JPH0217946B2 - - Google Patents

Info

Publication number
JPH0217946B2
JPH0217946B2 JP23682085A JP23682085A JPH0217946B2 JP H0217946 B2 JPH0217946 B2 JP H0217946B2 JP 23682085 A JP23682085 A JP 23682085A JP 23682085 A JP23682085 A JP 23682085A JP H0217946 B2 JPH0217946 B2 JP H0217946B2
Authority
JP
Japan
Prior art keywords
copper foil
roughened
rolled copper
aluminum
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23682085A
Other languages
Japanese (ja)
Other versions
JPS62136092A (en
Inventor
Osao Kamata
Masanari Watase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Hitachi Cable Ltd
Original Assignee
Arkray Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkray Inc, Hitachi Cable Ltd filed Critical Arkray Inc
Priority to JP23682085A priority Critical patent/JPS62136092A/en
Publication of JPS62136092A publication Critical patent/JPS62136092A/en
Publication of JPH0217946B2 publication Critical patent/JPH0217946B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、プリント配線回路に使用される金属
箔に関するものである。 [従来の技術] プリント配線回路用に使用される金属箔として
は、ここ数十年一貫して含銅イオン溶液からの電
着によるいわゆる電解銅箔が使用されてきてい
る。一方、近年、フイルムキヤリアあるいはフレ
キシブルプリント回路(FPC)の進歩に伴つて、
可撓性に著しく欠ける電解銅箔は忌避され、圧延
銅箔の必要性が急速にクローズアツプされてきて
いる。 しかし、圧延銅箔はその表面がきわめて平滑で
且つ表面に発生する酸化膜と母材との接合力が脆
弱であるため接着性に著しく欠け、そのままでは
硬質、可撓性いずれのプリント配線回路基板にも
実用化は不可能である。 このため、圧延銅箔を電解液中に導いて交流給
電して表面を粗化する交流エツチング法、あるい
は圧延銅箔表面に銅を粗粒状にめつきして表面を
粗化する電着法が採用され、接着力を保持してい
る現状である。 さらに、圧延銅箔の保管安定性を保ち、かつ絶
縁体基板と積層一体化するときの高温による変色
を防止するめ、亜鉛/クロムめつきを施すのが一
般的である。 [発明が解決しようとする問題点] 上記した圧延銅箔の交流エツチングあるいは電
着による粗化処理は、永年産業界で主流をなして
いる電解銅箔に比べて粗化深さが浅く均一である
ため、サイドエツチングの防止という観点から微
細回路を形成できる利点はあるが、反面接着力で
若干劣る欠点がある。 また、表面を粗化処理した銅箔に限つたことで
はないが、亜鉛/クロムめつきは、夏期の高温多
湿の雰囲気中で保管中に部分的に剥離を起こす
が、銅の拡散によつて変色を起こし、商品として
無価値になることがしばしば起こる。 本発明は上記に基づいてなされたものであつ
て、絶縁体基材との接着力を向上でき、しかも保
管時における変色を防止できるプリント配線回路
用金属箔の提供を目的とするものである。 [問題点を解決するための手段] 本発明のプリント配線回路用金属箔は、電解液
中での交流給電によるエツチング等により片面ま
たは両面が粗化されている圧延銅箔の粗化面また
は粗化面と非粗化面に気相めつき法によつて200
Å以上の厚さのアルミニウム薄膜を形成してなる
ことを特徴とするものである。 金属銅が接着力を著しく欠く原因は、母金属と
その表面に必然的に発生する酸化銅膜の接合力が
きわめて低いためで、従来の電解銅箔も含めて銅
箔の表面粗化の目的は表面積を拡げて接着剤の投
錨効果を期待するものである。 一方、アルミニウムはその酸化膜と母金属との
接合力はきわめて強固であり、従つて接着剤によ
る積層接着強度もきわめて大きくなり、圧延銅箔
の粗化面にアルミニウム薄膜を形成すれば接着強
度の増加が期待される。 また、アルミニウムはその表面に発生する強固
な酸化アルミニウムのバリア層が湿気などの腐食
性気体浸透を阻止するため、これを銅箔表面に形
成することにり保管時における銅箔の変色のみな
らず、高温下での酸化変色をも防止することが期
待される。 ただ、イオン化傾向の違いによつて銅箔上に直
接アルミニウム被膜を電気化学的にめつきするこ
とは不可能であり、発明者等は気相めつき(イオ
ン蒸着)法によるアルミニウム薄膜形成法を採用
した。 この場合、アルミニウム薄膜の厚さは、200Å
以上でないと十分な接着効果および変色防止効果
が得られない。 アルミニウム薄膜は、圧延銅箔が片面のみ粗化
されている場合には、粗化面のみに形成してもよ
く、また、粗化面と非粗化面の双方面に形成して
もよい。 [実施例] 第1図は本発明の金属箔の一実施例を示したも
ので、1は表面を粗化処理した圧延銅箔、2およ
び3は気相めつき法により形成したアルミニウム
層である。 第2図は交流エツチングにより圧延銅箔表面を
粗化処理する装置の一例を概略的に示したもので
ある。4は圧延銅箔、5および6は案内ローラ、
7は電極、8は槽、9は電解液、10は交流電源
である。 塩酸、硫酸、硝酸等の電解液9中に設けられた
電極7に交流を給電し、この間を圧延銅箔4を走
行させ、その後酸洗いおよび乾燥後の後処理を行
うことにより、表面に無数の微細孔を有する表面
粗化圧延銅箔1が得られる。 第3図は表面粗化圧延銅箔1に気相めつき法に
よりアルミニウム層を形成する装置の一例を概略
的に示したものである。 11は筐体であり、内部と外部とを遮断するよ
うになつている。12は銅箔1の送り出し部、1
3はめつきを施した銅箔の巻き取り部である。1
4は蒸着用アルミニウム、15はるつぼ、16は
高周波電源、17は高周波コイルである。 筐体11の内部にはアルゴンガスが約4×
10-4Torrの圧力を保持するように封入され、銅
箔1は約−1600Vのバイアス電圧が印加された状
態で送り出し部12から巻き取り部13に向かつ
て連続的に移動するようになつている。 電源16から13.56MHz、400Wの高周波出力を
コイル17に供給することにより、銅箔1にアル
ミニウムがめつきされることになる。 銅箔1の両面に気相めつきをするには、銅箔1
の面を反転して行えばよい。 第1表は、厚さ35μmの圧延銅箔を交流エツチ
ングにより表面を粗化処理し、その粗化面に約
200Åと約800Åの厚さのアルミニウム層を気相め
つきによつて形成したもの、および同じ圧延銅箔
の粗化面に通常の電気化学めつき法で約500Åの
厚さの亜鉛/クロム(対比3:1)めつきを形成
したものについて、紙/フエノール基板への接着
強度を評価した結果を示したものである。 第2表は、35μmの厚さの圧延銅箔表面に約
200Å、約500Å、約800Åの厚さのアルミニウム
層を気相めつきにより形成したもの、および弾常
の電気化学めつき法で約500Åの厚さの亜鉛/ク
ロム(対比3:1)めつきを形成したものについ
て、180℃大気中での変色の度合いを比較したも
のである。
[Industrial Field of Application] The present invention relates to metal foil used in printed wiring circuits. [Prior Art] As metal foils used for printed wiring circuits, so-called electrolytic copper foils formed by electrodeposition from copper-containing ion solutions have been used consistently for the past few decades. On the other hand, in recent years, with the advancement of film carriers or flexible printed circuits (FPC),
Electrolytic copper foil, which is extremely lacking in flexibility, is being avoided, and the need for rolled copper foil is rapidly becoming more important. However, the surface of rolled copper foil is extremely smooth, and the bonding strength between the oxide film generated on the surface and the base material is weak, so it lacks adhesion. However, it is impossible to put it into practical use. For this reason, the AC etching method, in which the rolled copper foil is introduced into an electrolytic solution and supplied with AC power to roughen the surface, or the electrodeposition method, in which the surface of the rolled copper foil is plated with coarse copper particles to roughen the surface, is used. Currently, it has been adopted and maintains adhesive strength. Furthermore, in order to maintain storage stability of rolled copper foil and prevent discoloration due to high temperatures when laminated and integrated with an insulating substrate, zinc/chrome plating is generally applied. [Problems to be solved by the invention] The roughening treatment of rolled copper foil by AC etching or electrodeposition described above has a shallower and more uniform roughening depth than electrolytic copper foil, which has been the mainstream in the industry for many years. Therefore, it has the advantage of being able to form fine circuits from the viewpoint of preventing side etching, but it has the disadvantage of being slightly inferior in adhesive strength on the opposite side. In addition, although this is not limited to copper foil with a roughened surface, zinc/chrome plating may partially peel off during storage in a hot and humid atmosphere during the summer, but due to the diffusion of copper, It often causes discoloration and becomes worthless as a product. The present invention has been made based on the above, and aims to provide a metal foil for printed wiring circuits that can improve adhesive strength to an insulating base material and can prevent discoloration during storage. [Means for Solving the Problems] The metal foil for printed wiring circuits of the present invention is a roughened or roughened rolled copper foil whose one or both sides have been roughened by etching or the like by AC power supply in an electrolytic solution. 200% by vapor phase plating method on roughened and non-roughened surfaces.
It is characterized by forming an aluminum thin film with a thickness of 1.5 Å or more. The reason why metallic copper has a significant lack of adhesive strength is that the bonding strength between the base metal and the copper oxide film that inevitably occurs on its surface is extremely low. It is expected that the adhesive will have an anchoring effect by expanding the surface area. On the other hand, the bonding strength between the oxide film and the base metal of aluminum is extremely strong, and therefore the strength of the laminated adhesive using adhesive is also extremely high.If a thin aluminum film is formed on the roughened surface of rolled copper foil, the adhesive strength can be increased. An increase is expected. In addition, the strong aluminum oxide barrier layer that occurs on the surface of aluminum prevents the penetration of corrosive gases such as moisture, so forming this on the surface of the copper foil will prevent the discoloration of the copper foil during storage. It is also expected to prevent oxidative discoloration at high temperatures. However, due to the difference in ionization tendency, it is impossible to electrochemically plate an aluminum film directly on copper foil, so the inventors developed a method for forming an aluminum thin film using vapor phase plating (ion vapor deposition). Adopted. In this case, the thickness of the aluminum thin film is 200 Å
Otherwise, sufficient adhesive effect and discoloration prevention effect cannot be obtained. If only one side of the rolled copper foil is roughened, the aluminum thin film may be formed only on the roughened side, or may be formed on both the roughened side and the non-roughened side. [Example] Figure 1 shows an example of the metal foil of the present invention, in which 1 is a rolled copper foil whose surface has been roughened, and 2 and 3 are aluminum layers formed by vapor phase plating. be. FIG. 2 schematically shows an example of an apparatus for roughening the surface of rolled copper foil by AC etching. 4 is a rolled copper foil, 5 and 6 are guide rollers,
7 is an electrode, 8 is a tank, 9 is an electrolytic solution, and 10 is an AC power source. AC power is supplied to an electrode 7 provided in an electrolytic solution 9 such as hydrochloric acid, sulfuric acid, nitric acid, etc., a rolled copper foil 4 is run between the electrodes, and then a post-treatment after pickling and drying is performed to coat the surface with numerous particles. A surface-roughened rolled copper foil 1 having micropores is obtained. FIG. 3 schematically shows an example of an apparatus for forming an aluminum layer on the surface-roughened rolled copper foil 1 by vapor phase plating. Reference numeral 11 denotes a casing, which is designed to isolate the inside from the outside. 12 is a sending part of the copper foil 1;
3 is a rolled-up portion of copper foil that has been plated. 1
4 is aluminum for vapor deposition, 15 is a crucible, 16 is a high frequency power source, and 17 is a high frequency coil. Inside the housing 11, there is about 4 times argon gas.
The copper foil 1 is sealed to maintain a pressure of 10 -4 Torr, and the copper foil 1 is continuously moved from the sending section 12 to the winding section 13 with a bias voltage of about -1600 V applied. There is. By supplying a high frequency output of 13.56 MHz and 400 W to the coil 17 from the power supply 16, the copper foil 1 is plated with aluminum. To apply vapor phase plating to both sides of copper foil 1,
You can do this by inverting the side. Table 1 shows the roughened surface of rolled copper foil with a thickness of 35 μm by AC etching.
Aluminum layers of 200 Å and 800 Å thick were formed by vapor phase plating, and zinc/chromium (about 500 Å thick) were formed on the roughened surface of the same rolled copper foil by conventional electrochemical plating. Comparison 3:1) The results of evaluating the adhesion strength to the paper/phenol substrate with plating formed are shown. Table 2 shows the surface of rolled copper foil with a thickness of 35 μm.
200 Å, 500 Å, 800 Å thick aluminum layers formed by vapor phase plating, and 500 Å thick zinc/chromium (3:1 ratio) plating by elastic electrochemical plating. This is a comparison of the degree of discoloration in the atmosphere at 180℃ for those that have formed.

【表】【table】

【表】 第1表および第2表から明らかな通り、アルミ
ニウム層は200Åで接着強度および変色防止効果
において従来の亜鉛/クロムめつきと相当し、
500Å、800Åでははるかに良好な成績を示す。 [発明の効果] 以上説明してきた通り、本発明によれば絶縁体
基材との接着力を向上でき、また保管時や絶縁体
基板との積層時における変色を防止できるプリン
ト配線回路用金属箔圧延銅箔が得られるようにな
る。 しかも、本発明は気相めつきによるものであ
り、産業公害の恐れもなく、その工業的価値はき
わめて大きい。
[Table] As is clear from Tables 1 and 2, the aluminum layer is equivalent to conventional zinc/chrome plating in adhesive strength and discoloration prevention effect at 200 Å.
Much better results are shown at 500 Å and 800 Å. [Effects of the Invention] As explained above, the present invention provides a metal foil for printed wiring circuits that can improve adhesive strength with an insulating substrate and prevent discoloration during storage or lamination with an insulating substrate. Rolled copper foil can now be obtained. Moreover, since the present invention is based on vapor phase plating, there is no fear of industrial pollution, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は表面粗化圧延銅箔にアルミニウムを気
相めつきした圧延銅箔の一実施例の説明図、第2
図は圧延銅箔の表面を交流エツチングにより粗化
する装置の一例の概略説明図、第3図は表面粗化
圧延銅箔表面にアルミニウムを気相めつきする装
置の一例の概略説明図である。 1:圧延銅箔、2,3:アルミニウム層。
Figure 1 is an explanatory diagram of an example of rolled copper foil in which aluminum is vapor-phase plated on surface-roughened rolled copper foil;
The figure is a schematic explanatory diagram of an example of an apparatus for roughening the surface of rolled copper foil by AC etching, and FIG. 3 is a schematic explanatory diagram of an example of an apparatus for vapor phase plating aluminum on the surface of the surface-roughened rolled copper foil. . 1: Rolled copper foil, 2, 3: Aluminum layer.

Claims (1)

【特許請求の範囲】 1 片面または両面が粗化されている圧延銅箔の
粗化面または粗化面と非粗化面に気相めつき法に
よつて200Å以上の厚さのアルミニウム薄膜を形
成してなることを特徴とするプリント配線回路用
金属箔。 2 粗化面は、圧延銅箔を電解液中に導き、交流
給電によるエツチングにより形成されている特許
請求の範囲第1項記載のプリント配線回路用金属
箔。
[Claims] 1. A thin aluminum film with a thickness of 200 Å or more is applied to the roughened surface or the roughened surface and the non-roughened surface of a rolled copper foil that has been roughened on one or both sides by a vapor phase plating method. A metal foil for printed wiring circuits, which is formed by forming a metal foil. 2. The metal foil for printed wiring circuits according to claim 1, wherein the roughened surface is formed by introducing the rolled copper foil into an electrolytic solution and etching it by AC power supply.
JP23682085A 1985-10-23 1985-10-23 Metal foil for printed wiring circuit Granted JPS62136092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23682085A JPS62136092A (en) 1985-10-23 1985-10-23 Metal foil for printed wiring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23682085A JPS62136092A (en) 1985-10-23 1985-10-23 Metal foil for printed wiring circuit

Publications (2)

Publication Number Publication Date
JPS62136092A JPS62136092A (en) 1987-06-19
JPH0217946B2 true JPH0217946B2 (en) 1990-04-24

Family

ID=17006266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23682085A Granted JPS62136092A (en) 1985-10-23 1985-10-23 Metal foil for printed wiring circuit

Country Status (1)

Country Link
JP (1) JPS62136092A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2681188B2 (en) * 1988-04-04 1997-11-26 イビデン株式会社 Metal surface modification method
JP2008279663A (en) * 2007-05-10 2008-11-20 Nikko Kinzoku Kk Copper foil with al coating for copper clad laminate and copper clad laminate

Also Published As

Publication number Publication date
JPS62136092A (en) 1987-06-19

Similar Documents

Publication Publication Date Title
EP0773710A1 (en) Flexible printed wiring board
JP2007307767A (en) Copper foil with carrier foil, its manufacturing method, surface-treated copper foil with carrier foil and copper clad laminated sheet using it
WO2001074585A1 (en) Metallized polyimide film
JPH0255943B2 (en)
JPH11268183A (en) Polyimide-metal laminate and its manufacture
JPH0382750A (en) Alteration of at least one facet of polyimide base
CN103392024A (en) Two-layered copper-clad laminate material, and method for producing same
JPH05259596A (en) Board for flexible printed wiring
JPH0217946B2 (en)
US5057193A (en) Anti-tarnish treatment of metal foil
KR102175755B1 (en) Flexible copper clad laminate and method for manufacturing the same
JPH05136547A (en) Method of manufacturing flexible printed wiring board
JPH05299820A (en) Flexible printed wiring board
JPS6214040B2 (en)
KR20210106811A (en) Method manufacturing structure for flexible printed circuit board and device thereof
JP3731841B2 (en) Method for producing two-layer flexible circuit substrate
JPH01214096A (en) Manufacture of flexible printed circuit board
JP3269818B2 (en) Surface roughened copper, method for producing the same, and printed circuit board using the same
JPH0257712B2 (en)
JPH05259595A (en) Board for flexible printed wiring
JPH05251511A (en) Production of copper/polyimide laminate structure
JPH05283848A (en) Flexible printed wiring board
JP2003094589A (en) Method and apparatus for manufacturing laminate material
JPH03225995A (en) Wiring board
JPH01169990A (en) Substrate for mounting surface