JPH0454577B2 - - Google Patents

Info

Publication number
JPH0454577B2
JPH0454577B2 JP59267749A JP26774984A JPH0454577B2 JP H0454577 B2 JPH0454577 B2 JP H0454577B2 JP 59267749 A JP59267749 A JP 59267749A JP 26774984 A JP26774984 A JP 26774984A JP H0454577 B2 JPH0454577 B2 JP H0454577B2
Authority
JP
Japan
Prior art keywords
epoxy resin
copper
plate
clad laminate
metal core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59267749A
Other languages
Japanese (ja)
Other versions
JPS61144339A (en
Inventor
Atsushi Fujioka
Yasuo Myadera
Toshuki Iijima
Akinari Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP59267749A priority Critical patent/JPS61144339A/en
Publication of JPS61144339A publication Critical patent/JPS61144339A/en
Publication of JPH0454577B2 publication Critical patent/JPH0454577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、プリント配線板、ハイブリツドIC
基板、LSI実装用基板に用いられる 放熱性の良
好な金属コアエポキシ樹脂銅張積層板に関するも
のである。 〔従来の技術〕 従来、アルミニウム板、アルマイト板、銅板等
の金属コアの上にエポキシ樹脂、ガラス布基材エ
ポキシ樹脂プリプレグ、ポリイミド樹脂、ガラス
布基材ポリイミド樹脂プリプレグ、両面接着剤付
ポリイミドフイルム等の絶縁樹脂層を介して銅箔
を接着させることにより金属コア銅張積層板が製
造されている。 金属コアと絶縁層の接着力を向上させるため、
種々の検討がなされている。例えば、電電公社電
気通信研究所研究実用化報告Vol.18No.12(1969)
にはアルミニウム板を機械的研摩後、クロム酸系
処理を施すことにより、アルミニウム表面と絶縁
樹脂層との接着力を高めることが記載されてい
る。又実公昭45−25826においてはアルミニウム
板をアルマイト処理する方法が提案され、特公昭
55−12754においてはアルミニウム板をアルカリ
でエツチングあるいは銅板を酢酸系処理する方法
が提案され、特公昭56−17227においては金属板
を機械的粗化する方法が提案されている。 〔本発明が解決しようとする問題点〕 これらの金属コアエポキシ樹脂銅張積層板に
は、種々の処理を施した後の耐熱特性が要求され
ている。例えば、吸湿処理後の半田耐熱性等であ
る。前述の金属板の処理のみでは、常態での金属
板とエポキシ樹脂との接着力は良好であるが、苛
酷な吸湿処理後の半田耐熱性試験では、金属とエ
ポキシ樹脂との間に剥離を生じる場合がある。 本発明者らは絶縁層としてエポキシ樹脂層を用
いた場合、吸湿処理後の半田耐熱性試験におい
て、金属板とエポキシ樹脂との間に剥離が生じな
い様に、接着力を向上させることを目的とし、金
属板の表面処理を種々検討し、本発明にいたつ
た。 〔問題点を解決するための手段〕 本発明の金属コアエポキシ樹脂銅張積層板の製
造方法は金属板を機械的に研摩した後、アミノ系
シランカツプリング剤溶液を塗布し、溶剤を乾燥
処理後、その処理面の上にエポキシ樹脂層を介し
て銅箔を重ね、加熱加圧硬化することを特徴とす
るものである。 次に本発明について更に具体的に説明する。 本発明において使用する金属板としては、アル
ミニウム板、アルマイト板、銅板、ケイ素鋼板、
亜鉛鋼板、鉄ニツケル42アロイ板、アンバー板又
はこれらの金属板同志を貼り合わせたクラツド板
等があり、放熱性、易加工性の点で優れているア
ルミニウム板が好ましい。 金属板を機械的に研摩する方法としては、研摩
紙、研摩布等によるサンデイング、ブラシ研摩、
ボール研摩、サンドプラスト、液体ホーニング、
シヨツトブラスト等の方法がある。 この様な方法で金属板の接着表面を機械的に粗
化した後、残つている研摩剤粉、金属粉を充分に
洗浄する。 本発明において使用するアミノ系シランカツプ
リング剤としてはγ−アミノプロピルトリエトキ
シシラン、γ−アミノプロピルトリメトキシシラ
ン、N−β(アミノエチル)γ−アミノプロピル
トリメトキシシラン、N−β(アミノエチル)γ
−アミノプロピルメチルジメトキシシラン、p−
アミノフエニルトリメトキシシラン、N−フエニ
ル−γ−アミノプロピルトリメトキシシラン等が
ある。好ましくは、γ−アミノプロピルトリエト
キシシランである。 これらのアミノ系シランカツプリング剤を、そ
の濃度が0.01から5.0重量%、好ましくは0.1から
1.0重量%になる様に、水、メタノール、エタノ
ール、トルエン、キシレン等の単独、あるいは混
合溶剤中に溶かし、その溶液を前述の研摩された
金属板に塗布する。塗布法としてはスプレーによ
る塗布、浸漬による塗布等が用いられる。その
後、溶剤を加熱乾燥除去する。この時の温度は50
℃から250℃の範囲が好ましく、更に好ましくは
80℃から200℃である。又、減圧にすることによ
り、常温あるいは常温に近い温度で溶剤を乾燥す
ることも可能である。 本発明に用いられるエポキシ樹脂は1分子あた
り平均で2個以上のエポキシ基を有していればよ
く、特に制限はないが、例えば、ビスフエノール
Aのジグリシジルエーテル型エポキシ樹脂、ブタ
ジエンジエポキシサイド、4,4′−ジ(1,2−
エポキシエチル)ジフエニルエーテル、4,4′−
ジ(エポキシエチル)ジフエニル、レゾルシンの
ジグリシジルエーテル、フロログリシンのジグリ
シジルエーテル、p−アミノフエノールのトリグ
リシジルエーテル、1,3,5−トリ(1,2−
エポキシエチル)ベンゼン、2,2′,4,4′−テ
トラグリシドキシベンゾフエノン、テトラグリシ
ドキシテトラフエニルエタン、フエノールノボラ
ツクのポリグリシジルエーテル、トリメチロール
プロパンのトリグリシジルエーテル、クレゾール
ノボラツクのポリグリシジルエーテル、グリセリ
ンのトリグリシジルエーテル、ハロゲン化ビスフ
エノールAのジグリシジルエーテル型エポキシ樹
脂、ハロゲン化フエノールノボラツクのポリグリ
シジルエーテル、トリグリシジルイソシアヌレー
ト、ビニルシクロヘキセンジオキサイド、3,4
−エポキシシクロヘキシルメチル−3,4−エポ
キシシクロヘキサンカルボキシレート等の脂環式
エポキシ樹脂、ヒダントインエポキシ樹脂等があ
る。 これらのエポキシ樹脂は、通常、硬化剤、硬化
促進剤等を配合したエポキシ樹脂組成物の形で用
いられ、溶剤に溶かしても無溶剤形で使用しても
よい。硬化剤としては、アミン系硬化剤、酸無水
物系硬化剤、フエノール系硬化剤、ポリアミド樹
脂硬化剤、イミダゾール系硬化剤等が用いられ、
特にジシアンジアミドが好ましい。 本発明におけるエポキシ樹脂層としては、基材
にエポキシ樹脂ワニスを含浸させ、溶剤を乾燥除
去したプリプレグを用いてもよく、あるいは、エ
ポキシ樹脂組成物に充填剤等を添加したものを用
いてもよく、あるいは基材、充填剤を含まないの
でエポキシ樹脂組成物のみを用いてもよい。基材
としては、ガラスクロス、ガラスペーパー、紙、
石英繊維クロス、芳香族ポリアミド繊維クロス等
が使用可能である。 又、充填剤としてはベリリア、窒化ホウ素、マ
グネシア、アルミナ、シリカ等の粉末を使用する
ことが可能である。 本発明に使用する銅箔は、一般的には電解銅箔
であるが、圧延銅箔を使用することも可能であ
る。 エポキシ樹脂層がプリプレグの場合は、アミノ
系シランカツプリング剤処理された金属板の片面
あるいは両面にプリプレグを必要枚数重ね、更に
その外側に銅箔を重ね、加熱加圧硬化することに
より、金属コアエポキシ樹脂銅張積層板が得られ
る。 エポキシ樹脂層がエポキシ樹脂組成物単独、あ
るいは充填剤入りのエポキシ樹脂組成物の場合
は、これらのワニスを、銅箔を接着面に、あるい
はアミノ系シランカツプリング剤処理された金属
板の接着面に、あるいはその両方に塗布し、その
後乾燥し、それらを重ね合わせて加熱加圧硬化す
ることにより金属コアエポキシ樹脂銅張積層板が
得られる。 本発明により得られた金属コアエポキシ樹脂銅
張積層板は、常態での金属板とエポキシ樹脂との
接着力のみならず、吸湿処理後の半田耐熱性に優
れている。 以下本発明について実施例をもつて詳細に説明
する。但し、本発明は以下の実施例に限定される
ものではない。 〔実施例〕 実施例 1 本実施例はエポキシ樹脂層にエポキシ樹脂プリ
プレグを用いたアルミコア片面銅張積層板に関す
るものである。 厚さ1.0mmのアルミニウム板の接着面側を、
1200番の研摩紙を用いて、縦方向と横方向に研摩
した後、充分水洗した。このアルミニウム板を、
γ−アミノプロピルトリエトキシシランの0.3%
水溶液に1分間浸漬後、120℃で30分間乾燥を行
なつた。 油化シエル社製ビスフエノールA型エポキシ樹
脂、商品名エピコート1001(軟化点70℃エポキシ
当量490g/eq.)100重量部をメチルエチルケト
ン24重量部に均一に溶解させた溶液に、ジシアン
ジアミド3.0重量部をエチレングリコールモノメ
チルエーテル45重量部に溶解させた溶液を加え、
更に硬化促進剤としてベンジルジメチルアミンを
0.2重量部添加し、樹脂分60重量%のエポキシ樹
脂ワニスAを作製した。このエポキシ樹脂ワニス
Aを日東紡製ガラスクロスG−7010−BZ−2(厚
さ0.1mm)に含浸させた後、塗工温度160℃、塗工
速度3m/minで溶剤除去するため乾燥塗工を行
ない、樹脂分45重量%のプリプレグを得た。 このプレプレグ2枚を、前述の研摩後アミノシ
ランカツプリング剤処理したアルミニウム板の上
に重ね、更にその上に、古河サーキツトフオイル
社製電解銅箔(TAI処理、厚さ35μm)を重ね、
40Kgf/cm2の圧力で170℃2時間加熱加圧硬化し、
アルミニウムコアエポキシ樹脂銅張積層板を得
た。 この積層板の特性の測定結果を表1に示すが、
常態及び吸湿処理後(煮沸1時間)の260℃半田
耐熱性試験で5分フロート後も異常はなく、又、
アルミニウム板と樹脂の接着性に優れ、銅箔引き
はがし強さの値が高かつた。 図面は本発明の製造方法による金属コアエポキ
シ樹脂片面銅張積層板の断面図で1は銅箔、2は
エポキシ樹脂層、3は研摩後アミノ系シランカツ
プリング剤処理した金属板処理面、4は金属板で
ある。 実施例 2 本実施例はエポキシ樹脂層にエポキシ樹脂組織
物を単独使用したアルミニウムコア片面銅張積層
板に関するものである。 実施例1で作製したエポキシ樹脂ワニスAを電
解銅箔(TAI処理、厚さ35μm)の粗化処理面上
にアプリケータを用いて塗布し、160℃10分間乾
燥した。乾燥後の樹脂厚は50μmであつた。 このエポキシ樹脂付銅箔を、実施例1と同様に
研摩後、アミノシランカツプリング剤処理したア
ルミニウム板の上で重ね、40Kgf/cm2の圧力で、
170℃2時間加熱加圧硬化を行ない、アルミニウ
ムコアエポキシ樹脂片面銅張積層板を得た。 この積層板の特性の測定結果を表1に示すが、
常態及び吸湿処理後(煮沸1時間)の260℃半田
耐熱性試験で5分フロート後も異常はなく、又、
アルミニウム板と樹脂の接着性に優れ、銅箔引き
はがし強さの値が高かつた。 比較例 1 アルミニウム板を無処理のまま使用する以外は
実施例1と同様にしてアルミニウムコアエポキシ
樹脂銅張積層板を作製した。特性を表1に示す
が、常態及び吸湿処理後(煮沸1時間)の半田耐
性熱試験においていずれも1分フロート後アルミ
ニウム板とエポキシ樹脂との界面で剥離が生じて
いた。 比較例 2 アルミニウム板に研摩処理のみ行なつて(シラ
ンカツプリング剤処理は行なわないで)使用する
以外は実施例1と同様にしてアルミニウムコアエ
ポキシ樹脂銅張積層板を作製した。特性を表1に
示すが、常態の半田耐熱性試験では3分フロート
後アルミニウム板とエポキシ樹脂の界面で剥離が
生じ、吸湿処理後(煮沸1時間)の半田耐熱性試
験においては1分フロート後、アルミニウム板と
エポキシ樹脂との界面で剥離が生じていた。 比較例 3 アルミニウム板に研摩処理は行なわないで、シ
ランカツプリング剤処理のみ行なつて、使用する
以外は実施例1と同様にしてアルミニウムコアエ
ポキシ樹脂銅張積層板を作製した。特性を表1に
示すが、常態及び吸湿処理後(煮沸1時間)の半
田耐熱性試験において、いずれも1分フロート
後、アルミニウム板とエポキシ樹脂の界面で剥離
が生じていた。 実施例 3 実施例1で作製したアルミニウムコアエポキシ
樹脂銅張積層板のアルミニウムの部分を、その厚
さが70μmになるまで削り取つた。そしてアルミ
ニウムとエポキシ樹脂との接着強度を測定するた
め、JIS−C−6481に準拠してアルミニウム箔の
引きはがし強さを測定した結果2.2Kgf/cmの値
であり、非常に高い接着強度であつた。 比較例 4 厚さ1.0mmの銅板の接着面側を、硫酸銅浴で電
解粗化し、さらにその表面をγ−アミノプロピル
トリエトキシシランの0.3%水溶液に1分間浸漬
後、120℃で30分間乾燥した。この銅板を用いて
実施例1と同様にして銅コアエポキシ樹脂銅張積
層板を作製した。その特性を測定した結果、常態
の5分間フロート後異常なかつたが、吸湿処理
(煮沸1時間)の半田耐熱性試験では、1分フロ
ート後銅板とエポキシ樹脂との界面で剥離が生じ
ていた。また、この銅コアエポキシ樹脂銅張積層
板を用いて、実施例3と同様にして銅板を厚さ
70μmになるまで削り取つた。そして、この銅の
引きはがし強さを測定した結果、1.4Kgf/cmの
値であり、接着強度は実施例3に比べ低い値であ
つた。 実施例 4 実施例2において作製したアルミニウムコアエ
ポキシ樹脂銅張積層板を用い、吸湿処理後の特性
を測定した。結果を表2に示すが、120℃のプレ
ツシヤークツカテスト(PCT)4時間処理後で
も、アルミニウムコアとエポキシ樹脂の間に剥離
は生じていなかつた。又、上記試験片を吸湿処理
後(煮沸5分及び30分後)300℃の半田耐熱性試
験で1分フロート後も異常はなく、吸湿後の半田
耐熱性に優れていた。 比較例 5〜14 アルミニウム板の接着面側に、表2に示した各
種表面処理を施した。このアルミニウム板を用
い、実施例2と同様にしてアルミニウムコアエポ
キシ樹脂銅張積層板を作製した。これら積層板の
吸湿処理後の特性を表2に示す。通常の表面処理
(比較例5〜11)では、プレツシヤークツカテス
トだけでは異常のない表面処理もあるが、煮沸吸
湿処理後の半田耐熱性が著しく劣つていた。ま
た、シランカツプリング剤がアミノ系以外のエポ
キシ系、ビニル系、メタクリル系のシランカツプ
リング剤を用いた場合(比較例12〜14)も、やは
り煮沸吸湿処理後の半田耐熱性に劣つていた。 以上説明した様に、従来知られている金属板の
表面処理法では、吸湿処理後の半田フロート処理
において、金属板とエポキシ樹脂の間に剥離が生
じてしまうのに対し、本発明の機械的研磨後アミ
ノ系シランカツプリング剤で処理することによ
り、吸湿処理後の半田耐熱性が顕著に改善され
る。
[Industrial Application Field] The present invention is applicable to printed wiring boards, hybrid ICs,
The present invention relates to metal core epoxy resin copper-clad laminates with good heat dissipation properties used for circuit boards and LSI mounting boards. [Prior art] Conventionally, epoxy resin, glass cloth-based epoxy resin prepreg, polyimide resin, glass cloth-based polyimide resin prepreg, polyimide film with double-sided adhesive, etc. have been applied on a metal core such as an aluminum plate, anodized aluminum plate, or copper plate. A metal core copper clad laminate is manufactured by bonding copper foil through an insulating resin layer. To improve the adhesion between the metal core and the insulation layer,
Various studies have been made. For example, Research and Practical Application Report Vol. 18 No. 12 (1969)
describes that the adhesion between the aluminum surface and the insulating resin layer can be increased by mechanically polishing the aluminum plate and then subjecting it to a chromic acid treatment. In addition, in 1982-25826, a method of alumite treatment of aluminum plates was proposed;
55-12754 proposes a method of etching an aluminum plate with an alkali or treating a copper plate with an acetic acid system, and Japanese Patent Publication No. 56-17227 proposes a method of mechanically roughening a metal plate. [Problems to be Solved by the Invention] These metal core epoxy resin copper-clad laminates are required to have heat resistance properties after being subjected to various treatments. For example, solder heat resistance after moisture absorption treatment, etc. When the metal plate is treated as described above, the adhesion between the metal plate and the epoxy resin is good under normal conditions, but in the solder heat resistance test after the severe moisture absorption treatment, separation occurs between the metal and the epoxy resin. There are cases. The purpose of the present inventors is to improve the adhesive strength so that when an epoxy resin layer is used as an insulating layer, no peeling occurs between the metal plate and the epoxy resin in a soldering heat resistance test after moisture absorption treatment. Therefore, various surface treatments for metal plates were investigated, and the present invention was arrived at. [Means for solving the problem] The method for producing a metal core epoxy resin copper-clad laminate of the present invention includes mechanically polishing a metal plate, applying an amino-based silane coupling agent solution, and drying the solvent. After that, a copper foil is placed on the treated surface with an epoxy resin layer interposed therebetween and cured under heat and pressure. Next, the present invention will be explained in more detail. Metal plates used in the present invention include aluminum plates, alumite plates, copper plates, silicon steel plates,
Examples include galvanized steel plates, iron-nickel 42 alloy plates, amber plates, and clad plates made by bonding these metal plates together. Aluminum plates are preferred because of their excellent heat dissipation and ease of workability. Methods for mechanically polishing metal plates include sanding with abrasive paper, polishing cloth, etc., brush polishing,
ball polishing, sandplast, liquid honing,
There are methods such as shot blasting. After the adhesive surface of the metal plate is mechanically roughened by such a method, the remaining abrasive powder and metal powder are thoroughly washed away. The amino-based silane coupling agents used in the present invention include γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β(aminoethyl)γ-aminopropyltrimethoxysilane, and N-β(aminoethyltrimethoxysilane). )γ
-aminopropylmethyldimethoxysilane, p-
Examples include aminophenyltrimethoxysilane and N-phenyl-γ-aminopropyltrimethoxysilane. Preferred is γ-aminopropyltriethoxysilane. These amino-based silane coupling agents have a concentration of 0.01 to 5.0% by weight, preferably 0.1 to 5.0% by weight.
It is dissolved in a single or mixed solvent such as water, methanol, ethanol, toluene, xylene, etc. to a concentration of 1.0% by weight, and the solution is applied to the polished metal plate described above. As a coating method, spray coating, dipping coating, etc. are used. Thereafter, the solvent is removed by heating and drying. The temperature at this time is 50
The temperature range is preferably from ℃ to 250℃, more preferably
The temperature ranges from 80℃ to 200℃. Further, by applying reduced pressure, it is also possible to dry the solvent at room temperature or a temperature close to room temperature. The epoxy resin used in the present invention is not particularly limited as long as it has two or more epoxy groups on average per molecule, but examples include diglycidyl ether type epoxy resin of bisphenol A, butadiene diepoxide , 4,4′-di(1,2-
epoxyethyl) diphenyl ether, 4,4'-
Di(epoxyethyl) diphenyl, diglycidyl ether of resorcinol, diglycidyl ether of phloroglycin, triglycidyl ether of p-aminophenol, 1,3,5-tri(1,2-
epoxyethyl)benzene, 2,2',4,4'-tetraglycidoxybenzophenone, tetraglycidoxytetraphenylethane, polyglycidyl ether of phenol novolak, triglycidyl ether of trimethylolpropane, cresol novolak Polyglycidyl ether of glycerin, triglycidyl ether of glycerin, diglycidyl ether type epoxy resin of halogenated bisphenol A, polyglycidyl ether of halogenated phenol novolak, triglycidyl isocyanurate, vinyl cyclohexene dioxide, 3,4
-Alicyclic epoxy resins such as -epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, hydantoin epoxy resins, and the like. These epoxy resins are usually used in the form of an epoxy resin composition containing a curing agent, curing accelerator, etc., and may be used either dissolved in a solvent or in a solvent-free form. As the curing agent, an amine curing agent, an acid anhydride curing agent, a phenol curing agent, a polyamide resin curing agent, an imidazole curing agent, etc. are used.
Particularly preferred is dicyandiamide. As the epoxy resin layer in the present invention, a prepreg obtained by impregnating a base material with an epoxy resin varnish and drying the solvent may be used, or an epoxy resin composition containing a filler or the like may be used. Alternatively, only the epoxy resin composition may be used since it does not contain a base material or filler. Base materials include glass cloth, glass paper, paper,
Quartz fiber cloth, aromatic polyamide fiber cloth, etc. can be used. Further, as the filler, it is possible to use powders such as beryllia, boron nitride, magnesia, alumina, and silica. The copper foil used in the present invention is generally an electrolytic copper foil, but it is also possible to use a rolled copper foil. When the epoxy resin layer is prepreg, the required number of prepregs are layered on one or both sides of a metal plate treated with an amino-based silane coupling agent, and then copper foil is layered on the outside, and the metal core is cured by heating and pressure. An epoxy resin copper-clad laminate is obtained. If the epoxy resin layer is an epoxy resin composition alone or an epoxy resin composition containing a filler, apply these varnishes to the adhesive surface of copper foil or the adhesive surface of a metal plate treated with an amino-based silane coupling agent. A metal core epoxy resin copper-clad laminate can be obtained by applying the resin to one or both of them, then drying them, overlapping them, and curing them under heat and pressure. The metal core epoxy resin copper-clad laminate obtained by the present invention has excellent adhesive strength between the metal plate and the epoxy resin under normal conditions as well as solder heat resistance after moisture absorption treatment. The present invention will be described in detail below using examples. However, the present invention is not limited to the following examples. [Examples] Example 1 This example relates to an aluminum core single-sided copper-clad laminate using an epoxy resin prepreg for the epoxy resin layer. The adhesive side of the 1.0mm thick aluminum plate,
After sanding in the vertical and horizontal directions using 1200-grit abrasive paper, it was thoroughly washed with water. This aluminum plate
0.3% of γ-aminopropyltriethoxysilane
After being immersed in the aqueous solution for 1 minute, it was dried at 120°C for 30 minutes. 3.0 parts by weight of dicyandiamide was added to a solution in which 100 parts by weight of bisphenol A type epoxy resin manufactured by Yuka Ciel Co., Ltd., trade name Epicote 1001 (softening point: 70°C, epoxy equivalent: 490 g/eq.) was uniformly dissolved in 24 parts by weight of methyl ethyl ketone. Add a solution dissolved in 45 parts by weight of ethylene glycol monomethyl ether,
Furthermore, benzyldimethylamine is added as a curing accelerator.
Epoxy resin varnish A with a resin content of 60% by weight was prepared by adding 0.2 parts by weight. After impregnating Nittobo glass cloth G-7010-BZ-2 (thickness 0.1 mm) with this epoxy resin varnish A, dry coating was applied at a coating temperature of 160°C and a coating speed of 3 m/min to remove the solvent. A prepreg with a resin content of 45% by weight was obtained. These two prepregs were stacked on the aluminum plate treated with the aminosilane coupling agent after polishing, and on top of that, an electrolytic copper foil (TAI treated, 35 μm thick) manufactured by Furukawa Circuits Oil Co., Ltd. was stacked.
Heat and pressure harden at 170℃ for 2 hours at a pressure of 40Kgf/ cm2 ,
An aluminum core epoxy resin copper-clad laminate was obtained. Table 1 shows the measurement results of the properties of this laminate.
In the 260℃ soldering heat resistance test under normal conditions and after moisture absorption treatment (boiling for 1 hour), there was no abnormality after floating for 5 minutes.
It has excellent adhesion between the aluminum plate and the resin, and has a high copper foil peel strength value. The drawing is a cross-sectional view of a metal core epoxy resin single-sided copper-clad laminate manufactured by the manufacturing method of the present invention, in which 1 is a copper foil, 2 is an epoxy resin layer, 3 is a treated surface of a metal plate treated with an amino-based silane coupling agent after polishing, and 4 is a metal plate. Example 2 This example relates to an aluminum core single-sided copper-clad laminate in which an epoxy resin structure is used alone in the epoxy resin layer. Epoxy resin varnish A prepared in Example 1 was applied onto the roughened surface of electrolytic copper foil (TAI treated, thickness 35 μm) using an applicator and dried at 160° C. for 10 minutes. The resin thickness after drying was 50 μm. After polishing this epoxy resin-coated copper foil in the same manner as in Example 1, it was stacked on an aluminum plate treated with an aminosilane coupling agent, and then heated at a pressure of 40 kgf/cm 2 .
Heat and pressure curing was performed at 170° C. for 2 hours to obtain an aluminum core epoxy resin single-sided copper-clad laminate. Table 1 shows the measurement results of the properties of this laminate.
In the 260℃ soldering heat resistance test under normal conditions and after moisture absorption treatment (boiling for 1 hour), there was no abnormality after floating for 5 minutes.
It has excellent adhesion between the aluminum plate and the resin, and has a high copper foil peel strength value. Comparative Example 1 An aluminum core epoxy resin copper-clad laminate was produced in the same manner as in Example 1 except that the aluminum plate was used without treatment. The properties are shown in Table 1, and in both the solder resistance heat test under normal conditions and after moisture absorption treatment (boiling for 1 hour), peeling occurred at the interface between the aluminum plate and the epoxy resin after floating for 1 minute. Comparative Example 2 An aluminum core epoxy resin copper-clad laminate was produced in the same manner as in Example 1, except that the aluminum plate was only subjected to polishing treatment (without silane coupling agent treatment). The characteristics are shown in Table 1. In the normal soldering heat resistance test, peeling occurred at the interface between the aluminum plate and the epoxy resin after 3 minutes of floating, and in the soldering heat resistance test after moisture absorption treatment (1 hour of boiling), after 1 minute of floating. , peeling occurred at the interface between the aluminum plate and the epoxy resin. Comparative Example 3 An aluminum core epoxy resin copper-clad laminate was produced in the same manner as in Example 1, except that the aluminum plate was not subjected to polishing treatment but only treated with a silane coupling agent. The properties are shown in Table 1, and in the solder heat resistance tests under normal conditions and after moisture absorption treatment (boiling for 1 hour), peeling occurred at the interface between the aluminum plate and the epoxy resin after floating for 1 minute. Example 3 The aluminum portion of the aluminum core epoxy resin copper-clad laminate produced in Example 1 was shaved off to a thickness of 70 μm. In order to measure the adhesive strength between aluminum and epoxy resin, we measured the peeling strength of aluminum foil in accordance with JIS-C-6481 and found a value of 2.2 kgf/cm, which is an extremely high adhesive strength. Ta. Comparative Example 4 The adhesive side of a 1.0 mm thick copper plate was electrolytically roughened in a copper sulfate bath, and the surface was further immersed in a 0.3% aqueous solution of γ-aminopropyltriethoxysilane for 1 minute, and then dried at 120°C for 30 minutes. did. Using this copper plate, a copper core epoxy resin copper-clad laminate was produced in the same manner as in Example 1. As a result of measuring its characteristics, there was no abnormality after a normal 5-minute float, but in a soldering heat resistance test with moisture absorption treatment (boiling for 1 hour), peeling occurred at the interface between the copper plate and the epoxy resin after a 1-minute float. In addition, using this copper core epoxy resin copper clad laminate, the thickness of the copper plate was increased in the same manner as in Example 3.
I scraped it off until it was 70μm. As a result of measuring the peel strength of this copper, the value was 1.4 Kgf/cm, which was a lower value than the adhesive strength of Example 3. Example 4 Using the aluminum core epoxy resin copper-clad laminate produced in Example 2, the characteristics after moisture absorption treatment were measured. The results are shown in Table 2, and even after 4 hours of pressure test (PCT) treatment at 120°C, no peeling occurred between the aluminum core and the epoxy resin. Furthermore, after moisture absorption treatment (after 5 and 30 minutes of boiling), the above test piece was subjected to a soldering heat resistance test at 300°C, with no abnormalities observed even after floating for 1 minute, and the soldering heat resistance after moisture absorption was excellent. Comparative Examples 5 to 14 Various surface treatments shown in Table 2 were applied to the adhesive side of the aluminum plate. Using this aluminum plate, an aluminum core epoxy resin copper-clad laminate was produced in the same manner as in Example 2. Table 2 shows the properties of these laminates after moisture absorption treatment. In the conventional surface treatments (Comparative Examples 5 to 11), although some surface treatments showed no abnormality in the pressure test alone, the soldering heat resistance after the boiling moisture absorption treatment was significantly inferior. In addition, when epoxy-based, vinyl-based, or methacrylic-based silane coupling agents other than amino-based silane coupling agents are used (Comparative Examples 12 to 14), the soldering heat resistance after boiling moisture absorption treatment is still inferior. Ta. As explained above, in conventional surface treatment methods for metal plates, peeling occurs between the metal plate and the epoxy resin during the solder float treatment after moisture absorption treatment, whereas the mechanical treatment method of the present invention By treating with an amino-based silane coupling agent after polishing, the soldering heat resistance after moisture absorption treatment is significantly improved.

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上、説明してきた様に、本発明の製造方法に
よると、常態及び吸湿処理後の半田耐熱性に優
れ、金属板とエポキシ樹脂との接着性に優れ、銅
箔引きはがし強さの値が高い金属コアエポキシ樹
脂銅張積層板が製造でき、その工業的価値は大で
ある。
As explained above, according to the manufacturing method of the present invention, it has excellent soldering heat resistance under normal conditions and after moisture absorption treatment, excellent adhesion between metal plates and epoxy resin, and high copper foil peel strength. Metal core epoxy resin copper-clad laminates can be produced, and their industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の製造方法による金属コアエポキ
シ樹脂片面銅張積層板の断面図である。 符号の説明、1……銅箔、2……エポキシ樹脂
層、3……金属板処理面、4……金属板。
The drawing is a sectional view of a metal core epoxy resin single-sided copper-clad laminate manufactured by the manufacturing method of the present invention. Explanation of symbols: 1...Copper foil, 2...Epoxy resin layer, 3...Metal plate treated surface, 4...Metal plate.

Claims (1)

【特許請求の範囲】 1 金属板を機械的に研摩した後、アミノ系シラ
ンカツプリング剤溶液を塗布し、溶剤を乾燥処理
後、その処理面の上にエポキシ樹脂層を介して銅
箔を重ね、加熱加圧硬化することを特徴とする金
属コアエポキシ樹脂銅張積層板の製造方法。 2 アミノ系シランカツプリング剤が、γ−アミ
ノプロピルトリエトキシシラン、γ−アミノプロ
ピルトリメトキシシラン、N−β(アミノエチル)
γ−アミノプロピルトリメトキシシラン、N−β
(アミノエチル)γ−アミノプロピルメチルジメ
トキシシラン、p−アミノフエニルトリメトキシ
シラン、N−フエニル−γ−アミノプロピルトリ
メトキシシラン、又はこれらの混合物であること
を特徴とする特許請求の範囲第1項に記載された
金属コアエポキシ樹脂銅張積層板の製造方法。 3 エポキシ樹脂が、ガラス布基材エポキシ樹脂
プリプレグであることを特徴とする特許請求の範
囲第1項に記載された金属コアエポキシ樹脂銅張
積層板の製造方法。 4 エポキシ樹脂層がエポキシ樹脂のみであるこ
とを特徴とする特許請求の範囲第1項に記載され
た金属コアエポキシ樹脂銅張積層板の製造方法。 5 金属板が、アルミニウム板、アルマイト板、
銅板、ケイ素鋼板、亜鉛鋼板、鉄−ニツケル42ア
ロイ板、アンバー板、又はこれらのクラツド板で
あることを特徴とする特許請求の範囲第1項に記
載された金属コアエポキシ樹脂銅張積層板の製造
方法。
[Claims] 1. After mechanically polishing a metal plate, an amino-based silane coupling agent solution is applied, and after the solvent is dried, a copper foil is placed on the treated surface with an epoxy resin layer interposed therebetween. A method for producing a metal core epoxy resin copper-clad laminate, characterized by curing under heat and pressure. 2 The amino-based silane coupling agent is γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, N-β (aminoethyl)
γ-aminopropyltrimethoxysilane, N-β
(Aminoethyl)γ-aminopropylmethyldimethoxysilane, p-aminophenyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, or a mixture thereof, Claim 1 A method for manufacturing a metal core epoxy resin copper-clad laminate described in Section 1. 3. The method for manufacturing a metal core epoxy resin copper-clad laminate according to claim 1, wherein the epoxy resin is a glass cloth base epoxy resin prepreg. 4. The method for manufacturing a metal core epoxy resin copper-clad laminate according to claim 1, wherein the epoxy resin layer is made of only epoxy resin. 5 The metal plate is an aluminum plate, an alumite plate,
The metal core epoxy resin copper-clad laminate described in claim 1, which is a copper plate, a silicon steel plate, a zinc steel plate, an iron-nickel 42 alloy plate, an amber plate, or a clad plate thereof. Production method.
JP59267749A 1984-12-19 1984-12-19 Manufacture of metallic core epoxy-resin copper lined laminated board Granted JPS61144339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267749A JPS61144339A (en) 1984-12-19 1984-12-19 Manufacture of metallic core epoxy-resin copper lined laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267749A JPS61144339A (en) 1984-12-19 1984-12-19 Manufacture of metallic core epoxy-resin copper lined laminated board

Publications (2)

Publication Number Publication Date
JPS61144339A JPS61144339A (en) 1986-07-02
JPH0454577B2 true JPH0454577B2 (en) 1992-08-31

Family

ID=17449039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267749A Granted JPS61144339A (en) 1984-12-19 1984-12-19 Manufacture of metallic core epoxy-resin copper lined laminated board

Country Status (1)

Country Link
JP (1) JPS61144339A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147636A (en) * 1986-12-11 1988-06-20 日立化成工業株式会社 Manufacture of silicon steel-plate base copper-clad laminated plate
JP2734345B2 (en) * 1993-08-24 1998-03-30 新神戸電機株式会社 Method for producing glass fiber nonwoven fabric for laminate and method for producing laminate
EP2489504B1 (en) 2009-10-16 2016-02-17 Aisin Seiki Kabushiki Kaisha Composite molded article
US9333454B2 (en) 2011-01-21 2016-05-10 International Business Machines Corporation Silicone-based chemical filter and silicone-based chemical bath for removing sulfur contaminants
US8900491B2 (en) 2011-05-06 2014-12-02 International Business Machines Corporation Flame retardant filler
US9186641B2 (en) 2011-08-05 2015-11-17 International Business Machines Corporation Microcapsules adapted to rupture in a magnetic field to enable easy removal of one substrate from another for enhanced reworkability
US8741804B2 (en) 2011-10-28 2014-06-03 International Business Machines Corporation Microcapsules adapted to rupture in a magnetic field
US9716055B2 (en) 2012-06-13 2017-07-25 International Business Machines Corporation Thermal interface material (TIM) with thermally conductive integrated release layer
EP4039447A4 (en) * 2019-10-02 2023-11-22 Toyobo Co., Ltd. Apparatus for manufacturing laminate and method for manufacturing laminate
KR102428824B1 (en) * 2019-12-11 2022-08-02 주식회사 포스코 Metal-plastic composite material and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884488A (en) * 1981-11-13 1983-05-20 日本電解株式会社 Copper-coated laminated board for printed circuit
JPS5896660A (en) * 1981-12-03 1983-06-08 Mitsubishi Chem Ind Ltd Powder coating compound composition of epoxy resin for insulating metal core circuit base

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884488A (en) * 1981-11-13 1983-05-20 日本電解株式会社 Copper-coated laminated board for printed circuit
JPS5896660A (en) * 1981-12-03 1983-06-08 Mitsubishi Chem Ind Ltd Powder coating compound composition of epoxy resin for insulating metal core circuit base

Also Published As

Publication number Publication date
JPS61144339A (en) 1986-07-02

Similar Documents

Publication Publication Date Title
US3984598A (en) Metal-clad laminates
EP0637902A1 (en) Metallic foil with adhesion promoting layer
JPH0454577B2 (en)
GB1583544A (en) Metal-clad laminates
JPS61265894A (en) Making of electrically insulated substrate material for manufacture of drilled through hole plated printed circuit panel
JPH10317159A (en) Copper foil for printed circuit
JP2693005B2 (en) Metal core substrate and manufacturing method thereof
KR101362288B1 (en) Copper foil with primer resin layer, copper-clad laminate comprising the copper foil for a printed circuit board, preparation method of the copper foil, and primer resin composition used for the copper foil
JPH0225779B2 (en)
JP2512762B2 (en) Multilayer printed wiring board
JPH03111464A (en) Thermosetting resin adhesive for printed wiring board
JPH03249274A (en) Glass fiber substrate and glass-fiber reinforced resin laminated board using the same glass fiber substrate as reinforcing material
EP0135674B1 (en) Production of metal surface-laminated sheet
JPH03255185A (en) Adhesive for printed wiring board made by the additive process
JPH02307294A (en) Copper foil for printed circuit
JP2945129B2 (en) Wiring board
JPS62227723A (en) Manufacture of metal core laminated sheet
JP3514809B2 (en) Copper foil surface treating agent and copper-clad laminate using the same
JPH04314391A (en) Adhesive for fabricating printed circuit board by additive process
JP4330865B2 (en) Chemically treated copper foil and method for producing the same
JP2008111188A (en) Copper foil for printed circuit board
JP4618969B2 (en) Manufacturing method of multilayer printed wiring board
JPH07138794A (en) Copper foil having zinc-silica multiple coating film and its production
JPH02308595A (en) Epoxy resin multilayer copper coated laminated board
JPH023484A (en) Adhesive for electroless plating and substrate