JPH02178964A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02178964A
JPH02178964A JP63333259A JP33325988A JPH02178964A JP H02178964 A JPH02178964 A JP H02178964A JP 63333259 A JP63333259 A JP 63333259A JP 33325988 A JP33325988 A JP 33325988A JP H02178964 A JPH02178964 A JP H02178964A
Authority
JP
Japan
Prior art keywords
well
crystal defect
region
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63333259A
Other languages
Japanese (ja)
Other versions
JP3035915B2 (en
Inventor
Toshiki Yabu
俊樹 薮
Koji Naito
康志 内藤
Noritomo Shimizu
紀智 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63333259A priority Critical patent/JP3035915B2/en
Publication of JPH02178964A publication Critical patent/JPH02178964A/en
Application granted granted Critical
Publication of JP3035915B2 publication Critical patent/JP3035915B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To increase latch-up resistance by forming a crystal defect region into a substrate except a depletion layer region spread from each source, drain and channel region of a MOS transistor and the depletion layer region of the junction section of the substrate and a well. CONSTITUTION:Oxygen O<+> is implanted for shaping a crystal defect layer 5 into an n-well 4. Acceleration energy is selected so that the crystal defect layer 5 is formed near the peak value of the impurity concentration of the retrograde n-well 4 at that time. An element isolation 6, an nMOSFET 7 and a pMOSFET 8 are shaped, thus completing a CMOS structure semiconductor device. Since the crystal defect layer 5 has no effect on the operation of the pMOSFET 8, however, the crystal defect layer 5 is formed to a section lower than a depletion layer spread from each source, drain and channel region of the pMOSFET 8 in the n-well 4. Consequently, minority carriers causing latch-up are trapped to the crystal defect region 5, thus shortening the lifetime of minority carriers. Accordingly, latch-up resistance is increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体の少数キャリアのライフタイムの制御、
特にCMOSの耐ラツチアツプ構造として用いる半導体
装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to controlling the lifetime of minority carriers in semiconductors,
In particular, the present invention relates to a semiconductor device used as a CMOS latch-up resistant structure and a method for manufacturing the same.

従来の技術 CMOS構造を宵する半導体装置において、ラッチアッ
プは大きな課題であるが、これを抑制する方法の一つと
して数百keV以上の高加速エネルギーのイオン注入を
用いて形成するレトログレード6ウエルが盛んに研究さ
れている。高加速エネルギーのイオン注入は、高濃度の
不純物領域を半導体基板表面よりも深い位置に制御性よ
く形成できる。そのため、ウェル下部領域に不純物濃度
のピークを有するしl・ログレード型ウェルを形成した
り、高1度の埋め込み層を形成できるために、0NO8
構造で形成される寄生バイポーラのベース領域の抵抗を
低くでき、ラッチアップを誘引するトリガー電流を抑制
できる。また高加速エネルギー争イオン注入を用いると
熱処理時間を短くできるため、不純物の横方同店がりを
抑制できる。
Conventional technology Latch-up is a major problem in semiconductor devices with a CMOS structure, but one way to suppress this is to use retrograde 6-wells, which are formed using ion implantation with high acceleration energy of several hundred keV or more. is being actively researched. Ion implantation with high acceleration energy can form a highly concentrated impurity region at a position deeper than the surface of the semiconductor substrate with good controllability. Therefore, it is possible to form a log grade type well with a peak impurity concentration in the lower region of the well, or to form a buried layer with a high degree of 1 degree.
The resistance of the base region of the parasitic bipolar formed by the structure can be lowered, and the trigger current that induces latch-up can be suppressed. In addition, by using high acceleration energy ion implantation, the heat treatment time can be shortened, so it is possible to suppress the lateral migration of impurities.

以」二のことから、高加速エネルギー・イオン注入によ
りある程度ラッチアップ耐性を向上させるとともに、ウ
ェル間の分離間隔(n”−p”間隔)を小さくてきる。
From the above two points, the latch-up resistance can be improved to some extent by high acceleration energy ion implantation, and the separation distance between wells (n"-p" distance) can be reduced.

また高加速エネルギー争イオン注入において、加速エネ
ルギーを高くしたり、ドース量を増加していくと結晶欠
陥が発生しやすくなる現象がある。
Furthermore, in high acceleration energy ion implantation, there is a phenomenon in which crystal defects are more likely to occur as the acceleration energy is increased or the dose is increased.

例えば、シリコン基板にリン(p+)イオンを2MeV
でI XIO” 7cm2以上で注入した後800℃で
アニールすることにより、結晶欠陥が発生することが例
えばジャパニーズ・ジャーナル・オブ・アプライスト中
フィジックス25.6 (1986年)第474頁から
第477頁(JAPANESE JOllRNAL O
F APPLIED PHISICS、VOL、25.
NO,[i、198[i、PP、L474−L477、
M、TAMURA and  N、NATSUAKl、
”5econdary  Defects  in  
2MeV Pb。
For example, phosphorus (p+) ions are applied to a silicon substrate at a voltage of 2 MeV.
For example, Japanese Journal of Aplyst Physics 25.6 (1986), pp. 474 to 477 ( JAPANESE JOllRNAL O
F APPLIED PHYSICS, VOL, 25.
NO, [i, 198 [i, PP, L474-L477,
M, TAMURA and N, NATSUAKl,
“5econdary Defects in
2MeV Pb.

5phorus l11planted 5ilico
n”)に報告されている。
5phorus l11planted 5ilico
n”).

またしl・ログレード型ウェルに比へて、ラッチアップ
がより抑制できる別の手段として、エビ基板やSOI構
造が用いられているが、工程が複雑てありコストが高い
In addition, as another means for suppressing latch-up more than the L-log grade type well, a shrimp substrate or SOI structure is used, but the process is complicated and the cost is high.

発明が解決しようとする課題 しかし、かかる構成によれば工程が複雑でコストが高い
か、あるいは0NO8構造を有する半導体装置の更なる
高集積化に対してラッチアップを防止することが困難で
あるという問題があった。
Problems to be Solved by the Invention However, with such a structure, the process is complicated and the cost is high, or it is difficult to prevent latch-up even when semiconductor devices having an 0NO8 structure are further integrated. There was a problem.

本発明は上述の問題点に鑑み試されたもので、工程が容
易でコストが安く、ラッチアップ耐性を向」−できる半
導体装置及びその製造方法を提供することを目的とする
The present invention has been attempted in view of the above-mentioned problems, and an object of the present invention is to provide a semiconductor device that is easy to process, low in cost, and has improved latch-up resistance, and a method for manufacturing the same.

課題を解決するための手段 本発明は上述の課題を解決するため、第1導電型の半導
体基板に少なくとも第2導電型のウェルを有する0NO
8構造において、前記ウェル上に形成された第1のNO
8トランジスタのソース、ドレイン、チャネル各領域か
ら広がる第1の空乏層領域と、前記ウェル以外の前記基
板上に形成された第2のMOSトランジスタのソース、
ドレイン、チャネル各領域から広がる第2の空乏層領域
と、前記基板と前記ウェルとの接合部の第3の空乏層領
域の各空乏層領域を除く前記基板内に結晶欠陥領域を有
する構成を備えたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an 0NO semiconductor substrate having at least a well of a second conductivity type in a semiconductor substrate of a first conductivity type.
8 structure, the first NO formed on the well
a first depletion layer region extending from each source, drain, and channel region of the 8 transistor; and a source of a second MOS transistor formed on the substrate other than the well;
A structure including a crystal defect region in the substrate except for each depletion layer region of a second depletion layer region extending from each drain and channel region and a third depletion layer region at a junction between the substrate and the well. It is something that

作用 本発明は」二連した構成により、ラッチアップの原因と
なる少数キャリアか結晶欠陥領域にトラップされ、前記
少数キャリアのライフタイムが減少されるためラッチア
ップの抑制効果をより高めることができる。
Effects of the present invention Due to the dual configuration, the minority carriers that cause latch-up are trapped in the crystal defect region, and the lifetime of the minority carriers is reduced, so that the effect of suppressing latch-up can be further enhanced.

実施例 (実施例1) 第1図は本発明の第1の実施例における0NO8構造を
有する半導体装置のウェル層内部に結晶欠陥層を形成す
る工程図である。以下第1図を用いてウェル層内部に結
晶欠陥層を形成する工程を説明する。
Example (Example 1) FIG. 1 is a process diagram for forming a crystal defect layer inside a well layer of a semiconductor device having an 0NO8 structure in a first example of the present invention. The process of forming a crystal defect layer inside the well layer will be described below with reference to FIG.

p形ンリコン基板1上にイオン注入保護膜として酸化膜
2を形成し、さらにレジスト3を塗布してパターニング
を行ない、nウェル層形成部のレジストを選択的に現像
・除去する。この後、高加速エネルギーφイオン注入に
より700keVて]、0XIQI3・cm−2の条件
でリンp′″を注入し、レトログレードnウェル4を形
成する。さらに結晶欠陥層5をnウェル4内部に形成す
るため、ここでは酸素0+を注入する。この時、レトロ
グレードnウェル4の不純物濃度のピーク値付近に結晶
欠陥層5が形成されるよう加速エネルギーを選択する(
第1図(a)参照)。さらに素子分離6、n M OS
 F E T7.9NO8FET8を形成して、CNO
8構造半導体装置(第1図(b))を完成する。ただし
、結晶欠陥層5が9NO8FET8の動作に影響を及ぼ
さないため、結晶欠陥層5はnウェル4内部の、9NO
8FET8のソース、 ドレイン、チャネル各領域から
広がる空乏層よりも下部に形成する必要がある。
An oxide film 2 is formed as an ion implantation protective film on a p-type silicon substrate 1, and a resist 3 is further applied and patterned, and the resist in the n-well layer formation area is selectively developed and removed. Thereafter, phosphorus p''' is implanted by high acceleration energy φ ion implantation at 700 keV] under the conditions of 0XIQI3·cm-2 to form a retrograde n-well 4. Furthermore, a crystal defect layer 5 is placed inside the n-well 4. In order to form the crystal defect layer 5, oxygen 0+ is implanted here. At this time, the acceleration energy is selected so that the crystal defect layer 5 is formed near the peak value of the impurity concentration of the retrograde n-well 4 (
(See Figure 1(a)). Furthermore, element isolation 6, n M OS
FET7.9NO8FET8 is formed and CNO
An eight-structure semiconductor device (FIG. 1(b)) is completed. However, since the crystal defect layer 5 does not affect the operation of the 9NO8FET 8, the crystal defect layer 5 is
It is necessary to form it below the depletion layer extending from the source, drain, and channel regions of the 8FET8.

以上のように構成された本実例の半導体装置では、ノイ
ズ等で発生した少数キャリアは、レトログレードnウェ
ル4内に形成された結晶欠陥層5を増過することにより
ライフタイムが減少される。
In the semiconductor device of this example configured as described above, minority carriers generated due to noise or the like increase in the crystal defect layer 5 formed in the retrograde n-well 4, thereby reducing the lifetime.

従って、ラッチアップ耐性を向上することかできる。ま
た本実施例では結晶欠陥層5はレトログレードnウェル
4内の不純物濃度のピーク値付近に形成しているため、
抵抗が一番低く、前記少数キャリアの収集能力が高い。
Therefore, latch-up resistance can be improved. Furthermore, in this embodiment, since the crystal defect layer 5 is formed near the peak value of the impurity concentration in the retrograde n-well 4,
It has the lowest resistance and the ability to collect the minority carriers is high.

そのためより効果的にラッチアップ耐性を」二げること
ができる。
Therefore, latch-up resistance can be more effectively improved.

(実施例2) 第2図は本発明の第2の実施例における半導体装置の埋
め込み層内部に結晶欠陥層を形成する工程図である。以
下第2図を用いて埋め込み層内部に結晶欠陥層を形成す
る工程を説明する。
(Example 2) FIG. 2 is a process diagram for forming a crystal defect layer inside a buried layer of a semiconductor device in a second example of the present invention. The process of forming a crystal defect layer inside the buried layer will be described below with reference to FIG.

p形シリコン基板1上にイオン注入保護膜として酸化膜
2を形成後、p形埋め込み層9を形成するため全面にボ
ロンB4を1.5MeVで3.OX 1013cm−2
高加速エネルギー・イオン注入する。さらに結晶欠陥層
10を形成するため酸素04を注入する。この時、結晶
欠陥層IOを埋め込み層内部に形成するよう加速エネル
ギーを選択する。その後、第1の実施例と同様にして、
レトログレードnウェル4(第2図(a)参照)、素子
分離6、MOSFET7.8を形成して、CMOS構造
半導体装置(第2図(b))を完成する。
After forming an oxide film 2 as an ion implantation protective film on a p-type silicon substrate 1, boron B4 is applied to the entire surface at 1.5 MeV for 3.5 minutes to form a p-type buried layer 9. OX 1013cm-2
High acceleration energy ion implantation. Further, oxygen 04 is implanted to form a crystal defect layer 10. At this time, acceleration energy is selected so as to form the crystal defect layer IO inside the buried layer. After that, in the same manner as in the first embodiment,
A retrograde n-well 4 (see FIG. 2(a)), an element isolation 6, and a MOSFET 7.8 are formed to complete a CMOS structure semiconductor device (see FIG. 2(b)).

以上のように構成された本実施例の半導体装置では、ノ
イズ等で発生した少数キャリアは、抵抗の低い埋め込み
層9内に集められ、さらに前記埋め込み層内部に形成さ
れた結晶欠陥層IOを通過することによりライフタイム
が減少される。従って、ラッチアップ耐性を向上するこ
とができる。また、結晶欠陥層10は埋め込み層内部に
形成しているため、半導体基板表面付近に形成されたM
OSFET7.8やレトログレードnウェル4には影響
を及ぼすことはない。更に結晶欠陥層10はnウェル4
と基板1の接合部の空乏層領域下部により近い領域にあ
ればよりラッチアップ耐性を高めることができる。
In the semiconductor device of this embodiment configured as described above, minority carriers generated due to noise etc. are collected in the buried layer 9 with low resistance, and further passed through the crystal defect layer IO formed inside the buried layer. This will reduce the lifetime. Therefore, latch-up resistance can be improved. Moreover, since the crystal defect layer 10 is formed inside the buried layer, M
OSFET7.8 and retrograde n-well 4 are not affected. Furthermore, the crystal defect layer 10 is formed in the n-well 4.
If the region is closer to the lower part of the depletion layer region at the junction between the substrate 1 and the substrate 1, the latch-up resistance can be further improved.

なお、結晶欠陥層を第1の実施例てはウェル内部、第2
の実施例では埋め込み層内部に形成したが、これらの領
域に限らず基板内部であればよい。
Note that the crystal defect layer is formed inside the well in the first embodiment, and in the second embodiment.
In the embodiment described above, it was formed inside the buried layer, but it is not limited to these regions and may be formed inside the substrate.

ただし、MOSトランジスタのソース、ドレイン、チャ
ネル各領域から広がる空乏層領域と、基板とウェルとの
接合部の空乏層領域に結晶欠陥層が存在するとリーク電
流の原因になるため、これらの領域が除外される。また
、第1、第2の実施例においてシリコン基板を用いたが
、シリコン基板以外の半導体基板を用いてもよい。p形
シリコン基板を用いたが、n形シリコン基板でも同等の
効果が得られるが他の導電型は逆にする必要がある。
However, if a crystal defect layer exists in the depletion layer region spreading from the source, drain, and channel regions of the MOS transistor and the depletion layer region at the junction between the substrate and the well, this will cause leakage current, so these regions are excluded. be done. Further, although a silicon substrate was used in the first and second embodiments, a semiconductor substrate other than a silicon substrate may be used. Although a p-type silicon substrate was used, the same effect can be obtained with an n-type silicon substrate, but other conductivity types must be reversed.

またウェル構造はツインΦウェル構造を用いてもよい。Further, the well structure may be a twin Φ well structure.

また、結晶欠陥層を形成するために酸素0+をイオン注
入したが、S 11  A ul  P tなどを用い
てもよい。さらに、結晶欠陥層を形成するには、」1記
のような不純物を用いなくとも、高加速エネルギー・イ
オン注入によりレトログレード・ウェルや埋め込み層を
形成する際に、不純物濃度を少なくともI X 10”
/cm2以上とすることで結晶欠陥を同時に発生させる
ことができる。また低ドーズ量のイオン注入と酸素濃度
の高い半導体基板を組み合わせても同等の効果が得られ
る。
Further, although oxygen 0+ was ion-implanted to form a crystal defect layer, S 11 A ul P t or the like may be used. Furthermore, in order to form a crystal defect layer, the impurity concentration must be at least I ”
/cm2 or more, crystal defects can be generated at the same time. Furthermore, the same effect can be obtained by combining low-dose ion implantation and a semiconductor substrate with a high oxygen concentration.

発明の効果 以」二の説明から明らかなように、本発明は、MOSト
ランジスタのソース、ドレイン、チャネル各領域から広
がる空乏層領域と、基板とウェルとの接合部空乏層領域
を除く前記基板内に結晶欠陥領域を設けることにより、
ラッチアップの原因となる少数キャリアが結晶欠陥領域
にトラップされ、前記少数キャリアのライフタイムが減
少されるため、ラッチアップ耐性を向」二でき、その実
用的効果は大きい。
Effects of the Invention As is clear from the second explanation, the present invention provides a depletion layer region extending from the source, drain, and channel regions of a MOS transistor, and a depletion layer region at the junction between the substrate and the well in the substrate. By providing a crystal defect region in
Minority carriers that cause latch-up are trapped in crystal defect regions, and the lifetime of the minority carriers is reduced, so latch-up resistance can be improved, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における半導体装置の製
造方法を示す工程図、第2図は本発明の第2の実施例に
おける半導体装置の製造方法を示す工程図である。 4・・・・レトログレードnウェル、5.10・・・・
結晶欠陥層、9・・・・p形埋め込み屑。
FIG. 1 is a process diagram showing a method of manufacturing a semiconductor device according to a first embodiment of the invention, and FIG. 2 is a process diagram showing a method of manufacturing a semiconductor device according to a second embodiment of the invention. 4...Retrograde n-well, 5.10...
Crystal defect layer, 9...p-type buried waste.

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板に少なくとも第2導電型
のウェルを有するCMOS構造において、前記ウェル上
に形成された第1のMOSトランジスタのソース、ドレ
イン、チャネル各領域から広がる第1の空乏層領域と、
前記ウェル以外の前記基板上に形成された第2のMOS
トランジスタのソース、ドレイン、チャネル各領域から
広がる第2の空乏層領域と、前記基板と前記ウェルとの
接合部の第3の空乏層領域の各空乏層領域を除く前記基
板内に結晶欠陥領域を有してなる半導体装置。
(1) In a CMOS structure having at least a well of a second conductivity type in a semiconductor substrate of a first conductivity type, a first depletion that spreads from the source, drain, and channel regions of a first MOS transistor formed on the well layer area;
a second MOS formed on the substrate other than the well;
A crystal defect region is formed in the substrate except for each depletion layer region of a second depletion layer region extending from each source, drain, and channel region of the transistor and a third depletion layer region at a junction between the substrate and the well. A semiconductor device comprising:
(2)第1導電型の半導体基板に少なくとも第2導電型
のウェルを有するCMOS構造において、前記ウェル上
に形成された第1のMOSトランジスタのソース、ドレ
イン、チャネル各領域から広がる第1の空乏層領域と、
前記ウェル以外の前記基板上に形成された第2のMOS
トランジスタのソース、ドレイン、チャネル各領域から
広がる第2の空乏層領域と、前記基板と前記ウェルとの
接合部の第3の空乏層領域の各空乏層領域を除く前記基
板内にイオン注入により結晶欠陥領域を形成することを
特徴とする半導体装置の製造方法。
(2) In a CMOS structure having at least a well of a second conductivity type in a semiconductor substrate of a first conductivity type, a first depletion that spreads from the source, drain, and channel regions of a first MOS transistor formed on the well; layer area;
a second MOS formed on the substrate other than the well;
Crystals are formed by ion implantation into the substrate except for the second depletion layer region extending from the source, drain, and channel regions of the transistor and the third depletion layer region at the junction between the substrate and the well. A method for manufacturing a semiconductor device, the method comprising forming a defective region.
JP63333259A 1988-12-29 1988-12-29 Semiconductor device and manufacturing method thereof Expired - Lifetime JP3035915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63333259A JP3035915B2 (en) 1988-12-29 1988-12-29 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63333259A JP3035915B2 (en) 1988-12-29 1988-12-29 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02178964A true JPH02178964A (en) 1990-07-11
JP3035915B2 JP3035915B2 (en) 2000-04-24

Family

ID=18264109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63333259A Expired - Lifetime JP3035915B2 (en) 1988-12-29 1988-12-29 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3035915B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858460B2 (en) * 1999-06-16 2005-02-22 Micron Technology, Inc. Retrograde well structure for a CMOS imager

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858460B2 (en) * 1999-06-16 2005-02-22 Micron Technology, Inc. Retrograde well structure for a CMOS imager

Also Published As

Publication number Publication date
JP3035915B2 (en) 2000-04-24

Similar Documents

Publication Publication Date Title
US5888874A (en) Bipolar transistor and method of forming BiCMOS circuitry
TW521394B (en) Method of fabricating dual threshold voltage n-channel and p-channel MOSFETs with a single extra masked implant operation
US4924277A (en) MIS transistor device
US5950079A (en) Semiconductor processing methods of forming complementary metal oxide semiconductor memory and other circuitry
JPH04239760A (en) Manufacture of semiconductor device
JPH02178964A (en) Semiconductor device and manufacture thereof
JP2751853B2 (en) Semiconductor device and manufacturing method thereof
JPH11204786A (en) Semiconductor device provided with high breakdown voltage insulating gate type field effect transistor and manufacture thereof
JPH1065169A (en) Semiconductor device with double junction structure and its manufacture
JPH0575041A (en) Cmos semiconductor device
JPH0515069B2 (en)
JP2682426B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2808620B2 (en) Method for manufacturing semiconductor device
JPH04196170A (en) Semiconductor device and manufacture thereof
JPH0611034B2 (en) Method for manufacturing semiconductor device
JPH0630390B2 (en) Method for manufacturing CMOS semiconductor device
JPH08330439A (en) Manufacture of semiconductor device
JPH0744276B2 (en) MIS type semiconductor device
JPH02305437A (en) Manufacture of semiconductor device
JPH0415950A (en) Complementary field-effect semiconductor device and manufacture thereof
JP2706441B2 (en) Method of manufacturing complementary MIS integrated circuit
JPS627148A (en) Complementary semiconductor device and manufacture thereof
JPH09223747A (en) Manufacture of semiconductor device
JP2926723B2 (en) Complementary semiconductor device
JPH01192131A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 9

EXPY Cancellation because of completion of term