JPH02179266A - Solid-state power controller - Google Patents
Solid-state power controllerInfo
- Publication number
- JPH02179266A JPH02179266A JP1172848A JP17284889A JPH02179266A JP H02179266 A JPH02179266 A JP H02179266A JP 1172848 A JP1172848 A JP 1172848A JP 17284889 A JP17284889 A JP 17284889A JP H02179266 A JPH02179266 A JP H02179266A
- Authority
- JP
- Japan
- Prior art keywords
- current
- bias current
- load
- branch
- bias
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002457 bidirectional effect Effects 0.000 claims description 10
- 230000004044 response Effects 0.000 abstract description 7
- 239000004020 conductor Substances 0.000 description 6
- 230000000670 limiting effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/46—Regulating voltage or current wherein the variable actually regulated by the final control device is dc
- G05F1/56—Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/51—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
- H03K17/56—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
- H03K17/60—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
- H03K17/66—Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will
- H03K17/665—Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will connected to one load terminal only
- H03K17/666—Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will connected to one load terminal only the output circuit comprising more than one controlled bipolar transistor
- H03K17/668—Switching arrangements for passing the current in either direction at will; Switching arrangements for reversing the current at will connected to one load terminal only the output circuit comprising more than one controlled bipolar transistor in a symmetrical configuration
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/04—Modifications for accelerating switching
- H03K17/042—Modifications for accelerating switching by feedback from the output circuit to the control circuit
- H03K17/04213—Modifications for accelerating switching by feedback from the output circuit to the control circuit in bipolar transistor switches
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Amplifiers (AREA)
- Direct Current Feeding And Distribution (AREA)
- Dc-Dc Converters (AREA)
- Continuous-Control Power Sources That Use Transistors (AREA)
- Electronic Switches (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は電気的スイッチング装置に関し、更に詳細には
、直流回路に用いるソリッドステート電力制御器に関す
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to electrical switching devices and, more particularly, to solid state power controllers for use in DC circuits.
新型の航空機および宇宙用の電力システムに用いる比較
的高電圧の直流配電システムが開発中である。これらの
システムは、ソリッドステートであれ電気機械式のもの
であれ現在の技術水準のスイッチギアの能力を越える実
現が容易でない能力を負荷および負荷バスの制御/保護
用ソリッドステート電力制御器に要求している。これら
の電力増幅器は消費電力が少なく、スイッチ電圧降下が
低く、限流作用を迅速且つ正確に行なう能力を持つ必要
がある。電流の方向が予測不可能な時間において変化す
る可能性のある成る特定の用途では、負荷および電源の
間を流れる電流を二方向で制御する必要がある。Relatively high voltage DC power distribution systems for use in new aircraft and space power systems are under development. These systems require solid-state power controllers for load and load bus control/protection to have capabilities that are difficult to achieve beyond the capabilities of current state-of-the-art switchgear, whether solid-state or electromechanical. ing. These power amplifiers must have low power consumption, low switch voltage drop, and the ability to perform current limiting actions quickly and accurately. In certain applications where the direction of the current can change at unpredictable times, it is necessary to control the current flowing between the load and the power source in two directions.
本発明は、電圧降下が低く、応答が迅速な、高効率、高
信頼度のソリッドステート電力制御器を提供する。The present invention provides a highly efficient, reliable solid-state power controller with low voltage drop and rapid response.
本発明によるソリッドステート電力増幅器は一対の出力
端子間に接続した第1のトランジスタを有する出力回路
段を備えている。トランジスタのコレクタはトランジス
タ駆動回路の一部を形成する2つのダイオードよりなる
直列回路の一端に接続されている。バイアス電流源がダ
イオード直列回路に直流バイアス電流を供給するように
接続され、駆動回路にはダイオード直列回路の他端をト
ランジスタのベースに接続する手段も設けられている。A solid state power amplifier according to the invention includes an output circuit stage having a first transistor connected between a pair of output terminals. The collector of the transistor is connected to one end of a series circuit of two diodes forming part of a transistor drive circuit. A bias current source is connected to provide a DC bias current to the diode series circuit, and the drive circuit is also provided with means for connecting the other end of the diode series circuit to the base of the transistor.
二方向性電力システムに用いる本発明の第2の実施例で
は、出力回路段に第!のトランジスタと直列に接続した
第2のトランジスタおよび2つの出力トランジスタに並
列接続される枝路に逆方向直列接続された第2の対のダ
イオードとを含むトランジスタ間の共通接続点が第2の
対のダイオード間の共通接続点に接続されている。In a second embodiment of the invention for use in a bidirectional power system, the output circuit stage includes a second ! A common connection point between the transistors includes a second transistor connected in series with the transistor of the output transistor and a second pair of diodes connected in reverse series with the branch connected in parallel to the two output transistors. connected to the common connection point between the diodes.
上述の単一極性および二方向性回路では共に、出力段の
電流が検知され、直流バイアス電流が出力段の電流に比
例するように調整される。このため限流動作が必要な時
応答時間が早くなる。In both the uni-polar and bi-directional circuits described above, the output stage current is sensed and the DC bias current is adjusted to be proportional to the output stage current. Therefore, the response time becomes faster when current limiting operation is required.
以下、添付図面を参照して本発明を好ましい実施例につ
き詳細に説明する。Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
第1図は、本発明の一実施例による、単一極性システム
に用いるソリッドステート電力制御器の回路図である。FIG. 1 is a circuit diagram of a solid state power controller for use in a unipolar system, according to one embodiment of the present invention.
電力制御器はベースおよびコレクタ番エミッタ間の主要
電流導通路を有するトランジスタQlを備えた出力回路
段を含む、トランジスタQlのコレクタは出力端子lO
に接続され、一方トランジスタQlのエミッタは出力端
子!2に接続されている。駆動回路!4は一対の直列接
続ダイオードD1およびD2を有する枝路を含み、該枝
路の第1の端部はトランジスタQ1のコレクタに接続さ
れている。バイアス電流供給源1Bが導体18および2
0に直流バイアス電流を供給して直列接続ダイオードD
IおよびD2の両端に駆動回路電圧を発生させる。The power controller includes an output circuit stage with a transistor Ql having a main current conduction path between base and collector emitter, the collector of transistor Ql being connected to an output terminal lO
while the emitter of transistor Ql is connected to output terminal ! Connected to 2. Drive circuit! 4 includes a branch with a pair of series connected diodes D1 and D2, the first end of which is connected to the collector of transistor Q1. Bias current source 1B connects conductors 18 and 2
0 to supply a DC bias current to the series-connected diode D
A drive circuit voltage is generated across I and D2.
バイアス電流供給源1Bは差動加算増幅器22と直流−
直流コンバータ24を含む。The bias current supply source 1B is connected to the differential summing amplifier 22 and the DC-
A DC converter 24 is included.
ダーリントン接続のトランジスタQ2およびQBは、ダ
イオード旧およびD2の両端の電圧をダイオードO3を
介してトランジスタQlのベースにスイッチする手段と
して働く、ダイオードD4はトランジスタQ3のコレク
タからQlのエミッタへ電流を送るステアリング・ダイ
オードとして働く、駆動制御回路2Bは公知の技術によ
り構成されるため本発明の一部を形成しないが、比例駆
動電流をトランジスタQ3のベースに供給してトランジ
スタQ1の導通を開始させる。Darlington-connected transistors Q2 and QB act as a means of switching the voltage across diode O and D2 to the base of transistor Ql via diode O3, while diode D4 steers the current from the collector of transistor Q3 to the emitter of Ql. - The drive control circuit 2B, which acts as a diode and does not form part of the invention as it is constructed using known technology, supplies a proportional drive current to the base of the transistor Q3 to initiate conduction of the transistor Q1.
動作について説明すると、トランジスタQlが導通する
と、電流が外部の直流電源28から外部の負荷30に流
れる。負荷に直列接続された抵抗分路Rgが電力制御器
の出力段の電流に比例する信号を導体32と34に発生
させる。この電流信号は駆動制御回路とともに、導体3
Bと38に直流電圧信号を発生させる差動加算増幅器に
も送られる。この直流電圧信号は電力制御器の出力段の
電流に比例する、公知の技術により構成される直流−直
流コンバータ24は、導体3Bと38上の直流電圧信号
を導体18と20上の適当なレベルに変換して回路の適
正な動作をはかる。To explain the operation, when transistor Ql becomes conductive, current flows from external DC power supply 28 to external load 30. A resistive shunt Rg connected in series with the load generates a signal on conductors 32 and 34 that is proportional to the current in the output stage of the power controller. This current signal is applied to the conductor 3 along with the drive control circuit.
It is also sent to a differential summing amplifier which generates a DC voltage signal at B and 38. This DC voltage signal is proportional to the current in the output stage of the power controller.A DC-to-DC converter 24, constructed according to known techniques, converts the DC voltage signal on conductors 3B and 38 to an appropriate level on conductors 18 and 20. to ensure proper operation of the circuit.
出力トランジスタQlは負荷の電源への接続および電源
からの負荷の切り離しを制御する電力素子である。駆動
回路14は駆動制御回路28と出力段とをインターフェ
イスする電力増幅器である。該駆動回路は直流バイアス
供給源1Bからバイアス電流rbを供給される出力電圧
オフセット回路として働く直列接続のダイオード旧およ
びD2を有する。The output transistor Ql is a power element that controls connection of the load to the power source and disconnection of the load from the power source. Drive circuit 14 is a power amplifier that interfaces drive control circuit 28 and the output stage. The drive circuit has series connected diodes 1 and D2 serving as an output voltage offset circuit supplied with a bias current rb from a DC bias source 1B.
直流バイアス電流Ibは以下において説明するように一
定の値かあるいは負荷電流により変化するものである。The DC bias current Ib has a constant value or changes depending on the load current, as explained below.
バイアス供給源はダイオード01およびD2に順方向バ
イアス電流を供給するが、この電流はトランジスタQ1
に充分なベース駆動電流を供給できる適当な大きさであ
る必要がある。The bias supply supplies forward bias current to diodes 01 and D2, which is connected to transistor Q1.
It needs to be of an appropriate size to supply sufficient base drive current.
ベース電流を供給する1つの方法は、定格負荷における
ベース電流の必要条件を求め、出力段のトランジスタが
導通している時はいつもその大きさの一定電流を供給す
ることである。しかしながら、この方法には大部分の用
途では負荷電流が定格電流よりも低いことを考えると駆
動回路に不必要な損失が生じるという欠点がある0本発
明は、供給されるバイアス電流が負荷を流れる電流の大
きさにより必要とされる値に比例するという改良点を持
つ方式を提供する。このために、バイアス電流供給源を
制御する簡単な開ループ制御回路を用いる。第2図に示
す差動加算増幅器22は。One way to supply the base current is to determine the base current requirement at the rated load and supply a constant current of that magnitude whenever the output stage transistor is conducting. However, this method has the disadvantage that in most applications it introduces unnecessary losses in the drive circuit, given that the load current is lower than the rated current. An improved method is provided in which the magnitude of the current is proportional to the required value. To this end, a simple open loop control circuit is used to control the bias current source. The differential summing amplifier 22 shown in FIG.
Vout = Kl + K2(1)
(上式において、Voutは導体3Bおよび38上の出
力電圧、Klおよびに2は定数、■は抵抗分路Rsを流
れる負荷電流である。)のような出力電圧特性を有する
ように設計されている。Vout = Kl + K2 (1) where Vout is the output voltage on conductors 3B and 38, Kl and 2 are constants, and ■ is the load current flowing through the resistive shunt Rs. Designed with characteristics.
この動作特性により負荷電流■とは無関係に出力電圧K
lが与えられ、バイアス回路の非直線性が克服されると
ともに、無負荷の時も小さいバイアス電流が得られ、こ
のバイアス電流は負荷電流の上昇と共に比例して増加す
る。この方法によると無負荷時の駆動回路の消費電力は
典型的には全負荷時の約lozとなり、駆動回路の効率
がかなり改善される。Due to this operating characteristic, the output voltage K is independent of the load current
l is given, the nonlinearity of the bias circuit is overcome, and a small bias current is obtained even at no load, and this bias current increases proportionally as the load current increases. In this manner, the power consumption of the drive circuit at no load is typically about 10 oz at full load, significantly improving the efficiency of the drive circuit.
第2図の回路において、K1はダイオードCRIのツェ
ナー電圧にR3/R5の比を掛けたものに等しい、同様
に、量に2(1)はVin(R5/Rt)ニ等しい。In the circuit of FIG. 2, K1 is equal to the zener voltage of diode CRI times the ratio R3/R5; similarly, the quantity 2(1) is equal to Vin(R5/Rt).
第2図の回路を用いると1回路の歪が減少して信頼性が
向上するとともに回路成分の故障率が低下する。更に、
駆動電流を制限することにより故障電流を制限し故障時
の応答時間を改善出来る第3図は、本発明の第2の実施
例による二方向性電力制御器の回路図である。第3図の
電力制御器では、出力回路段40は接続点42を含む第
1の枝路に直列接続されたトランジスタQ5およびQB
を有する。一対の逆方向直列接続ダイオードD7および
D8が接続点44を有するS2の枝路に接続されている
。第1および第2の枝路は出力端子46と48の間にお
いて互いに並列に接続され、第1および第2の枝路の接
続点は抵抗分路R”sにより互いに接続されている。出
力回路段40は回路成分50と52の間において二方向
の電流が流れるようにする。つまり、回路成分50と5
2は電源あるいは負荷とじて交互に作用する0例えば、
回路成分50がバッテリーであればモーターとして働く
回転型41152に給電するための電源として働き1回
転型@52が発電機として働く時は、バッテリー50を
再充電する電源として働く。When the circuit shown in FIG. 2 is used, the distortion of one circuit is reduced, reliability is improved, and the failure rate of circuit components is reduced. Furthermore,
FIG. 3 is a circuit diagram of a bidirectional power controller according to a second embodiment of the present invention, which can limit the fault current and improve the response time in the event of a fault by limiting the drive current. In the power controller of FIG. 3, output circuit stage 40 includes transistors Q5 and QB connected in series in a first branch including node 42.
has. A pair of reverse series connected diodes D7 and D8 are connected to the branch of S2 with node 44. The first and second branches are connected in parallel to each other between the output terminals 46 and 48, and the connection points of the first and second branches are connected to each other by a resistive shunt R''s. Stage 40 allows bidirectional current flow between circuit components 50 and 52, i.e. between circuit components 50 and 5.
2 is 0 that acts alternately as a power supply or load, for example,
If the circuit component 50 is a battery, it serves as a power source for feeding the rotary type 41152 that functions as a motor, and when the single-rotation type @52 functions as a generator, it serves as a power source for recharging the battery 50.
駆動回路54はダーリントン接続のPNP電力トランジ
スタQ7およびQBを有する。これらのトランジスタは
それぞれ単一のデバイスとして示されているが、実際に
は複数の並列接続トランジスタである。トランジスタQ
5.Qe、Q7.Q8はコンプリメンタリ−直結増幅器
回路を構成する。端子4Bから端子48に電流が流れる
とトランジスタQ[!、Q7.QBが導通し、また電流
が端子48から端子4Bに流れる場合はトランジスタQ
5、Q7.QBが導通する。整流器旧、02.03 、
D4は負荷電流の方向により決まる電流を搬送する出力
トランジスタQ5あるいはQBにベース電流およびステ
アリング電流を供給する。これら4つの整流器を用いる
と、複雑で性能の劣化を伴う2つの同−PNP駆動回路
を用いる必要がない。Drive circuit 54 includes Darlington connected PNP power transistors Q7 and QB. Although each of these transistors is shown as a single device, they are actually multiple parallel connected transistors. transistor Q
5. Qe, Q7. Q8 constitutes a complementary direct-coupled amplifier circuit. When current flows from terminal 4B to terminal 48, transistor Q[! , Q7. When QB conducts and current flows from terminal 48 to terminal 4B, transistor Q
5.Q7. QB conducts. Rectifier old, 02.03,
D4 provides base and steering current to output transistor Q5 or QB, which carries a current determined by the direction of the load current. Using these four rectifiers eliminates the need for two identical PNP drive circuits that are complex and degrade performance.
ダイオード05およびI]8は第1図に関連して説明し
たようにバイアス電流[1111と協働して駆動回路に
高い動作電位を供給する。抵抗分路を適当な位置に置く
ことにより、単一極性の電流指示信号が発生し、それに
よりバイアス供給源18を本発明の単一極性および二方
向性電力制御器の両実施例において作用させることが出
来る。 QBおよびQBのようなコンプリメンタリ−P
NP−NPN )ランジスタ回路において、NPN(Q
13)の導通時の電圧降下は少なくともPNP (QB
)のVceとNPN (QEI)ノVbe I)電圧降
下の和に等しい、このためトランジスタQBが低電圧降
下飽和モードでの動作を阻止される。 QBのコレクタ
とQBのエミッタの間にバイアスされた2つの整流器0
5と08を加えることにより、QBがQBのコレクタよ
り約1.5ボルト(直流)高いレベルにバイアスされる
。これはQBの導通時の電圧降下のうち所望でない電圧
成分をオフセットするに充分な適当な大3さのものであ
る。従って、トランジスタQ6は飽和導通モードで動作
出来る。 NPN トラジスタの電流利得が10を超え
ると、バイアス整流器により付加される消費電力の大き
さがトランジスタQ8において節約される消費電力より
有意に少ないため、正味の電力の減少がQBのコレクタ
電流1アンペア当り約1.5ワツトとなる。これは現在
の設計例で用いられる定格が100アンペアあるいはそ
れ以上であるため非常に重要である。第3図の駆動回路
は過負荷および負荷が短絡した場合故障ピーク電流を制
限し、応答時間を改善するためにトランジスタQ5およ
びQBのベース電流を制限する作用を有するという利点
を持つ。Diodes 05 and I]8 cooperate with the bias current [1111 as described in connection with FIG. 1 to provide a high operating potential to the drive circuit. By placing the resistive shunt in the appropriate position, a unipolar current indicating signal is generated which causes the bias source 18 to operate in both the unipolar and bidirectional power controller embodiments of the present invention. I can do it. QB and complementary P like QB
NP-NPN ) transistor circuit, NPN (Q
13) The voltage drop during conduction is at least PNP (QB
) equals the sum of the Vce of NPN (QEI) and the Vbe I) voltage drop, thus preventing transistor QB from operating in the low voltage drop saturation mode. Two rectifiers biased between the collector of QB and the emitter of QB
By adding 5 and 08, QB is biased to a level approximately 1.5 volts (DC) above the collector of QB. This is appropriately large enough to offset the undesired voltage component of the voltage drop when QB conducts. Therefore, transistor Q6 can operate in saturated conduction mode. When the current gain of the NPN transistor exceeds 10, the amount of power dissipated by the bias rectifier is significantly less than the power saved in transistor Q8, so that the net power reduction is reduced per ampere of collector current in QB. It becomes about 1.5 watts. This is very important since current designs are rated at 100 amps or more. The drive circuit of FIG. 3 has the advantage of limiting the fault peak current in the event of overload and load short circuits and limiting the base current of transistors Q5 and QB to improve response time.
第3図の実施例に従って直流150アンペア、15G−
200ボルト定格の回路を製作し、150アンペアにお
いて直流2ボルト以下のスイッチ電圧降下を得た。この
効率的な回路設計により制御器の損失が1%の負荷で約
15ワツトまで低下し、 100%の負荷で340ワツ
トに増加した。短絡時に流れる電流はピークが200を
以下のオーバーシュートおよび持続時間が50マイクロ
秒に制限され、このため故障時の電力の流れが制限され
た。150 amperes DC, 15G-
A circuit rated at 200 volts was constructed with a switch voltage drop of less than 2 volts DC at 150 amps. This efficient circuit design reduced controller losses to approximately 15 watts at 1% load and increased to 340 watts at 100% load. The current flowing during a short circuit was limited to a peak overshoot of less than 200 and a duration of 50 microseconds, thus limiting the power flow during a fault.
負荷電流に比例する駆動バイアス電流を供給することに
より本発明の電力制御器は両車と信頼性を向上させる。By providing a drive bias current that is proportional to the load current, the power controller of the present invention improves vehicle performance and reliability.
第3図に示したような二方向性の電力制御器では、電力
スイッチの電圧降下は従来の二方向性の装置と比較して
駆動段にオフセットバイアス回路を組込んだことにより
33%以上減少した0両方の二方向性出力トランジスタ
を駆動するため単一の駆動回路を用いることにより、回
路が簡単になるとともに回路成分の数が減少し、単一点
での電力段制御がより効率的に行なわれるようになる。In a bidirectional power controller as shown in Figure 3, the voltage drop across the power switch is reduced by more than 33% compared to a conventional bidirectional device by incorporating an offset bias circuit in the drive stage. The use of a single driver circuit to drive both bidirectional output transistors simplifies the circuit, reduces the number of circuit components, and provides more efficient single-point power stage control. You will be able to do it.
本発明を現在において好ましいと思われる実施例につき
説明したが5画業者にとっては本発明の範囲から逸脱す
ることなく種々の変形例が想到されるであろう、従って
、これらの変形例は頭書した特許請求の範囲に包含され
るものと理解されたい。Although the present invention has been described in terms of the presently preferred embodiment, it is likely that various modifications will occur to those skilled in the art without departing from the scope of the invention; It is to be understood that it is within the scope of the claims.
第1図は1本発明の一実施例によるソリッドステート電
力制御器の回路図である。
第2図は、第1図の回路の差動加算増幅器の回路図であ
る。
第3図は、本発明の第2の実施例の回路図である。
10.12
14拳 ・
16・ ・
26・ 働
28・ ・
30・ 拳
・出力端子
一駆動回路
Φバイアス電流源
各部動制御回路
・電源
参負荷
出願人:ウェスチングハウスeエレクトリック・コーポ
レーション
代理人:加藤紘一部(ほか1名)
FIG。FIG. 1 is a circuit diagram of a solid state power controller according to one embodiment of the present invention. FIG. 2 is a circuit diagram of the differential summing amplifier of the circuit of FIG. FIG. 3 is a circuit diagram of a second embodiment of the invention. 10.12 14 Fists ・ 16 ・ ・ 26 ・ Work 28 ・ 30 Hirobe (and 1 other person) FIG.
Claims (7)
電流導通路を有する第1のトランジスタを備えた出力回
路段と、コレクタを第1の出力端子に接続する手段と、
エミッタを第2の出力端子に接続する手段と、第1の端
部がコレクタに接続された第1の枝路において直列に接
続された一対のダイオードよりなる駆動回路と、第1の
枝路に直流バイアス電流を供給するように接続されたバ
イアス電流供給源と、出力回路段を流れる負荷電流に比
例する電流信号を発生する手段とよりなり、駆動回路は
第1の枝路の第2の端部を第1のトランジスタのベース
に接続する手段を有し、バイアス電流源が電流信号に応
答して直流バイアス電流を電流信号に比例するようにし
たことを特徴とするソリッドステート電力制御器。(1) an output circuit stage comprising a first transistor having a base and a first primary current conducting path between the collector and emitter, and means for connecting the collector to the first output terminal;
means for connecting the emitter to a second output terminal; a drive circuit comprising a pair of diodes connected in series in a first branch with a first end connected to the collector; a bias current source connected to supply a direct current bias current and means for generating a current signal proportional to the load current flowing through the output circuit stage, the drive circuit connected to the second end of the first branch; a bias current source responsive to the current signal to provide a direct current bias current proportional to the current signal.
特徴とする特許請求の範囲第1項に記載の電力制御器。(2) The power controller according to claim 1, wherein the DC bias current has a predetermined minimum value.
を発生する前記手段は第2の出力端子と負荷との間に直
列接続した抵抗分路よりなることを特徴とする特許請求
の範囲第1項に記載の電力制御器。(3) The means for generating a current signal proportional to the load current flowing through the output circuit stage comprises a resistive shunt connected in series between the second output terminal and the load. The power controller according to item 1.
信号に比例する直流電圧を発生させる差動加算増幅器と
、直流電圧信号を受けて第1の枝路に直流バイアス電流
を発生させる直流−直流コンバータとよりなることを特
徴とする特許請求の範囲第1項に記載の電力制御器。(4) The bias current supply source includes a differential summing amplifier that receives a current signal and generates a DC voltage proportional to the current signal, and a DC voltage signal that receives a DC voltage signal and generates a DC bias current in the first branch. - The power controller according to claim 1, comprising a DC converter.
電流導通路を有し、主要電流導通路が第1の接続点を有
する第1の枝路において互いに直列に接続された第1お
よび第2のトランジスタよりなる出力回路段と、第2の
接続点を持つ第2の枝路において逆方向直列接続された
第1の対のダイオードと、一方の端部が第1の接続点に
接続された第3の枝路において互いに直列に接続された
第2の対のダイオードよりなる駆動回路と、直流バイア
ス電流を第3の枝路に供給するように接続されたバイア
ス電流源と、第1および第2の接続点を共に接続して出
力回路段を流れる電流に比例する電流信号を発生させる
手段とよりなり、第1および第2の枝路は一対の出力端
子の間で互いに並列に接続されており、駆動回路は更に
第3の枝路のもう一方の端部を第1および第2のトラン
ジスタのベースに接続する手段を有し、バイアス電流源
は電流信号に応答して直流バイアス電流を電流信号に比
例するようにしたことを特徴とする二方向性電力制御器
。(5) first and second branches connected in series with each other in a first branch, each having a base and a collector-emitter main current conducting path, the main current conducting path having a first connection point; an output circuit stage consisting of a transistor, a first pair of diodes connected in reverse series in a second branch with a second connection point, and a first pair of diodes connected at one end to the first connection point; a drive circuit comprising a second pair of diodes connected in series with each other in the third branch; a bias current source connected to supply a DC bias current to the third branch; the first and second branches are connected in parallel with each other between the pair of output terminals; , the drive circuit further includes means for connecting the other end of the third branch to the bases of the first and second transistors, and a bias current source is responsive to the current signal to convert the DC bias current into the current signal. A bidirectional power controller characterized in that it is proportional to .
特徴とする特許請求の範囲第5項に記載の二方向性電力
制御器。(6) The bidirectional power controller according to claim 5, wherein the DC bias current has a predetermined minimum value.
比例する直流電圧信号を発生させる差動加算増幅器と、
直流電圧信号を受けて第3の枝路に直流バイアス電流を
発生させる直流−直流コンバータとよりなることを特徴
とする二方向性電力制御器。(7) The bias current source includes a differential summing amplifier that receives the current signal and generates a DC voltage signal proportional to the current signal;
A bidirectional power controller comprising a DC-DC converter that receives a DC voltage signal and generates a DC bias current in a third branch.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US215,691 | 1980-12-12 | ||
US07/215,691 US4864214A (en) | 1988-07-06 | 1988-07-06 | Solid state power controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02179266A true JPH02179266A (en) | 1990-07-12 |
Family
ID=22803974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1172848A Pending JPH02179266A (en) | 1988-07-06 | 1989-07-04 | Solid-state power controller |
Country Status (5)
Country | Link |
---|---|
US (1) | US4864214A (en) |
EP (1) | EP0350300A3 (en) |
JP (1) | JPH02179266A (en) |
KR (1) | KR900002155A (en) |
CN (1) | CN1025081C (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0373240A1 (en) * | 1988-12-13 | 1990-06-20 | Siemens Aktiengesellschaft | Self regulating driver circuit with saturation level regulation for the base current of a power transistor |
DE4101492A1 (en) * | 1991-01-19 | 1992-07-23 | Telefunken Electronic Gmbh | Power current circuitry e.g. for DC motor - uses controllable resistor in branch circuit to detect load current regulated in output stage |
US5164659A (en) * | 1991-08-29 | 1992-11-17 | Warren Schultz | Switching circuit |
US5173848A (en) * | 1991-09-06 | 1992-12-22 | Roof Richard W | Motor controller with bi-modal turnoff circuits |
US5444590A (en) * | 1992-12-04 | 1995-08-22 | Texas Instruments Incorporated | Solid state power controller with power switch protection apparatus |
JP3161589B2 (en) * | 1996-10-17 | 2001-04-25 | 富士電機株式会社 | Power converter gate drive circuit |
US7091790B2 (en) * | 2004-06-25 | 2006-08-15 | Sige Semiconductor (U.S.), Corp. | Power amplifier (PA) efficiency with low current DC to DC converter |
US7747879B2 (en) | 2005-02-16 | 2010-06-29 | Leach International Corporation | Power distribution system using solid state power controllers |
SG130957A1 (en) * | 2005-09-15 | 2007-04-26 | St Microelectronics Asia | An electrical isolation circuit for preventing current flow from an electrical application to a dc power source |
US8891218B2 (en) | 2012-10-12 | 2014-11-18 | The Boeing Company | Fault tolerant fail-safe link |
FR3025900B1 (en) * | 2014-09-16 | 2018-01-05 | Safran Electronics & Defense | ELECTRICAL CONTROL CIRCUIT FOR ELECTRICAL EQUIPMENT WITH HIGH INTEGRITY |
DE102017126060B4 (en) * | 2017-11-08 | 2019-06-27 | Infineon Technologies Austria Ag | CONTROL UNIT FOR A TRANSISTOR COMPONENT |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3710231A (en) * | 1971-03-15 | 1973-01-09 | Westinghouse Electric Corp | D.c. static switch including means to suppress transient spikes between a drive source and the switch element |
US3753078A (en) * | 1972-05-03 | 1973-08-14 | Gen Electric | Foldback current control circuit |
US3898552A (en) * | 1974-02-21 | 1975-08-05 | Westinghouse Electric Corp | DC Static switch circuit with improved transistor surge current pass capability |
US4156837A (en) * | 1977-04-13 | 1979-05-29 | Westinghouse Electric Corp. | DC static switch circuit with power saving feature |
US4321485A (en) * | 1980-06-17 | 1982-03-23 | Westinghouse Electric Corp. | High-frequency transistor switch |
US4404473A (en) * | 1981-12-17 | 1983-09-13 | Westinghouse Electric Corp. | Direct current power controller |
US4453089A (en) * | 1982-04-16 | 1984-06-05 | Westinghouse Electric Corp. | Transistor base drive circuit |
US4491744A (en) * | 1982-08-02 | 1985-01-01 | Burroughs Corporation | Current source direct base drive for transistor power switches |
DE3237141C1 (en) * | 1982-10-07 | 1983-07-28 | Danfoss A/S, 6430 Nordborg | Control device for a switching transistor |
US4588904A (en) * | 1983-09-16 | 1986-05-13 | At&T Bell Laboratories | High efficiency bias circuit for high frequency inductively loaded power switching transistor |
US4569011A (en) * | 1983-11-14 | 1986-02-04 | Tandem Computers Incorporated | Constant current drive for switching power supply |
US4585986A (en) * | 1983-11-29 | 1986-04-29 | The United States Of America As Represented By The Department Of Energy | DC switching regulated power supply for driving an inductive load |
-
1988
- 1988-07-06 US US07/215,691 patent/US4864214A/en not_active Expired - Fee Related
-
1989
- 1989-07-04 JP JP1172848A patent/JPH02179266A/en active Pending
- 1989-07-05 CN CN89104554A patent/CN1025081C/en not_active Expired - Fee Related
- 1989-07-06 KR KR1019890009658A patent/KR900002155A/en not_active Application Discontinuation
- 1989-07-06 EP EP19890306853 patent/EP0350300A3/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
KR900002155A (en) | 1990-02-28 |
CN1025081C (en) | 1994-06-15 |
CN1039130A (en) | 1990-01-24 |
US4864214A (en) | 1989-09-05 |
EP0350300A3 (en) | 1990-12-19 |
EP0350300A2 (en) | 1990-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4544869A (en) | Electronic control circuit for bi-directional motion | |
JPH0510522Y2 (en) | ||
JPH02179266A (en) | Solid-state power controller | |
EP0392831A2 (en) | Power transistor drive circuit with improved short circuit protection | |
KR0164638B1 (en) | Photocoupler device | |
JPH0121703B2 (en) | ||
US20230327554A1 (en) | Three output dc voltage supply with short circuit protection | |
US3924158A (en) | Electronic overload protection device | |
JPS62174814A (en) | Stabilization power source circuit | |
US4224654A (en) | Relay driver circuit | |
US4427902A (en) | Optimum transistor drive circuit with over load compensation | |
JPS61500347A (en) | Series transistor chip | |
US2985772A (en) | Switching circuit | |
US3571662A (en) | Failure sensing and protection circuit for converter networks | |
JPH01158515A (en) | Series voltage regulator | |
JPH11234108A (en) | Switching device for switching inductive load | |
JP3227048B2 (en) | Driver circuit for bidirectional connection transistor | |
US4221980A (en) | Electrical switching means | |
JP3437588B2 (en) | Load drive circuit | |
US4260955A (en) | Current amplifier with regenerative latch switch | |
KR100264892B1 (en) | Circuit for limitting current | |
JP2815092B2 (en) | Power supply | |
JP3342489B2 (en) | Driver with symmetric bipolar transistor or symmetric bipolar transistor structure | |
JPH04126415U (en) | limiter circuit | |
JP2909125B2 (en) | Switch circuit |