JPH02178964A - Semiconductor device and manufacture thereof - Google Patents
Semiconductor device and manufacture thereofInfo
- Publication number
- JPH02178964A JPH02178964A JP63333259A JP33325988A JPH02178964A JP H02178964 A JPH02178964 A JP H02178964A JP 63333259 A JP63333259 A JP 63333259A JP 33325988 A JP33325988 A JP 33325988A JP H02178964 A JPH02178964 A JP H02178964A
- Authority
- JP
- Japan
- Prior art keywords
- well
- crystal defect
- region
- substrate
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000013078 crystal Substances 0.000 claims abstract description 35
- 230000007547 defect Effects 0.000 claims abstract description 35
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 238000000034 method Methods 0.000 claims description 13
- 238000005468 ion implantation Methods 0.000 claims description 11
- 230000002950 deficient Effects 0.000 claims 1
- 230000001133 acceleration Effects 0.000 abstract description 11
- 239000000969 carrier Substances 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 7
- 239000012535 impurity Substances 0.000 abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 abstract description 5
- 239000001301 oxygen Substances 0.000 abstract description 5
- 238000002955 isolation Methods 0.000 abstract description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract 1
- 238000007493 shaping process Methods 0.000 abstract 1
- 238000004904 shortening Methods 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 241000238557 Decapoda Species 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0921—Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は半導体の少数キャリアのライフタイムの制御、
特にCMOSの耐ラツチアツプ構造として用いる半導体
装置及びその製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to controlling the lifetime of minority carriers in semiconductors,
In particular, the present invention relates to a semiconductor device used as a CMOS latch-up resistant structure and a method for manufacturing the same.
従来の技術
CMOS構造を宵する半導体装置において、ラッチアッ
プは大きな課題であるが、これを抑制する方法の一つと
して数百keV以上の高加速エネルギーのイオン注入を
用いて形成するレトログレード6ウエルが盛んに研究さ
れている。高加速エネルギーのイオン注入は、高濃度の
不純物領域を半導体基板表面よりも深い位置に制御性よ
く形成できる。そのため、ウェル下部領域に不純物濃度
のピークを有するしl・ログレード型ウェルを形成した
り、高1度の埋め込み層を形成できるために、0NO8
構造で形成される寄生バイポーラのベース領域の抵抗を
低くでき、ラッチアップを誘引するトリガー電流を抑制
できる。また高加速エネルギー争イオン注入を用いると
熱処理時間を短くできるため、不純物の横方同店がりを
抑制できる。Conventional technology Latch-up is a major problem in semiconductor devices with a CMOS structure, but one way to suppress this is to use retrograde 6-wells, which are formed using ion implantation with high acceleration energy of several hundred keV or more. is being actively researched. Ion implantation with high acceleration energy can form a highly concentrated impurity region at a position deeper than the surface of the semiconductor substrate with good controllability. Therefore, it is possible to form a log grade type well with a peak impurity concentration in the lower region of the well, or to form a buried layer with a high degree of 1 degree.
The resistance of the base region of the parasitic bipolar formed by the structure can be lowered, and the trigger current that induces latch-up can be suppressed. In addition, by using high acceleration energy ion implantation, the heat treatment time can be shortened, so it is possible to suppress the lateral migration of impurities.
以」二のことから、高加速エネルギー・イオン注入によ
りある程度ラッチアップ耐性を向上させるとともに、ウ
ェル間の分離間隔(n”−p”間隔)を小さくてきる。From the above two points, the latch-up resistance can be improved to some extent by high acceleration energy ion implantation, and the separation distance between wells (n"-p" distance) can be reduced.
また高加速エネルギー争イオン注入において、加速エネ
ルギーを高くしたり、ドース量を増加していくと結晶欠
陥が発生しやすくなる現象がある。Furthermore, in high acceleration energy ion implantation, there is a phenomenon in which crystal defects are more likely to occur as the acceleration energy is increased or the dose is increased.
例えば、シリコン基板にリン(p+)イオンを2MeV
でI XIO” 7cm2以上で注入した後800℃で
アニールすることにより、結晶欠陥が発生することが例
えばジャパニーズ・ジャーナル・オブ・アプライスト中
フィジックス25.6 (1986年)第474頁から
第477頁(JAPANESE JOllRNAL O
F APPLIED PHISICS、VOL、25.
NO,[i、198[i、PP、L474−L477、
M、TAMURA and N、NATSUAKl、
”5econdary Defects in
2MeV Pb。For example, phosphorus (p+) ions are applied to a silicon substrate at a voltage of 2 MeV.
For example, Japanese Journal of Aplyst Physics 25.6 (1986), pp. 474 to 477 ( JAPANESE JOllRNAL O
F APPLIED PHYSICS, VOL, 25.
NO, [i, 198 [i, PP, L474-L477,
M, TAMURA and N, NATSUAKl,
“5econdary Defects in
2MeV Pb.
5phorus l11planted 5ilico
n”)に報告されている。5phorus l11planted 5ilico
n”).
またしl・ログレード型ウェルに比へて、ラッチアップ
がより抑制できる別の手段として、エビ基板やSOI構
造が用いられているが、工程が複雑てありコストが高い
。In addition, as another means for suppressing latch-up more than the L-log grade type well, a shrimp substrate or SOI structure is used, but the process is complicated and the cost is high.
発明が解決しようとする課題
しかし、かかる構成によれば工程が複雑でコストが高い
か、あるいは0NO8構造を有する半導体装置の更なる
高集積化に対してラッチアップを防止することが困難で
あるという問題があった。Problems to be Solved by the Invention However, with such a structure, the process is complicated and the cost is high, or it is difficult to prevent latch-up even when semiconductor devices having an 0NO8 structure are further integrated. There was a problem.
本発明は上述の問題点に鑑み試されたもので、工程が容
易でコストが安く、ラッチアップ耐性を向」−できる半
導体装置及びその製造方法を提供することを目的とする
。The present invention has been attempted in view of the above-mentioned problems, and an object of the present invention is to provide a semiconductor device that is easy to process, low in cost, and has improved latch-up resistance, and a method for manufacturing the same.
課題を解決するための手段
本発明は上述の課題を解決するため、第1導電型の半導
体基板に少なくとも第2導電型のウェルを有する0NO
8構造において、前記ウェル上に形成された第1のNO
8トランジスタのソース、ドレイン、チャネル各領域か
ら広がる第1の空乏層領域と、前記ウェル以外の前記基
板上に形成された第2のMOSトランジスタのソース、
ドレイン、チャネル各領域から広がる第2の空乏層領域
と、前記基板と前記ウェルとの接合部の第3の空乏層領
域の各空乏層領域を除く前記基板内に結晶欠陥領域を有
する構成を備えたものである。Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an 0NO semiconductor substrate having at least a well of a second conductivity type in a semiconductor substrate of a first conductivity type.
8 structure, the first NO formed on the well
a first depletion layer region extending from each source, drain, and channel region of the 8 transistor; and a source of a second MOS transistor formed on the substrate other than the well;
A structure including a crystal defect region in the substrate except for each depletion layer region of a second depletion layer region extending from each drain and channel region and a third depletion layer region at a junction between the substrate and the well. It is something that
作用
本発明は」二連した構成により、ラッチアップの原因と
なる少数キャリアか結晶欠陥領域にトラップされ、前記
少数キャリアのライフタイムが減少されるためラッチア
ップの抑制効果をより高めることができる。Effects of the present invention Due to the dual configuration, the minority carriers that cause latch-up are trapped in the crystal defect region, and the lifetime of the minority carriers is reduced, so that the effect of suppressing latch-up can be further enhanced.
実施例
(実施例1)
第1図は本発明の第1の実施例における0NO8構造を
有する半導体装置のウェル層内部に結晶欠陥層を形成す
る工程図である。以下第1図を用いてウェル層内部に結
晶欠陥層を形成する工程を説明する。Example (Example 1) FIG. 1 is a process diagram for forming a crystal defect layer inside a well layer of a semiconductor device having an 0NO8 structure in a first example of the present invention. The process of forming a crystal defect layer inside the well layer will be described below with reference to FIG.
p形ンリコン基板1上にイオン注入保護膜として酸化膜
2を形成し、さらにレジスト3を塗布してパターニング
を行ない、nウェル層形成部のレジストを選択的に現像
・除去する。この後、高加速エネルギーφイオン注入に
より700keVて]、0XIQI3・cm−2の条件
でリンp′″を注入し、レトログレードnウェル4を形
成する。さらに結晶欠陥層5をnウェル4内部に形成す
るため、ここでは酸素0+を注入する。この時、レトロ
グレードnウェル4の不純物濃度のピーク値付近に結晶
欠陥層5が形成されるよう加速エネルギーを選択する(
第1図(a)参照)。さらに素子分離6、n M OS
F E T7.9NO8FET8を形成して、CNO
8構造半導体装置(第1図(b))を完成する。ただし
、結晶欠陥層5が9NO8FET8の動作に影響を及ぼ
さないため、結晶欠陥層5はnウェル4内部の、9NO
8FET8のソース、 ドレイン、チャネル各領域から
広がる空乏層よりも下部に形成する必要がある。An oxide film 2 is formed as an ion implantation protective film on a p-type silicon substrate 1, and a resist 3 is further applied and patterned, and the resist in the n-well layer formation area is selectively developed and removed. Thereafter, phosphorus p''' is implanted by high acceleration energy φ ion implantation at 700 keV] under the conditions of 0XIQI3·cm-2 to form a retrograde n-well 4. Furthermore, a crystal defect layer 5 is placed inside the n-well 4. In order to form the crystal defect layer 5, oxygen 0+ is implanted here. At this time, the acceleration energy is selected so that the crystal defect layer 5 is formed near the peak value of the impurity concentration of the retrograde n-well 4 (
(See Figure 1(a)). Furthermore, element isolation 6, n M OS
FET7.9NO8FET8 is formed and CNO
An eight-structure semiconductor device (FIG. 1(b)) is completed. However, since the crystal defect layer 5 does not affect the operation of the 9NO8FET 8, the crystal defect layer 5 is
It is necessary to form it below the depletion layer extending from the source, drain, and channel regions of the 8FET8.
以上のように構成された本実例の半導体装置では、ノイ
ズ等で発生した少数キャリアは、レトログレードnウェ
ル4内に形成された結晶欠陥層5を増過することにより
ライフタイムが減少される。In the semiconductor device of this example configured as described above, minority carriers generated due to noise or the like increase in the crystal defect layer 5 formed in the retrograde n-well 4, thereby reducing the lifetime.
従って、ラッチアップ耐性を向上することかできる。ま
た本実施例では結晶欠陥層5はレトログレードnウェル
4内の不純物濃度のピーク値付近に形成しているため、
抵抗が一番低く、前記少数キャリアの収集能力が高い。Therefore, latch-up resistance can be improved. Furthermore, in this embodiment, since the crystal defect layer 5 is formed near the peak value of the impurity concentration in the retrograde n-well 4,
It has the lowest resistance and the ability to collect the minority carriers is high.
そのためより効果的にラッチアップ耐性を」二げること
ができる。Therefore, latch-up resistance can be more effectively improved.
(実施例2)
第2図は本発明の第2の実施例における半導体装置の埋
め込み層内部に結晶欠陥層を形成する工程図である。以
下第2図を用いて埋め込み層内部に結晶欠陥層を形成す
る工程を説明する。(Example 2) FIG. 2 is a process diagram for forming a crystal defect layer inside a buried layer of a semiconductor device in a second example of the present invention. The process of forming a crystal defect layer inside the buried layer will be described below with reference to FIG.
p形シリコン基板1上にイオン注入保護膜として酸化膜
2を形成後、p形埋め込み層9を形成するため全面にボ
ロンB4を1.5MeVで3.OX 1013cm−2
高加速エネルギー・イオン注入する。さらに結晶欠陥層
10を形成するため酸素04を注入する。この時、結晶
欠陥層IOを埋め込み層内部に形成するよう加速エネル
ギーを選択する。その後、第1の実施例と同様にして、
レトログレードnウェル4(第2図(a)参照)、素子
分離6、MOSFET7.8を形成して、CMOS構造
半導体装置(第2図(b))を完成する。After forming an oxide film 2 as an ion implantation protective film on a p-type silicon substrate 1, boron B4 is applied to the entire surface at 1.5 MeV for 3.5 minutes to form a p-type buried layer 9. OX 1013cm-2
High acceleration energy ion implantation. Further, oxygen 04 is implanted to form a crystal defect layer 10. At this time, acceleration energy is selected so as to form the crystal defect layer IO inside the buried layer. After that, in the same manner as in the first embodiment,
A retrograde n-well 4 (see FIG. 2(a)), an element isolation 6, and a MOSFET 7.8 are formed to complete a CMOS structure semiconductor device (see FIG. 2(b)).
以上のように構成された本実施例の半導体装置では、ノ
イズ等で発生した少数キャリアは、抵抗の低い埋め込み
層9内に集められ、さらに前記埋め込み層内部に形成さ
れた結晶欠陥層IOを通過することによりライフタイム
が減少される。従って、ラッチアップ耐性を向上するこ
とができる。また、結晶欠陥層10は埋め込み層内部に
形成しているため、半導体基板表面付近に形成されたM
OSFET7.8やレトログレードnウェル4には影響
を及ぼすことはない。更に結晶欠陥層10はnウェル4
と基板1の接合部の空乏層領域下部により近い領域にあ
ればよりラッチアップ耐性を高めることができる。In the semiconductor device of this embodiment configured as described above, minority carriers generated due to noise etc. are collected in the buried layer 9 with low resistance, and further passed through the crystal defect layer IO formed inside the buried layer. This will reduce the lifetime. Therefore, latch-up resistance can be improved. Moreover, since the crystal defect layer 10 is formed inside the buried layer, M
OSFET7.8 and retrograde n-well 4 are not affected. Furthermore, the crystal defect layer 10 is formed in the n-well 4.
If the region is closer to the lower part of the depletion layer region at the junction between the substrate 1 and the substrate 1, the latch-up resistance can be further improved.
なお、結晶欠陥層を第1の実施例てはウェル内部、第2
の実施例では埋め込み層内部に形成したが、これらの領
域に限らず基板内部であればよい。Note that the crystal defect layer is formed inside the well in the first embodiment, and in the second embodiment.
In the embodiment described above, it was formed inside the buried layer, but it is not limited to these regions and may be formed inside the substrate.
ただし、MOSトランジスタのソース、ドレイン、チャ
ネル各領域から広がる空乏層領域と、基板とウェルとの
接合部の空乏層領域に結晶欠陥層が存在するとリーク電
流の原因になるため、これらの領域が除外される。また
、第1、第2の実施例においてシリコン基板を用いたが
、シリコン基板以外の半導体基板を用いてもよい。p形
シリコン基板を用いたが、n形シリコン基板でも同等の
効果が得られるが他の導電型は逆にする必要がある。However, if a crystal defect layer exists in the depletion layer region spreading from the source, drain, and channel regions of the MOS transistor and the depletion layer region at the junction between the substrate and the well, this will cause leakage current, so these regions are excluded. be done. Further, although a silicon substrate was used in the first and second embodiments, a semiconductor substrate other than a silicon substrate may be used. Although a p-type silicon substrate was used, the same effect can be obtained with an n-type silicon substrate, but other conductivity types must be reversed.
またウェル構造はツインΦウェル構造を用いてもよい。Further, the well structure may be a twin Φ well structure.
また、結晶欠陥層を形成するために酸素0+をイオン注
入したが、S 11 A ul P tなどを用い
てもよい。さらに、結晶欠陥層を形成するには、」1記
のような不純物を用いなくとも、高加速エネルギー・イ
オン注入によりレトログレード・ウェルや埋め込み層を
形成する際に、不純物濃度を少なくともI X 10”
/cm2以上とすることで結晶欠陥を同時に発生させる
ことができる。また低ドーズ量のイオン注入と酸素濃度
の高い半導体基板を組み合わせても同等の効果が得られ
る。Further, although oxygen 0+ was ion-implanted to form a crystal defect layer, S 11 A ul P t or the like may be used. Furthermore, in order to form a crystal defect layer, the impurity concentration must be at least I ”
/cm2 or more, crystal defects can be generated at the same time. Furthermore, the same effect can be obtained by combining low-dose ion implantation and a semiconductor substrate with a high oxygen concentration.
発明の効果
以」二の説明から明らかなように、本発明は、MOSト
ランジスタのソース、ドレイン、チャネル各領域から広
がる空乏層領域と、基板とウェルとの接合部空乏層領域
を除く前記基板内に結晶欠陥領域を設けることにより、
ラッチアップの原因となる少数キャリアが結晶欠陥領域
にトラップされ、前記少数キャリアのライフタイムが減
少されるため、ラッチアップ耐性を向」二でき、その実
用的効果は大きい。Effects of the Invention As is clear from the second explanation, the present invention provides a depletion layer region extending from the source, drain, and channel regions of a MOS transistor, and a depletion layer region at the junction between the substrate and the well in the substrate. By providing a crystal defect region in
Minority carriers that cause latch-up are trapped in crystal defect regions, and the lifetime of the minority carriers is reduced, so latch-up resistance can be improved, which has a great practical effect.
第1図は本発明の第1の実施例における半導体装置の製
造方法を示す工程図、第2図は本発明の第2の実施例に
おける半導体装置の製造方法を示す工程図である。
4・・・・レトログレードnウェル、5.10・・・・
結晶欠陥層、9・・・・p形埋め込み屑。FIG. 1 is a process diagram showing a method of manufacturing a semiconductor device according to a first embodiment of the invention, and FIG. 2 is a process diagram showing a method of manufacturing a semiconductor device according to a second embodiment of the invention. 4...Retrograde n-well, 5.10...
Crystal defect layer, 9...p-type buried waste.
Claims (2)
のウェルを有するCMOS構造において、前記ウェル上
に形成された第1のMOSトランジスタのソース、ドレ
イン、チャネル各領域から広がる第1の空乏層領域と、
前記ウェル以外の前記基板上に形成された第2のMOS
トランジスタのソース、ドレイン、チャネル各領域から
広がる第2の空乏層領域と、前記基板と前記ウェルとの
接合部の第3の空乏層領域の各空乏層領域を除く前記基
板内に結晶欠陥領域を有してなる半導体装置。(1) In a CMOS structure having at least a well of a second conductivity type in a semiconductor substrate of a first conductivity type, a first depletion that spreads from the source, drain, and channel regions of a first MOS transistor formed on the well layer area;
a second MOS formed on the substrate other than the well;
A crystal defect region is formed in the substrate except for each depletion layer region of a second depletion layer region extending from each source, drain, and channel region of the transistor and a third depletion layer region at a junction between the substrate and the well. A semiconductor device comprising:
のウェルを有するCMOS構造において、前記ウェル上
に形成された第1のMOSトランジスタのソース、ドレ
イン、チャネル各領域から広がる第1の空乏層領域と、
前記ウェル以外の前記基板上に形成された第2のMOS
トランジスタのソース、ドレイン、チャネル各領域から
広がる第2の空乏層領域と、前記基板と前記ウェルとの
接合部の第3の空乏層領域の各空乏層領域を除く前記基
板内にイオン注入により結晶欠陥領域を形成することを
特徴とする半導体装置の製造方法。(2) In a CMOS structure having at least a well of a second conductivity type in a semiconductor substrate of a first conductivity type, a first depletion that spreads from the source, drain, and channel regions of a first MOS transistor formed on the well; layer area;
a second MOS formed on the substrate other than the well;
Crystals are formed by ion implantation into the substrate except for the second depletion layer region extending from the source, drain, and channel regions of the transistor and the third depletion layer region at the junction between the substrate and the well. A method for manufacturing a semiconductor device, the method comprising forming a defective region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63333259A JP3035915B2 (en) | 1988-12-29 | 1988-12-29 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63333259A JP3035915B2 (en) | 1988-12-29 | 1988-12-29 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02178964A true JPH02178964A (en) | 1990-07-11 |
JP3035915B2 JP3035915B2 (en) | 2000-04-24 |
Family
ID=18264109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63333259A Expired - Lifetime JP3035915B2 (en) | 1988-12-29 | 1988-12-29 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3035915B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6858460B2 (en) * | 1999-06-16 | 2005-02-22 | Micron Technology, Inc. | Retrograde well structure for a CMOS imager |
-
1988
- 1988-12-29 JP JP63333259A patent/JP3035915B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6858460B2 (en) * | 1999-06-16 | 2005-02-22 | Micron Technology, Inc. | Retrograde well structure for a CMOS imager |
Also Published As
Publication number | Publication date |
---|---|
JP3035915B2 (en) | 2000-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5888874A (en) | Bipolar transistor and method of forming BiCMOS circuitry | |
TW521394B (en) | Method of fabricating dual threshold voltage n-channel and p-channel MOSFETs with a single extra masked implant operation | |
US4924277A (en) | MIS transistor device | |
US5950079A (en) | Semiconductor processing methods of forming complementary metal oxide semiconductor memory and other circuitry | |
JPH04239760A (en) | Manufacture of semiconductor device | |
JPH02178964A (en) | Semiconductor device and manufacture thereof | |
JP2751853B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH11204786A (en) | Semiconductor device provided with high breakdown voltage insulating gate type field effect transistor and manufacture thereof | |
JPH1065169A (en) | Semiconductor device with double junction structure and its manufacture | |
JPH0575041A (en) | Cmos semiconductor device | |
JPH0515069B2 (en) | ||
JP2682426B2 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
JP2808620B2 (en) | Method for manufacturing semiconductor device | |
JPH04196170A (en) | Semiconductor device and manufacture thereof | |
JPH0611034B2 (en) | Method for manufacturing semiconductor device | |
JPH0630390B2 (en) | Method for manufacturing CMOS semiconductor device | |
JPH08330439A (en) | Manufacture of semiconductor device | |
JPH0744276B2 (en) | MIS type semiconductor device | |
JPH02305437A (en) | Manufacture of semiconductor device | |
JPH0415950A (en) | Complementary field-effect semiconductor device and manufacture thereof | |
JP2706441B2 (en) | Method of manufacturing complementary MIS integrated circuit | |
JPS627148A (en) | Complementary semiconductor device and manufacture thereof | |
JPH09223747A (en) | Manufacture of semiconductor device | |
JP2926723B2 (en) | Complementary semiconductor device | |
JPH01192131A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080225 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090225 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |