケイ素原子に結合す
る有機または無機の加水分解性基を表わす。)で
示される公知のシランカツプリング剤ののいずれ
かの水溶液で処理後、これを樹脂基材と接着させ
れば、銅箔と基材とを強固に接着できるこことを
発明し、特願昭55−162367(特公昭60−15654号)
号として出願しているが、前記したように芳香族
アミン類を硬化剤とする耐熱性エポキシ樹脂基材
に、通常の粗化銅箔を接着させた場合の銅張積層
板の耐塩酸性の劣る原因は、或いは該基材と銅箔
との接着力が劣ることに基因しているのではない
かと考え、予じめ銅箔粗面または公知のクロメー
ト処理を施した該粗面を、前記いずれかのシラン
カツプリング剤で処理し、これを該基材とを接着
させてみた。すなわち銅箔粗面または該面に公知
のクロメート処理を施した銅箔を、各種シランカ
ツプリング剤水溶液で処理し、これを芳香族アミ
ン類を硬化剤として用いる耐熱性エポキシ樹脂基
材と接着させて多数の銅張積層板試片を作り、そ
の耐塩酸性を測定してみた。その結果、予想した
通り、γ−アミノプロピルトリエトキシシラン、
N−β−(アミノエチル)−γ−アミノプロピルト
リメトキシシラン、γ−グリコシドオキシプロピ
ル・メトキシシラン、β−(3,4エポキシシク
ロヘキシル)エチルトリメトキシシラン、ビニル
ートリス(β−メトキシ・エトキシ)シランなど
の公知のシランカツプリング剤で処理した銅箔を
使用すれば銅張積層板自体の耐塩酸性を顕著に向
上することを多数の実験により確認し得た。本発
明は上記実験に基いて、ここに完成をみたもので
ある。 さらに本発明の説明を続けると、本発明に使用
するシランカツプリング剤による処理は、銅箔粗
面または公知のクロメート処理を施した該粗面
を、該薬剤の液中に浸漬するか、またはスプレー
処理するか或いはローラーコーテイングするなど
の方法で薄膜を形成するだけでよく、簡単なのは
浸漬処理である。また本発明においては、使用す
る薬品の濃度を限定する必要はなく0.01〜1%の
液を用い、室温で短時間処理後、銅箔を乾燥させ
るだけで良い。また耐熱性エポキシ樹脂基材の硬
化剤としてはメタフエニレンジアミン、ジアミ
ノ・ジフエニルメタン、ジアミノ・ジフエニル・
スルフアン、3,3′−ジクロルジアミノ・ジフエ
ニルメタンなどの公知の芳香族アミン類を使用す
るものに適用することができる。 以下、本発明を実施例により、さらに具体的に
説明する。 実施例 銅箔試料として、 (A) 製箔ロールから剥離した銅箔の粗面を、公知
の硫酸銅浴で電解粗化した厚み32μの銅箔。 (B) 製箔ロールから剥離した銅箔の粗面に、公知
の方法でクロメート処理した厚み32μの銅箔の
2種類を使用し、試料(A)についてはN−β−
(アミノエチル)−γ−アミノプロピルトリエト
キシシランの濃度0.05%と0.1%の2種類の溶
液を用い、また試料(B)については、γ−アミノ
プロピル・トリエトキシシランの0.05%と0.1
%の溶液を用い、いずれの場合も、銅箔をその
溶液中に室温で1分間浸漬し、引上げて一旦室
温で乾燥し、さらに110〜120℃に保持した乾燥
機を用い、3分間乾燥を行つた。つぎに、この
ように処理した各銅箔の粗面側を、硬化剤とし
て3,3′−ジクロルアミノ・ジフエニルメタン
を使用するガラス・臭素化エポキシ樹脂基材と
重ね155℃、圧力100Kg/cm2、30分間の成形条件
を採用して250mm×250mm×2mmの銅張積層板を
試作した。 ついで該積層板の剥離強度、耐塩酸性(回路
巾0.8mmの銅張積層板試片を試薬塩酸:水=
1:1中に常温で1時間浸漬後の剥離強度を求
め、これを劣化率で示したもの)および耐シア
ン劣化率(回路巾3.2mmの銅張積層板試片を、
10%のKCN水溶液中において70℃で30分間浸
漬したものの剥離強度を求め、それを劣化率で
示したものである。)を求め、別にブランク箔
からの試作銅張積層板についても上記と同様の
試験を行つてみた。結果は下表に示す通りであ
る。
The present invention relates to a hydrochloric acid-resistant copper-clad laminate formed by laminating a heat-resistant epoxy resin base material using aromatic amines as a curing agent and copper foil. Now, it is well known that the characteristics of a laminate made of a glass epoxy resin base material and copper foil can be obtained by changing the combination of the base material and the curing agent used. For the production of general-purpose materials that do not require heat resistance, products containing dicyan diamide (DICY) as a curing agent, benzyl dimethylamine (BDMA) as a curing accelerator, and methyl oxide or methyl cellosolve as a solvent are used. On the other hand, to obtain a heat-resistant laminate, a halogenated bisphenylic base material containing a halogen is used, and the curing agent is metaphenylene diamine (MPD), diamino diphenylmethane (DDM), diamino diphenyl methane, etc. Diphenyl
A series of aromatic amines have been used, including sulfane (DDS) and 3,3'-dichloro diamino diphenylmethane. Now, when using a copper-clad laminate in which copper foil is bonded to the epoxy resin base material for printed circuits, the adhesion of the copper foil to the base material,
Various properties such as soldering heat resistance, cyanide resistance, and hydrochloric acid resistance are required. By the way, in the production of heat-resistant copper-clad laminates using epoxy resin base materials, aromatic amines are often used as hardening agents for the base material, as described above. The disadvantage is that its resistance to hydrochloric acid is significantly poor. One example is the hydrochloric acid resistance (circuit A specimen with a width of 0.8 mm was immersed in a reagent hydrochloric acid: water = 1:1 for 1 hour at room temperature, and its peel strength was measured.
The deterioration rate (expressed as a deterioration rate) is 3 to 5%, and methyl ethyl ketone is The hydrochloric acid resistance obtained in the same manner as above for a copper-clad laminate obtained using a solvent is as high as 30% or more. Therefore, if the circuit is to be made denser and more compact, it is not recommended to use a heat-resistant epoxy resin base material. , will be severely restricted. The present invention makes it possible to provide a copper-clad laminate with good hydrochloric acid resistance from a heat-resistant epoxy resin base material using aromatic amines as a curing agent and a rough copper foil surface or a copper foil treated with known chromate on the surface. This is what was done. Now, the present inventors have already applied the general formula
YRSiX 3 (where Y is a functional group that reacts with a polymer,
R represents a bonding group containing a chain or cyclic hydrocarbon that connects Y and a silicon atom, and X represents an organic or inorganic hydrolyzable group bonded to the silicon atom. ) has invented a method that can firmly bond copper foil and a base material by adhering it to a resin base material after treatment with an aqueous solution of one of the known silane coupling agents shown in 1984-162367 (Special Publication No. 15654, 1983)
However, as mentioned above, when ordinary roughened copper foil is adhered to a heat-resistant epoxy resin base material using aromatic amines as a curing agent, the hydrochloric acid resistance of copper-clad laminates is poor. We suspect that the cause may be due to poor adhesion between the base material and the copper foil, and we tested the rough surface of the copper foil or the rough surface that had been previously subjected to a known chromate treatment. I treated it with the silane coupling agent and tried adhering it to the base material. That is, a copper foil rough surface or a copper foil whose surface has been subjected to a known chromate treatment is treated with an aqueous solution of various silane coupling agents, and this is bonded to a heat-resistant epoxy resin base material using an aromatic amine as a hardening agent. We made a large number of copper-clad laminate specimens and measured their hydrochloric acid resistance. As expected, γ-aminopropyltriethoxysilane,
N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, γ-glycosideoxypropyl methoxysilane, β-(3,4 epoxycyclohexyl)ethyltrimethoxysilane, vinyl lutris(β-methoxy ethoxy)silane, etc. It has been confirmed through numerous experiments that the hydrochloric acid resistance of the copper-clad laminate itself can be significantly improved by using copper foil treated with a known silane coupling agent. The present invention has now been completed based on the above experiments. To further explain the present invention, the treatment with the silane coupling agent used in the present invention can be carried out by immersing the rough surface of the copper foil or the rough surface that has been subjected to known chromate treatment in a solution of the agent, or It is sufficient to form a thin film by spraying or roller coating, and a simple method is dipping. Further, in the present invention, there is no need to limit the concentration of the chemicals used, and it is sufficient to use a solution of 0.01 to 1% and simply dry the copper foil after a short treatment at room temperature. In addition, as curing agents for heat-resistant epoxy resin base materials, metaphenylene diamine, diamino diphenylmethane, diamino diphenyl
It can be applied to those using known aromatic amines such as sulfane and 3,3'-dichlorodiamino diphenylmethane. EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples. Examples As a copper foil sample, (A) A copper foil with a thickness of 32 μm obtained by electrolytically roughening the rough surface of a copper foil peeled off from a foil-making roll in a known copper sulfate bath. (B) Two types of copper foils with a thickness of 32μ treated with chromate using a known method were used on the rough surface of the copper foil peeled off from the foil roll, and for sample (A), N-β-
Two types of solutions with concentrations of (aminoethyl)-γ-aminopropyltriethoxysilane of 0.05% and 0.1% were used, and for sample (B), γ-aminopropyltriethoxysilane of 0.05% and 0.1% was used.
% solution, and in each case, the copper foil was immersed in the solution for 1 minute at room temperature, pulled out and dried at room temperature, and then dried for 3 minutes using a dryer maintained at 110 to 120 °C. I went. Next, the rough side of each copper foil treated in this way was layered with a glass/brominated epoxy resin base material using 3,3'-dichloroamino diphenylmethane as a hardening agent at 155°C and a pressure of 100Kg/cm 2 . A 250 mm x 250 mm x 2 mm copper-clad laminate was prototyped using a 30-minute molding condition. Next, the peel strength and hydrochloric acid resistance of the laminate (a copper-clad laminate sample with a circuit width of 0.8 mm was tested with the reagent hydrochloric acid: water =
1:1, the peel strength was determined after immersion at room temperature for 1 hour, and this was expressed as the deterioration rate) and the cyanide deterioration resistance (a copper-clad laminate specimen with a circuit width of 3.2 mm was measured.
The peel strength of a sample immersed in a 10% KCN aqueous solution at 70°C for 30 minutes is determined and expressed as a deterioration rate. ), and conducted the same tests as above on a prototype copper-clad laminate made from blank foil. The results are shown in the table below.

【表】 表から銅箔の粗面またはクロメート処理した
該銅箔粗面を本発明のシランカツプリング剤溶
液で処理後、芳香族アミン類を硬化剤に用いる
ガラスエポキシ樹脂基材と接着した銅張積層板
は、その耐塩酸性について優れた効果を示し、
この種耐熱性エポキシ樹脂基材の適用範囲を著
しく拡げ得ることは明白である。 なお、表記しなかつたが、通常のガラス・エポ
キシ樹脂基材に、ジアミノジフエニル・スルフア
ンを硬化剤として銅箔粗面と接合しても、銅張積
層板としての耐塩酸性を向上することを知り得
た。
[Table] From the table, after treating the rough surface of copper foil or the rough surface of the chromate-treated copper foil with the silane coupling agent solution of the present invention, copper bonded to a glass epoxy resin base material using aromatic amines as a hardening agent. Tensioned laminates exhibit excellent hydrochloric acid resistance,
It is clear that the range of applications of this type of heat-resistant epoxy resin base material can be significantly expanded. Although not stated, it has been shown that even when bonded to a rough surface of copper foil using diaminodiphenyl sulfan as a hardening agent on a regular glass epoxy resin base material, the hydrochloric acid resistance of the copper-clad laminate can be improved. I got to know.

Claims (1)

【特許請求の範囲】[Claims] 1 芳香族アミン類を硬化剤に用いる耐熱性エポ
キシ樹脂基材面に、予じめその粗面または公知の
クロメート処理した該粗面に、一般式YRSiX3
(ここにYは高分子物と反応する官能基、RはY
とケイ素原子とを連結する鎖状または環状の炭化
水素を含む結合基、またXはケイ素原子に結合す
る有機または無機の加水分解性基を表わすもので
ある。)で示される公知のシランカツプリング剤
の薄膜を形成させた銅箔層を設けたことを特徴と
する耐塩酸性銅張積層板。
1. On the surface of a heat-resistant epoxy resin base material using aromatic amines as a curing agent, the general formula YRSiX 3 is applied to the rough surface or the rough surface that has been subjected to known chromate treatment in advance.
(Here, Y is a functional group that reacts with a polymer, R is Y
and a silicon atom, and X represents an organic or inorganic hydrolyzable group bonded to the silicon atom. ) A hydrochloric acid-resistant copper-clad laminate comprising a copper foil layer formed with a thin film of a known silane coupling agent.
JP18107281A 1981-11-13 1981-11-13 Copper-coated laminated board for printed circuit Granted JPS5884488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18107281A JPS5884488A (en) 1981-11-13 1981-11-13 Copper-coated laminated board for printed circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18107281A JPS5884488A (en) 1981-11-13 1981-11-13 Copper-coated laminated board for printed circuit

Publications (2)

Publication Number Publication Date
JPS5884488A JPS5884488A (en) 1983-05-20
JPH0217950B2 true JPH0217950B2 (en) 1990-04-24

Family

ID=16094305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18107281A Granted JPS5884488A (en) 1981-11-13 1981-11-13 Copper-coated laminated board for printed circuit

Country Status (1)

Country Link
JP (1) JPS5884488A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144339A (en) * 1984-12-19 1986-07-02 日立化成工業株式会社 Manufacture of metallic core epoxy-resin copper lined laminated board
JPS6392090A (en) * 1986-10-06 1988-04-22 三井金属鉱業株式会社 Manufacture of multilayer circuit board
JP4572423B2 (en) * 1998-03-17 2010-11-04 日立化成工業株式会社 Method for producing copper-clad laminate, printed wiring board using the same, and multilayer printed wiring board
JP4924326B2 (en) * 2007-09-25 2012-04-25 日立化成工業株式会社 Copper foil for printed wiring boards
JP2008111188A (en) * 2007-09-25 2008-05-15 Hitachi Chem Co Ltd Copper foil for printed circuit board

Also Published As

Publication number Publication date
JPS5884488A (en) 1983-05-20

Similar Documents

Publication Publication Date Title
JPS61168291A (en) Roughing for surface of substrate
JPWO2009054456A1 (en) Method for manufacturing printed wiring board
US5527621A (en) Method for surface treatment of polyimide resin molded articles
JP2008179127A (en) Copper foil laminate and method for treating surface of copper foil
JPH0217950B2 (en)
JPS62243627A (en) Method for roughening organic surface
JP2003221456A (en) Highly adhesive liquid crystal polymer film
JP2003321656A (en) Highly adhesive liquid crystalline polymer film
JPH0454577B2 (en)
JPH114055A (en) Flexible circuit board
WO2001038086A1 (en) Member having metallic layer, its manufacturing method, and its application
JP3586507B2 (en) Surface modification method for polyimide resin
JPH02307294A (en) Copper foil for printed circuit
JPS62273810A (en) Method of treating reinforced synthetic-polymer composite material
JPH09291159A (en) Aromatic polyimide film and laminate
JP5092136B2 (en) Method for forming laminate
JPS6021220A (en) Manufacture of chemical plating laminated sheet
JPS58202583A (en) Substrate for flexible printed circuit board
JPH0217951B2 (en)
JP4890349B2 (en) Method for producing polyimide film
JPH0225779B2 (en)
JPH0221155B2 (en)
JPS5884491A (en) Copper-coated laminated board for printed circuit
JP3779555B2 (en) Method for producing printed circuit board
JPS6124178B2 (en)