JPH02178974A - Composite mos type semiconductor element - Google Patents

Composite mos type semiconductor element

Info

Publication number
JPH02178974A
JPH02178974A JP63332821A JP33282188A JPH02178974A JP H02178974 A JPH02178974 A JP H02178974A JP 63332821 A JP63332821 A JP 63332821A JP 33282188 A JP33282188 A JP 33282188A JP H02178974 A JPH02178974 A JP H02178974A
Authority
JP
Japan
Prior art keywords
region
channel
gate
electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63332821A
Other languages
Japanese (ja)
Inventor
Akira Nishiura
西浦 彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63332821A priority Critical patent/JPH02178974A/en
Publication of JPH02178974A publication Critical patent/JPH02178974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electronic Switches (AREA)

Abstract

PURPOSE:To make regions for a mainly functioning MOS type switching element larger than a region as an amplifier by combining and unifying a region working at the ON time of the amplifier for driving a gate compounded with the mainly functioning switching element and a region working at the OFF time. CONSTITUTION:When a first conductivity type takes an n-type, an n-channel is formed in a third channel region 12 when positive voltage is applied to a gate terminal G when positive voltage is applied to a drain electrode 15, and an n-channel is shaped in a first channel region 7 and a mainly functioning switching element is turned ON. When negative voltage is applied to the gate terminal G, p-channels are formed in second channel regions 10 among a fifth region 5 between the dividing sections of a sixth region 6 and third regions 3 on both sides, the potential of the third regions 3 is brought to the same potential as the potential of an intermediate electrode 16 and a gate electrode 17 through the channels, and the mainly functioning switching element is turned OFF. Accordingly, regions for the mainly functioning switching element can be made larger than a region as an amplifier.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電力用スイッチング素子として用いられる縦
型電力用MOSFETや絶縁ゲート型バイポーラトラン
ジスタ (IGBT) と入力アンプを一体化した複合
MOS型半導体素子に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a composite MOS type semiconductor that integrates a vertical power MOSFET used as a power switching element, an insulated gate bipolar transistor (IGBT), and an input amplifier. Regarding elements.

〔従来の技術〕[Conventional technology]

電力用スイッチング素子として用いられる縦型電力用M
OSFETなどは、近年大電流化によるチップサイズの
大型化が進んでいる。これにともない、入力容量が増大
するために、入力インピーダンスが小さくなり、必ずし
も電圧駆動素子とは言えなくなってきている。これをさ
けるためにゲート駆動用のアンプを複合化した電力用M
OSFETが提案されている。その構成は第2図に示す
通りである。すなわち、n゛基板1 (第一領域)上に
高抵抗のn−層2 (第二領域)が形成され、このn−
層2の表面部に選択的にp”層3 (第三領域)とp゛
層5(第五領域)が形成され、さらにp゛層3p“層5
の表面部に選択的にn゛層4(第四領域)とn゛層6(
第六領域)を形成されている。94層3のn−層2とn
+層4ではさまれた表面領域を主たる電力用MOSFE
Tのチャネル領域7 (第一チャネル領域)とするよう
にこの上にゲート絶縁膜8を介してゲート電極9(第一
ゲート電極)が形成されている。n−層2の表面のp゛
層3p″層5はさまれた部分を第二チャネル領域10と
するように、この上にゲート絶縁膜8を介してゲート電
極11(第二ゲート電極)が形成されている。p゛層5
n”層2とn゛層6はさまれた表面領域を第三チャネル
領域12とするように、この上にゲート絶縁膜8を介し
てゲート電極13(第三ゲート電極)が形成されている
。そして94層3とn4層4に接触するソース電極14
とn+基板1の表面に接触するドレイン電極15が設け
られている。また、p゛層5n゛層6接触する中間電極
16が設けられ、ゲート電極9に電気的に接続されてい
る。さらに、ゲート電極11とゲート電極13が電気的
に接続され、複合化された素子のゲート電極となる。こ
の素子は、ドレイン電極15に正の電圧がかけられてい
るときにゲート電極11 、13に接続されたゲート端
子Gに正の電圧を与えると、第三チャネル領域12を介
して中間電極16からゲート電極9に充電電流が流れ、
ゲート電界によって第一チャネル領域7にnチャネルが
形成されて主たる電力用MOSFETがオンする。また
、ゲート電極11に負の電圧を加えると、第二チャネル
領域10に形成されるpチャネルを介してp゛層3電位
が電極16の接触するp゛層5等電位となるため、ゲー
ト電極9の電位が93層3と等しくなり、第一チャネル
領域7にゲート電界がかからず、主たる電力用MOSF
ETがオフする。
Vertical power M used as a power switching element
In recent years, the chip size of OSFETs and the like has been increasing due to the increase in current. Along with this, the input capacitance has increased, so the input impedance has become smaller, and it can no longer necessarily be called a voltage-driven element. To avoid this, a power M with a complex gate drive amplifier is used.
OSFETs have been proposed. Its configuration is as shown in FIG. That is, a high-resistance n-layer 2 (second region) is formed on the n-substrate 1 (first region), and this n-
A p'' layer 3 (third region) and a p'' layer 5 (fifth region) are selectively formed on the surface of the layer 2, and further a p'' layer 3p'' layer 5 is formed.
n' layer 4 (fourth region) and n' layer 6 (
The sixth region) is formed. 94 layer 3 n - layer 2 and n
+ The surface area sandwiched by layer 4 is the main power MOSFET.
A gate electrode 9 (first gate electrode) is formed thereon via a gate insulating film 8 so as to form a channel region 7 (first channel region) of T. A gate electrode 11 (second gate electrode) is formed on the surface of the n-layer 2 with a gate insulating film 8 interposed therebetween, so that the portion sandwiched between the p'layer 3p'' layer 5 serves as a second channel region 10. is formed.p layer 5
A gate electrode 13 (third gate electrode) is formed on the surface region sandwiched between the n'' layer 2 and the n'' layer 6 with a gate insulating film 8 interposed therebetween, so as to define a third channel region 12. and a source electrode 14 in contact with the 94 layer 3 and the n4 layer 4.
A drain electrode 15 is provided in contact with the surface of the n+ substrate 1. Further, an intermediate electrode 16 is provided which contacts the p' layer 5 and the n' layer 6, and is electrically connected to the gate electrode 9. Furthermore, the gate electrode 11 and the gate electrode 13 are electrically connected and become the gate electrode of the composite element. In this element, when a positive voltage is applied to the gate terminal G connected to the gate electrodes 11 and 13 while a positive voltage is applied to the drain electrode 15, a positive voltage is applied to the intermediate electrode 16 through the third channel region 12. A charging current flows through the gate electrode 9,
An n-channel is formed in the first channel region 7 by the gate electric field, and the main power MOSFET is turned on. Furthermore, when a negative voltage is applied to the gate electrode 11, the potential of the p' layer 3 becomes equal to the potential of the p' layer 5 which is in contact with the electrode 16 via the p channel formed in the second channel region 10, so that the gate electrode The potential of layer 9 becomes equal to that of layer 3, and no gate electric field is applied to the first channel region 7, making it the main power MOSF.
ET turns off.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような複合素子では、主たる電力用MOSFETを
オン、オフするための入力用アンプとしての第二チャネ
ル領域10と第三チャネル領域12が主たる電力用MO
S F ETの第一チャネル領域7の一方の側に配置さ
れるため、主たる電力用MOSFETの寸法を大きくす
ることが難しかった。
In such a composite device, the second channel region 10 and the third channel region 12, which serve as input amplifiers for turning on and off the main power MOSFET, are connected to the main power MOSFET.
Since it is placed on one side of the first channel region 7 of the SFET, it has been difficult to increase the size of the main power MOSFET.

本発明の課題は、主たるスイッチング素子のための領域
をアンプとしての領域に比して大きくした複合MOS型
半導体素子を提供することにある。
An object of the present invention is to provide a composite MOS type semiconductor device in which the area for the main switching element is larger than the area for the amplifier.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題の解決のために、本発明は、高不純物濃度で
第一導電形の第一領域と、第一領域上に設けられた低不
純物濃度で第一導電形の第二領域と、第二領域の表面部
に選択的に形成された第二導電形で互いに独立した第三
領域および第五領域と、第三領域および第五領域表面部
に選択的に形成された高不純物濃度で第一導電形の第四
領域および第六領域とを有し、第三領域表面の第二領域
と第四領域とにはさまれた部分を第一チャネル領域、第
二領域表面の第三領域と第五領域とにはさまれた部分を
第二チャネル領域、第五領域表面の第二領域と第六領域
にはさまれた部分を第三チャネル領域とし、各チャネル
領域のそれぞれの上に絶縁膜を介して第一ゲート電極、
第二ゲート電極および第三ゲート電極を有し、第二、第
三ゲート電極は互いにゲート端子に接続され、第三領域
と第四領域表面に同時に接触するソース電極、ならびに
第六領域と第五領域表面に同時に接触し第一ゲート電極
に接続される中間電極が形成され、かつ第一領域表面に
ドレイン電極が形成される複合MOS型半導体素子にお
いて、第五領域の表面に形成される第六領域は分割され
て平行な2列に配置された部分よりなり、各分割部分列
の縁部上に第二、第三ゲート電極を兼ねるゲート電極が
ゲート端子に接続されて設けられ、第三領域は第五領域
の両側に形成されたものとする。
In order to solve the above problems, the present invention includes a first region of a first conductivity type with a high impurity concentration, a second region of the first conductivity type with a low impurity concentration provided on the first region, and a second region of the first conductivity type with a low impurity concentration provided on the first region. A third region and a fifth region of the second conductivity type and independent from each other are selectively formed on the surface of the two regions, and a third region and a fifth region of high impurity concentration are selectively formed on the surface of the third region and the fifth region. It has a fourth region and a sixth region of one conductivity type, and the part sandwiched between the second region and the fourth region on the surface of the third region is called the first channel region and the third region on the surface of the second region. The part sandwiched between the fifth region and the second channel region is the second channel region, and the part of the surface of the fifth region sandwiched between the second region and the sixth region is the third channel region. first gate electrode, through the membrane
a second gate electrode and a third gate electrode, the second and third gate electrodes are connected to each other to the gate terminal, a source electrode simultaneously contacts the surfaces of the third region and the fourth region, and a source electrode that contacts the surfaces of the third region and the fourth region simultaneously; In a composite MOS type semiconductor device in which an intermediate electrode is formed in simultaneous contact with the surface of the region and connected to the first gate electrode, and a drain electrode is formed in the surface of the first region, a sixth region is formed on the surface of the fifth region. The region is divided into parts arranged in two parallel rows, and gate electrodes that also serve as second and third gate electrodes are provided on the edges of each divided row and connected to the gate terminals, and the third region are formed on both sides of the fifth region.

〔作用〕[Effect]

今、第一導電形がn形とすると、ドレイン電極に正の電
圧がかけられたいるときにゲート端子に正の電圧を与え
ると第二、第三兼用ゲート電極の下の第三チャネル領域
にnチャネルが形成され、両側に設けられた第三領域の
第一チャネル領域にnチャネルが形成されて主たるスイ
ッチング素子がオンする。ゲート端子に負の電圧を与え
ると、第六領域の分割部分間の第五領域と両側の第三領
域の間の第二チャネル領域にnチャネルが形成され、そ
のチャネルを介して第三領域の電位は第五領域すなわち
中間電極、ゲート電極の電位と等電位となり、主たるス
イッチング素子がオフする。
Now, if the first conductivity type is n-type, if a positive voltage is applied to the gate terminal while a positive voltage is applied to the drain electrode, the third channel region under the second and third gate electrodes will be An n-channel is formed in the first channel region of the third region provided on both sides, and the main switching element is turned on. When a negative voltage is applied to the gate terminal, an n-channel is formed in the second channel region between the fifth region between the divided portions of the sixth region and the third regions on both sides, and the n-channel is formed in the third region through the channel. The potential becomes equal to the potential of the fifth region, that is, the intermediate electrode and the gate electrode, and the main switching element is turned off.

第一導電形がp形の場合も、極性が逆になるのめで、全
く同様な作用が行われる。
Even when the first conductivity type is p-type, the polarity is reversed, so that exactly the same effect is performed.

〔実施例〕〔Example〕

第1図は本発明の一実施例の電力用MO5FETの半導
体素体の断面を示す斜視図であり、第2図と共通の部分
には同一の符号が付されている。
FIG. 1 is a perspective view showing a cross section of a semiconductor element of a power MO5FET according to an embodiment of the present invention, and parts common to those in FIG. 2 are given the same reference numerals.

図から分かるようにp゛層5(第五領域)の表面部には
一対のn゛層6(第六領域)が形成され、その両側にp
“層3 (第三領域)が形成されている。そして91層
3とp゛層5またがってゲート絶縁膜を介してゲート端
子Gに接続されるゲート電極17が設けられる。p゛層
5中のn゛層6島状に分割され、両側に2列に配列され
ている。
As can be seen from the figure, a pair of n' layers 6 (sixth region) are formed on the surface of the p' layer 5 (fifth region), and p
A gate electrode 17 is provided spanning the 91 layer 3 and the p' layer 5 and connected to the gate terminal G via the gate insulating film. It is divided into 6 island-like layers and arranged in two rows on both sides.

このゲート電極17が第2図における第二ゲート電極1
1と第三ゲート電極13とを兼ねる働きをする。
This gate electrode 17 is the second gate electrode 1 in FIG.
1 and the third gate electrode 13.

すなわち、ドレイン電極15に正の電圧がかけられてい
るとき、ゲート電極17に正の電圧を与えると、p゛層
5n+層6とn−層2ではさまれた表面領域12にnチ
ャネルが形成され、中間電極16から第一ゲート電極9
に充電電流が流れ、両側のMOSFETがオンする。ま
たゲート電極17に負の電圧を与えると、分割されたn
゛層層中中間領域のp“層5と対向するp“層3の間の
第二ヂャネル領域10にnチャネルが形成され、p゛層
3中間電極16.第一ゲート電極9と等電位になるため
、第一チャネル領域7にはチャネルが形成されず両側の
MOSFETはオフする。従ってアンプとしての第五領
域5一つによって両側の第三領域3の構成するMOS 
F ETをスイッチングすることができ、主たるMOS
FETのための領域がアンプとしての領域に比して大き
くなる。以上の説明はn形とp形を入れ換えても成立す
ることは明らかである。
That is, when a positive voltage is applied to the drain electrode 15 and a positive voltage is applied to the gate electrode 17, an n channel is formed in the surface region 12 sandwiched between the p layer 5, the n+ layer 6, and the n− layer 2. from the intermediate electrode 16 to the first gate electrode 9
Charging current flows through, turning on the MOSFETs on both sides. Furthermore, when a negative voltage is applied to the gate electrode 17, the divided n
An n-channel is formed in the second channel region 10 between the p" layer 5 in the intermediate region of the layers and the opposing p" layer 3, and the p" layer 3 intermediate electrode 16. Since the potential is equal to that of the first gate electrode 9, no channel is formed in the first channel region 7, and the MOSFETs on both sides are turned off. Therefore, the MOS constituted by the third region 3 on both sides by one fifth region 5 serving as an amplifier.
Can switch FET and is the main MOS
The area for the FET is larger than the area for the amplifier. It is clear that the above explanation holds true even if the n-type and p-type are interchanged.

また、第1図の構造で第一領域1とドレイン電極15の
間にp゛層を付加したI GBTを主たるスイッチング
素子とする複合MOS型半導体素子において以上の説明
はあてはまる。
Furthermore, the above explanation applies to a composite MOS type semiconductor device having the structure shown in FIG. 1 and having an IGBT as a main switching element with a p' layer added between the first region 1 and the drain electrode 15.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、主たるMOS型スイッチング素子に複
合化されるゲート駆動用アンプのオン時に働く領域とオ
フ時に働く領域を組み合わせて一体化するために、アン
プの主たる素子に対して占める面積の比が小さくなり、
入力容量の小さい電力用スイッチング素子として寸法の
小さくなった複合MOS型半導体素子を得ることができ
る。
According to the present invention, in order to combine and integrate a region that works when the gate drive amplifier is combined with the main MOS switching element and a region that works when it turns off, the ratio of the area occupied by the main element of the amplifier is increased. becomes smaller,
A composite MOS type semiconductor element with reduced dimensions can be obtained as a power switching element with a small input capacitance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の電力用MOSFETの半導
体素体の断面を示す斜視図、第2図は従来の複合MOS
FETの断面図である。 ■=第一領域(n”基板)、2:第二領域(n層)  
3:第三領域(p”層)  4:第四領域(n層層) 
 5:第五領域(p“層)  6:第六類kA(n”層
)  7:第一チャネル領域、8:ゲート絶縁膜、9:
第一ゲート電極、10;第二チャネル領域、12:第三
ヂャネル領域、14:ソース電極、15ニドレイン電極
、16:中間電極、17:第二く第三)ゲート電極。 ″・14.・、ン
FIG. 1 is a perspective view showing a cross section of a semiconductor element of a power MOSFET according to an embodiment of the present invention, and FIG. 2 is a conventional composite MOS.
It is a sectional view of FET. ■=First region (n” substrate), 2: Second region (n layer)
3: Third region (p” layer) 4: Fourth region (n layer)
5: Fifth region (p" layer) 6: Sixth class kA (n" layer) 7: First channel region, 8: Gate insulating film, 9:
First gate electrode, 10: second channel region, 12: third channel region, 14: source electrode, 15 drain electrode, 16: intermediate electrode, 17: second and third) gate electrode. ″・14.・、N

Claims (1)

【特許請求の範囲】[Claims] (1)高不純物濃度で第一導電形の第一領域と、第一領
域上に設けられた低不純物濃度の第一導電形の第二領域
と、第二領域の表面部に選択的に形成された第二導電形
で互いに独立した第三領域および第五領域と、第三領域
および第五領域表面部に選択的に形成された高不純物濃
度で第一導電形の第四領域および第六領域を有し、第三
領域表面の第二領域と第四領域とにはさまれた部分を第
一チャネル領域、第二領域表面の第三領域と第五領域と
にはさまれた部分を第二チャネル領域、第五領域表面の
第二領域と第六領域にはさまれた部分を第三チャネル領
域とし、各チャネル領域のそれぞれの上に絶縁膜を介し
て第一ゲート電極、第二ゲート電極、および第三ゲート
電極を有し、第二、第三ゲート電極は互いにゲート端子
に接続され、第三領域と第四領域表面に同時に接触する
ソース電極ならびに第六領域と第五領域表面に同時に接
触し第一ゲート電極に接続される中間電極が形成され、
かつ第一領域表面にドレイン電極が形成されるものにお
いて、第五領域の表面に形成される第六領域は分割され
て平行な2列に配置された部分よりなり、各分割部分列
の縁部上に第二、第三ゲート電極を兼ねるゲート電極が
ゲート端子に接続されて設けられ、第三領域は第五領域
の両側に形成されたことを特徴とする複合MOS型半導
体素子。
(1) Selectively formed in the first region of the first conductivity type with high impurity concentration, the second region of the first conductivity type with low impurity concentration provided on the first region, and the surface portion of the second region A third region and a fifth region of the second conductivity type, which are independent from each other, and a fourth region and a sixth region of the first conductivity type with a high impurity concentration selectively formed on the surfaces of the third region and the fifth region. The part of the surface of the third region sandwiched between the second region and the fourth region is the first channel region, and the part of the surface of the second region sandwiched between the third region and the fifth region is the first channel region. A portion of the surface of the second channel region and the fifth region sandwiched between the second region and the sixth region is defined as a third channel region. a gate electrode, and a third gate electrode, the second and third gate electrodes are connected to each other to the gate terminal, and a source electrode and the surfaces of the sixth and fifth regions are in simultaneous contact with the surfaces of the third region and the fourth region. An intermediate electrode is formed which is simultaneously in contact with the first gate electrode and connected to the first gate electrode.
In the device in which the drain electrode is formed on the surface of the first region, the sixth region formed on the surface of the fifth region is divided into two parts arranged in parallel rows, and the edge of each divided partial row is A composite MOS type semiconductor device, characterized in that gate electrodes serving as second and third gate electrodes are provided above the gate electrodes and are connected to the gate terminals, and the third region is formed on both sides of the fifth region.
JP63332821A 1988-12-29 1988-12-29 Composite mos type semiconductor element Pending JPH02178974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63332821A JPH02178974A (en) 1988-12-29 1988-12-29 Composite mos type semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63332821A JPH02178974A (en) 1988-12-29 1988-12-29 Composite mos type semiconductor element

Publications (1)

Publication Number Publication Date
JPH02178974A true JPH02178974A (en) 1990-07-11

Family

ID=18259178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63332821A Pending JPH02178974A (en) 1988-12-29 1988-12-29 Composite mos type semiconductor element

Country Status (1)

Country Link
JP (1) JPH02178974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155770A (en) * 1990-11-08 1993-06-22 Fujisawa Pharmaceut Co Ltd Suspensible composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155770A (en) * 1990-11-08 1993-06-22 Fujisawa Pharmaceut Co Ltd Suspensible composition

Similar Documents

Publication Publication Date Title
JP2973588B2 (en) MOS type semiconductor device
US5523599A (en) High voltage MIS field effect transistor
KR930022582A (en) Complex Controlled Semiconductor Device and Power Conversion Device Using the Same
US4935799A (en) Composite semiconductor device
JPH05167070A (en) Semiconductor device
JP3555680B2 (en) Semiconductor device
JPH02178974A (en) Composite mos type semiconductor element
JP2723868B2 (en) Semiconductor device
JPH03129764A (en) Semiconductor device
JPH0254969A (en) Mos type semiconductor device
JP2720574B2 (en) Dual-gate insulated gate bipolar transistor
JP3376294B2 (en) Semiconductor device
JPH0783117B2 (en) Semiconductor device
JP3301271B2 (en) Horizontal power MOSFET
JPH01111378A (en) Vertical mosfet
JPS60262468A (en) Mos type field-effect transistor
JPS6276557A (en) Insulated gate type self-turn-off element
JP3217552B2 (en) Horizontal high voltage semiconductor device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP3279281B2 (en) Semiconductor integrated circuit device
JPH01114079A (en) Semiconductor device
JPH10154812A (en) High withstand voltage semiconductor device
JPH0354477B2 (en)
JPS6384070A (en) Field-effect semiconductor device
JPS6338262A (en) Power mos field-effect transistor