JPH02178513A - Device to control furnace temperature and nox - Google Patents
Device to control furnace temperature and noxInfo
- Publication number
- JPH02178513A JPH02178513A JP63334051A JP33405188A JPH02178513A JP H02178513 A JPH02178513 A JP H02178513A JP 63334051 A JP63334051 A JP 63334051A JP 33405188 A JP33405188 A JP 33405188A JP H02178513 A JPH02178513 A JP H02178513A
- Authority
- JP
- Japan
- Prior art keywords
- oxygen
- air
- nox
- meter
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000001301 oxygen Substances 0.000 claims abstract description 93
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 93
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 89
- 239000000446 fuel Substances 0.000 claims description 15
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 230000002829 reductive effect Effects 0.000 abstract description 9
- 239000007789 gas Substances 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 239000011819 refractory material Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000010801 sewage sludge Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Landscapes
- Regulation And Control Of Combustion (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、下水汚泥溶融炉、石炭用スラグクノプ炉、ご
み焼却炉及び溶融炉、製鉄用の高炉等の運転における酸
素富化燃焼形の炉内温度及びNOx制御装置に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an oxygen-enriched combustion type furnace used in the operation of a sewage sludge melting furnace, a coal slag Knopf furnace, a garbage incinerator and melting furnace, a blast furnace for steel manufacturing, etc. This invention relates to an internal temperature and NOx control device.
従来の酸素富化を用いた下水汚泥溶融炉等(以下炉と称
す)6は、第8図に示すように構成されている。炉6に
は、順次空気調節ダンパ14′、空気流量計16とを有
する空気ライン1により空気が供給される。また順次酸
素調節弁15′、酸素流量計17を有する酸素ライン2
により酸素富化用の酸素または酸素を高濃度に含むガス
が供給される。A conventional sewage sludge melting furnace or the like (hereinafter referred to as a furnace) 6 using oxygen enrichment is configured as shown in FIG. The furnace 6 is supplied with air by an air line 1 which in turn has an air conditioning damper 14' and an air flow meter 16. In addition, an oxygen line 2 having an oxygen control valve 15' and an oxygen flow meter 17 in sequence.
Oxygen for oxygen enrichment or gas containing a high concentration of oxygen is supplied by this method.
さらに炉6内にはNOx計5と温度計4が設けられてい
る。図中3は燃料ライン、7は表示計を示す。Furthermore, a NOx meter 5 and a thermometer 4 are provided within the furnace 6. In the figure, 3 indicates a fuel line, and 7 indicates a display meter.
炉6においては、溶融物による閉塞等を防止するための
温度上昇を行ない、かつ耐火材保護のために余り温度過
上昇とならぬよう例えば約1300〜+600’C程度
の比較的高温の状態で変動が少なくなるように炉内温度
を制御することが必要である。In the furnace 6, the temperature is raised to prevent clogging by molten material, and the temperature is kept at a relatively high temperature of about 1300 to +600'C, for example, to prevent the temperature from rising too much in order to protect the refractory material. It is necessary to control the furnace temperature so that fluctuations are reduced.
しかしながら、炉内を高温にした場合に発生し易いサー
マルNOX (注(1)参照)を低減することが必要
である。そのため酸素ライン2を通して酸素を炉6内に
供給し酸素富化した空気(0□濃度を大気濃度以上にし
た空気)による酸素富化燃焼を行っている。However, it is necessary to reduce thermal NOx (see note (1)), which tends to occur when the temperature inside the furnace is raised. Therefore, oxygen is supplied into the furnace 6 through the oxygen line 2 to perform oxygen-enriched combustion using oxygen-enriched air (air whose 0□ concentration is higher than the atmospheric concentration).
酸素富化燃焼とは空気中のN2より相対的にN2割合を
下げることで炉6から排出される排ガスを少くし、その
分温度を上げる燃焼である。空気比を1.0以上とする
と温度が高くなるととともに02濃度が高くなり又炉内
の過剰0□が高くなるためNOxが増加する。そこで還
元燃焼することで(空気比が1.0未満)炉内の0□を
不足させNOxを制御する。Oxygen-enriched combustion is combustion in which the amount of exhaust gas discharged from the furnace 6 is reduced by lowering the N2 ratio relative to N2 in the air, and the temperature is increased accordingly. When the air ratio is set to 1.0 or more, as the temperature increases, the 02 concentration increases and the excess 0□ in the furnace increases, resulting in an increase in NOx. Then, by performing reductive combustion (air ratio is less than 1.0), 0□ in the furnace becomes insufficient and NOx is controlled.
具体的には、供給空気量と混合酸素の量をそれぞれ調整
し高温状況及び全体空気比を保つようにする。しかしな
がら、自動制御方法が確立されていない現状では各状況
を目視観察しながら、知恵と経験で空気ライン1の空気
調節ダンパ14′ と酸素ライン2の酸素調節弁15′
を手動操作していた。Specifically, the amount of supplied air and the amount of mixed oxygen are adjusted respectively to maintain the high temperature condition and the overall air ratio. However, in the current situation where an automatic control method has not been established, the air adjustment damper 14' of the air line 1 and the oxygen adjustment valve 15' of the oxygen line 2 can be adjusted by visually observing each situation and using wisdom and experience.
was operated manually.
注(]) NOx生成機構には、次の二つがある。Note (]) There are the following two NOx generation mechanisms.
l) ツユエルNOx 燃料のNの量によりNOx発生
2) サーマルNOx 高温燃焼によるNOx発生こ
のサーマルNOxは次の反応式により発生する。l) Tsuyuer NOx NOx is generated depending on the amount of N in the fuel.2) Thermal NOx NOx is generated due to high temperature combustion.Thermal NOx is generated by the following reaction formula.
02+MO20+M (M :第3の物質)N、+
O:NO十N
N+O□;gNO+O
N 十〇l1=NO+ H
これらは温度が高いほど、0□濃度が高いほど右へ反応
し、Noが発生する。02+MO20+M (M: third substance) N, +
O:NO1N N+O□;gNO+ON 10l1=NO+H These react to the right as the temperature is higher and the concentration of 0□ is higher, and No is generated.
以上に説明したように炉は、溶融物による閉塞等を防止
するための温度上昇を行ない、かつ耐火材保護のために
余り温度過上昇とならぬよう比較的高温の状態でNOx
をおさえながら変動が少なくなるように炉内温度を制御
することが必要である。As explained above, the temperature of the furnace is raised to prevent blockages caused by molten material, and NOx is released in a relatively high temperature state to prevent the temperature from rising too much in order to protect the refractory material.
It is necessary to control the temperature inside the furnace so that fluctuations are reduced while suppressing the
NOxを低減する手段として、高温部において空気比1
.0以下の還元性燃焼を行なうことによりNOx発生を
抑制する方法がある。しかし、単に還元性燃焼を行なっ
た場合、そこでの熱発生量が少なくなり、必要な温度を
達成できない場合があるが、その際にはさらに手段の1
つとして酸素富化した空気(0□濃度を大気濃度以上に
した空気)を用いて、これを達成することが可能となる
。この場合高温部での酸素濃度(酸素富化率)の制御と
、全体としての空気過剰率(空気比)の制御とを併せて
行なう必要が生じる。しかしながら、現状では各状況を
目視観察しながら、知恵と経験で空気調節ダンパや酸素
調節弁等を手で操作していた。As a means to reduce NOx, an air ratio of 1 in the high temperature section
.. There is a method of suppressing NOx generation by performing reductive combustion of 0 or less. However, if only reductive combustion is performed, the amount of heat generated will be small and the required temperature may not be achieved.
This can be achieved by using oxygen-enriched air (air whose 0□ concentration is higher than atmospheric concentration). In this case, it is necessary to control the oxygen concentration (oxygen enrichment rate) in the high temperature section and control the excess air ratio (air ratio) as a whole. However, currently, they are manually operating air conditioning dampers, oxygen regulating valves, etc. using their wisdom and experience while visually observing each situation.
本発明は上記課題を解決するため次の手段を講する。 The present invention takes the following measures to solve the above problems.
すなわち、炉内温度及びNOx制御装置において、空気
ラインに空気制御ダンパおよび空気流量計を持ち、燃料
ラインに燃料流量計を持ち、酸素ラインに酸素制御弁お
よび酸素流量計を持つ酸素富化燃焼形の炉において、同
炉内に設けられる温度計およびNOx計と、出力を上記
空気制御ダンパへ送る空気流量調節器と、出力を上記酸
素制御弁へ送る酸素流量調節器と、上記温度計、NOx
計、空気流量計、燃料流量計、および酸素流量計の信号
を受け、出力を上記空気流量調節器および酸素流量調節
器へ送る演算処理装置とを備え、同演算処理装置は空気
比、酸素量、酸素富化率、空気供給量および酸素供給量
を求めるとともに、空気比が所定値以上で上記NOx計
の濃度が所定の設定許容値を越えた場合は酸素富化率を
固定して空気比を下げる操作信号を出力し、逆に空気比
が同所定値未満で、NOx計の濃度が同設定許容値を越
えた場合は酸素富化率を固定して空気比を上げる操作信
号を出力し、また、上記温度計の温度が所定の設定許容
値を越えた場合、空気比を固定し酸素富化率を下げる操
作信号を出力し、逆に同許容値より下った場合は、空気
比を固定して酸素富化率を上げる操作信号を出力するよ
うにした。In other words, in the furnace temperature and NOx control device, the oxygen-enriched combustion type has an air control damper and an air flow meter in the air line, a fuel flow meter in the fuel line, and an oxygen control valve and oxygen flow meter in the oxygen line. In the furnace, a thermometer and a NOx meter provided in the furnace, an air flow regulator that sends an output to the air control damper, an oxygen flow regulator that sends an output to the oxygen control valve, the thermometer, the NOx
a processor that receives signals from the air flow meter, fuel flow meter, and oxygen flow meter and sends output to the air flow controller and oxygen flow controller; , determine the oxygen enrichment rate, air supply amount, and oxygen supply amount, and if the air ratio exceeds the predetermined value and the concentration of the NOx meter exceeds the predetermined set tolerance value, fix the oxygen enrichment rate and change the air ratio. If the air ratio is below the same predetermined value and the NOx meter concentration exceeds the set allowable value, an operation signal is output to fix the oxygen enrichment rate and increase the air ratio. Also, if the temperature of the thermometer exceeds a predetermined set tolerance value, an operation signal is output to fix the air ratio and lower the oxygen enrichment rate, and conversely, if the temperature falls below the same tolerance value, the air ratio is reduced. It was designed to output a fixed operation signal to increase the oxygen enrichment rate.
(作用〕
上記手段により演算処理装置は、温度計、NOX計、空
気流量計、燃料流量計および酸素流量計の信号を受け、
空気比、酸素量、酸素富化率、空気供給■および酸素供
給量を算出するとともに、空気比が所定値以上で上記N
OX計の濃度が所定の設定許容値を越えた場合は酸素富
化率を固定して空気比を下げる操作信号を出力し、逆に
空気比が同所定値未満で、NOx計の濃度が同設定許容
値を越えた場合は酸素富化率を固定して空気比を上げる
操作信号を出力し、また、上記温度計の温度が所定の設
定許容値を越えた場合、空気比を固定し酸素富化率を下
げる操作信号を出力し、逆に同許容値より下った場合は
、空気比を固定して酸素富化率を上げる操作信号を出力
する。空気流!調節器と酸素流量調節器は演算処理装置
より信号を受は空気制御ダンパと酸素制御弁へそれぞれ
信号を送りそれらの開度を調節する。(Function) With the above means, the arithmetic processing device receives signals from the thermometer, NOX meter, air flow meter, fuel flow meter, and oxygen flow meter,
Calculate the air ratio, oxygen amount, oxygen enrichment rate, air supply ■ and oxygen supply amount, and if the air ratio exceeds the specified value, the above N
If the concentration of the OX meter exceeds a predetermined set tolerance value, the oxygen enrichment rate is fixed and an operation signal is output to lower the air ratio. Conversely, if the air ratio is less than the same predetermined value, the concentration of the NOx meter is the same. If the set tolerance is exceeded, the oxygen enrichment rate is fixed and an operation signal is output to increase the air ratio.Also, if the temperature of the thermometer exceeds the set tolerance, the air ratio is fixed and the oxygen It outputs an operation signal to lower the enrichment rate, and conversely, if it falls below the allowable value, it outputs an operation signal to fix the air ratio and increase the oxygen enrichment rate. Air flow! The regulator and oxygen flow regulator receive signals from the processing unit and send signals to the air control damper and oxygen control valve, respectively, to adjust their opening degrees.
このようにして容易にNOxを設定許容値以内に抑え、
所定の高温を維持できるようになる。In this way, NOx can be easily controlled within the set tolerance value.
It becomes possible to maintain a predetermined high temperature.
本発明の一実施例を第1図ないし第7図により説明する
。An embodiment of the present invention will be explained with reference to FIGS. 1 to 7.
第1図は全体構成図、第2図ないし第6図は作用説明図
、第7図は演算フロー図である。FIG. 1 is an overall configuration diagram, FIGS. 2 to 6 are action explanatory diagrams, and FIG. 7 is a calculation flow diagram.
なお、従来例で説明した部分は、冗長さをさけるため説
明を省略し、この発明に関する部分を主体に説明する。Note that the description of the portions described in the conventional example will be omitted to avoid redundancy, and the description will mainly focus on the portions related to the present invention.
第1図にて、熱電対形の温度計4の出力は第2の演算器
28と第4の演算器11へ送られる。またNOx計5の
出力は第3の演算器3日と第4の演算器11へ送られる
。空気流量指示調節計26は第4の演算器IIと空気流
量計16の出力を受は自己の出力を空気制御ダンパ14
へ送る。また酸素iJt量指示m節計27は第4の演算
器11と酸素流量計17の出力を受は自己の出力を酸素
制御弁15へ送る。In FIG. 1, the output of the thermocouple type thermometer 4 is sent to the second computing unit 28 and the fourth computing unit 11. Further, the output of the NOx meter 5 is sent to the third arithmetic unit 3 and the fourth arithmetic unit 11. The air flow rate indicating controller 26 receives the outputs of the fourth computing unit II and the air flow meter 16, and sends its own output to the air control damper 14.
send to Further, the oxygen iJt amount indicator m meter 27 receives the outputs of the fourth computing unit 11 and the oxygen flowmeter 17 and sends its own output to the oxygen control valve 15.
第1の演算器19は、空気流量計16、燃料ライン3に
設けられた燃料流量計18、および酸素流量計17の出
力を受は自己の出力を第2と第3の演算器28.38へ
送る。演算器28.38の出力は演算器11へ送られる
。また演算器11の出力は空気流量指示調節に’1i2
6と酸素流量指示調節器27へ送られる。The first computing unit 19 receives the outputs of the air flow meter 16, the fuel flow meter 18 provided in the fuel line 3, and the oxygen flow meter 17, and sends its own output to the second and third computing units 28.38. send to The outputs of the computing units 28 and 38 are sent to the computing unit 11. In addition, the output of the computing unit 11 is '1i2' for air flow rate indication adjustment.
6 and is sent to the oxygen flow rate indicating regulator 27.
演算処理装置20は第1ないし第4の演算器1928.
38.11を備えたものである。The arithmetic processing unit 20 includes first to fourth arithmetic units 1928.
38.11.
以上の構成をもとに以下に作用を説明する。The operation will be explained below based on the above configuration.
空気比λおよび酸素富化率Xは次の(1)および(2)
式で定義される。The air ratio λ and oxygen enrichment rate X are as follows (1) and (2)
Defined by Eq.
λ=に/(F・o t> −−−−−−・−−−−−
・−−−−−−(11χ−K / (A + B )
−−−−−−−−・・−一−−−−−・・(2)こ
こで、K:炉6に入る酸素量=0.21 (A+B)A
:空気量(供給)
B:酸素量(供給)
F:燃料供給量
OL :燃料の燃焼に必要な理論酸素量(1)、(2)
式より次の(3)、(4)式が成立する。λ= to/(F・o t> −−−−−−・−−−−−
・------(11χ-K / (A + B)
−−−−−−−・・−−−−−−・・(2) Here, K: Amount of oxygen entering the furnace 6 = 0.21 (A + B) A
: Air amount (supply) B: Oxygen amount (supply) F: Fuel supply amount OL : Theoretical oxygen amount required for fuel combustion (1), (2)
From the equations, the following equations (3) and (4) hold true.
A −(K10.79) (1/x −1) −−−
−−−−−43)B=(に10.79)(1−0,21
/x) −−−−−−−・・・・−(4)なお(1)
式よりKはλに比例するのでKをλでおきかえて考える
。A - (K10.79) (1/x -1) ---
-------43)B=(10.79)(1-0,21
/x) −−−−−−−・・・・−(4) Note (1)
From the formula, K is proportional to λ, so consider replacing K with λ.
第1の演算器19は空気流量計16、燃料流量計18、
および酸素流量計17の信号を受けて(1)式により空
気比λを求め演算器28.38へ送る。演算器28は温
度計4と演算器19の信号を受けてそのときの酸素富化
比率Xを(2)式により求めて出力する。また演算器3
日はNOx計5と演算器19の信号を受けて炉6に入る
酸素1i1Kを出力する。このときの空気比λとNOx
、O,の関係は第2図に、空気比λと温度との関係は第
3図にそれぞれ示すようになる。また酸素富化率Xと温
度との関係は第4図のようになる。The first computing unit 19 includes an air flow meter 16, a fuel flow meter 18,
In response to the signal from the oxygen flow meter 17, the air ratio λ is calculated using equation (1) and sent to the calculator 28.38. The computing unit 28 receives the signals from the thermometer 4 and the computing unit 19, calculates the oxygen enrichment ratio X at that time using equation (2), and outputs it. Also, computing unit 3
After receiving the signals from the NOx meter 5 and the computing unit 19, it outputs the oxygen 1i1K that enters the furnace 6. Air ratio λ and NOx at this time
, O, are shown in FIG. 2, and the relationship between the air ratio λ and temperature is shown in FIG. 3. Further, the relationship between oxygen enrichment rate X and temperature is as shown in FIG.
そこで演算器11は演算器28.38の信号を受けて(
3)、(4)式より空気IAと酸素IB求めるとともに
次のような演算処理を行う。Therefore, the computing unit 11 receives the signals from the computing units 28 and 38 (
3) From equations (4), air IA and oxygen IB are determined, and the following arithmetic processing is performed.
すなわち、空気比がNOxが極少値となるλI(!−f
0.7)以上(第2図参照)で排ガス中のNOx濃度、
すなわちNOx計5の濃度が設定許容値を越えた場合は
酸素富化率を固定して空気比を下げる(第3図参照)操
作信号を出力し、逆に空気比が71未満で、NOx計5
の濃度が同設定許容値を越えた場合は酸素富化率を固定
して空気比を上げる操作信号を出力する。In other words, the air ratio is λI(!-f
0.7) or more (see Figure 2), the NOx concentration in the exhaust gas,
In other words, if the concentration of the NOx meter 5 exceeds the set allowable value, an operation signal is output to fix the oxygen enrichment rate and lower the air ratio (see Figure 3), and conversely, if the air ratio is less than 71, the NOx meter 5
If the concentration exceeds the set allowable value, an operation signal is output to fix the oxygen enrichment rate and increase the air ratio.
また、炉6内温度すなわち温度計4の温度が設定許容値
を越えた場合、空気比を固定し酸素富化率を下げる(第
4図参照)操作信号を出力し、逆に同設定許容値より下
った場合は、空気比を固定して酸素富化率を上げる操作
信号を出力する6以上の関係を表1に示す。In addition, if the temperature inside the furnace 6, that is, the temperature of the thermometer 4, exceeds the set allowable value, an operation signal is output to fix the air ratio and lower the oxygen enrichment rate (see Figure 4), and vice versa. Table 1 shows the relationship of 6 or more in which an operation signal is output to fix the air ratio and increase the oxygen enrichment rate when the oxygen enrichment rate is lower than 6.
表° l
二の演算器11の出力信号を受は空気’lJa量指示調
節器26は空気流量を指示するとともに空気制御ダンパ
14の開度を調節する。また同様に演算器11の出力信
号を受は酸素流量指示器27は酸素流量を指示するとと
もに酸素制御弁50開度を調節する。In response to the output signal from the second computing unit 11, the air amount indicating regulator 26 instructs the air flow rate and adjusts the opening degree of the air control damper 14. Similarly, upon receiving the output signal from the computing unit 11, the oxygen flow rate indicator 27 instructs the oxygen flow rate and adjusts the opening degree of the oxygen control valve 50.
空気制御ダンパ14の開度とλ、Xの関係を第5図に、
酸素制御弁の開度とλ、Xの関係を第6図に示す。また
以上の演算フローを第7図に示す。The relationship between the opening degree of the air control damper 14, λ, and X is shown in Figure 5.
The relationship between the opening degree of the oxygen control valve and λ and X is shown in FIG. Further, the above calculation flow is shown in FIG.
このようにして容易に炉内は所定の低NOx範囲に抑え
られ、所定の高温に維持されるように自動制御される。In this way, the inside of the furnace can be easily controlled to a predetermined low NOx range and automatically controlled to be maintained at a predetermined high temperature.
以上に説明したように本発明は次の効果を奏する。 As explained above, the present invention has the following effects.
(1) NOxを可能な限り低いレベルで抑えること
が可能となる。(1) It becomes possible to suppress NOx to the lowest possible level.
(2)炉内温度を所定の高温に保つことで安定したスラ
グ排出が可能となる。(2) Stable slag discharge is possible by keeping the temperature inside the furnace at a predetermined high temperature.
(3)上記の条件を満たすために従来人間が行なってい
たのを自動化することで省力化が図れる。(3) To satisfy the above conditions, labor savings can be achieved by automating tasks that were traditionally performed by humans.
第1図は本発明の第1実施例に係る全体プロンク線図、
第2図ないし第6図は同実施例の作用説明図、第7図は
同実施例の演算フロー図、第8図は従来装置の系統図で
ある。
1−空気ライン、 2−・酸素ライン、3・−燃料
ライン、 4−・・温度計、5−・・NOx計、
6−・−炉、7−流量指示調節計、11,19.2
8.38・−演算器、14−空気制御ダンパ、15・−
酸素制御弁、16・・−空気流量計、 17・・−酸
素流量計、2〇−演算処理装置、 26・−空気流量指
示調節器、27−酸素流量指示調節器。
第1図
代理人 弁理士 坂 間 暁
第2図
第3図
外2名
第4図
第5図
第6図
第8図FIG. 1 is an overall Pronk diagram according to the first embodiment of the present invention,
2 to 6 are operation explanatory diagrams of the same embodiment, FIG. 7 is an operation flow diagram of the same embodiment, and FIG. 8 is a system diagram of the conventional device. 1-Air line, 2--Oxygen line, 3--Fuel line, 4--Thermometer, 5--NOx meter,
6-- Furnace, 7- Flow rate indicating controller, 11, 19.2
8.38・-Arithmetic unit, 14-Air control damper, 15・-
Oxygen control valve, 16...-Air flow meter, 17...-Oxygen flow meter, 20-Arithmetic processing unit, 26--Air flow rate indicating regulator, 27-Oxygen flow rate indicating regulator. Figure 1 Agent Patent Attorney Akira Sakama Figure 2 Figure 3 2 people outside Figure 4 Figure 5 Figure 6 Figure 8
Claims (1)
燃料ラインに燃料流量計を持ち、酸素ラインに酸素制御
弁および酸素流量計を持つ酸素富化燃焼形の炉において
、同炉内に設けられる温度計およびNO_x計と、出力
を上記空気制御ダンパへ送る空気流量調節器と、出力を
上記酸素制御弁へ送る酸素流量調節器と、上記温度計、
NO_x計、空気流量計、燃料流量計、および酸素流量
計の信号を受け、出力を上記空気流量調節器および酸素
流量調節器へ送る演算処理装置とを備え、同演算処理装
置は空気比、酸素量、酸素富化率、空気供給量および酸
素供給量を求めるとともに、空気比が所定値以上で上記
NO_x計の濃度が所定の設定許容値を越えた場合は酸
素富化率を固定して空気比を下げる操作信号を出力し、
逆に空気比が同所定値未満で、NO_x計の濃度が同設
定許容値を越えた場合は酸素富化率を固定して空気比を
上げる操作信号を出力し、また、上記温度計の温度が所
定の設定許容値を越えた場合、空気比を固定し酸素富化
率を下げる操作信号を出力し、逆に同許容値より下った
場合は、空気比を固定して酸素富化率を上げる操作信号
を出力することを特徴とする炉内温度及びNO_x制御
装置。The air line has an air control damper and an air flow meter,
In an oxygen-enriched combustion furnace that has a fuel flow meter in the fuel line and an oxygen control valve and oxygen flow meter in the oxygen line, the temperature meter and NO_x meter installed in the furnace and the output are sent to the air control damper mentioned above. an air flow regulator to send the air, an oxygen flow regulator to send the output to the oxygen control valve, and the thermometer;
It is equipped with an arithmetic processing unit that receives signals from the NO_x meter, air flow meter, fuel flow meter, and oxygen flow meter, and sends output to the air flow regulator and oxygen flow regulator. If the air ratio is above a predetermined value and the concentration on the NO_x meter exceeds the predetermined set tolerance value, the oxygen enrichment rate is fixed and the oxygen supply amount is determined. Outputs an operation signal to lower the ratio,
Conversely, if the air ratio is less than the predetermined value and the concentration on the NO_x meter exceeds the set allowable value, the oxygen enrichment rate is fixed and an operation signal is output to increase the air ratio. If it exceeds a predetermined set tolerance value, it will fix the air ratio and output an operation signal to lower the oxygen enrichment rate; conversely, if it falls below the same tolerance value, it will fix the air ratio and lower the oxygen enrichment rate. A furnace temperature and NO_x control device, characterized in that it outputs an operation signal to increase the temperature inside the furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63334051A JP2637529B2 (en) | 1988-12-29 | 1988-12-29 | Furnace temperature and NOx control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63334051A JP2637529B2 (en) | 1988-12-29 | 1988-12-29 | Furnace temperature and NOx control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02178513A true JPH02178513A (en) | 1990-07-11 |
JP2637529B2 JP2637529B2 (en) | 1997-08-06 |
Family
ID=18272963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63334051A Expired - Fee Related JP2637529B2 (en) | 1988-12-29 | 1988-12-29 | Furnace temperature and NOx control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2637529B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0971171A1 (en) * | 1998-07-08 | 2000-01-12 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Combustion method of a combustible with a combustive rich in oxygen |
JP2002357386A (en) * | 2001-06-01 | 2002-12-13 | Iwatani Internatl Corp | Method of melting aluminum |
JP2012078033A (en) * | 2010-10-04 | 2012-04-19 | Kinsei Sangyo:Kk | Dry distillation and gasification typed incinerator |
JP2013139966A (en) * | 2012-01-05 | 2013-07-18 | Nippon Steel & Sumitomo Metal Corp | Method and device for automatically controlling nox in heating furnace |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6071824A (en) * | 1983-09-28 | 1985-04-23 | Sumitomo Metal Ind Ltd | Controlling method of oxygen enrichment ratio in oxygen enrichment combustion method |
JPS61276624A (en) * | 1985-05-31 | 1986-12-06 | Sumitomo Metal Ind Ltd | Method for controlling oxygen-enriched combustion and controlling device thereof |
-
1988
- 1988-12-29 JP JP63334051A patent/JP2637529B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6071824A (en) * | 1983-09-28 | 1985-04-23 | Sumitomo Metal Ind Ltd | Controlling method of oxygen enrichment ratio in oxygen enrichment combustion method |
JPS61276624A (en) * | 1985-05-31 | 1986-12-06 | Sumitomo Metal Ind Ltd | Method for controlling oxygen-enriched combustion and controlling device thereof |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0971171A1 (en) * | 1998-07-08 | 2000-01-12 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Combustion method of a combustible with a combustive rich in oxygen |
FR2781039A1 (en) * | 1998-07-08 | 2000-01-14 | Air Liquide | PROCESS FOR COMBUSTING FUEL WITH OXYGEN-RICH FUEL |
JP2002357386A (en) * | 2001-06-01 | 2002-12-13 | Iwatani Internatl Corp | Method of melting aluminum |
JP2012078033A (en) * | 2010-10-04 | 2012-04-19 | Kinsei Sangyo:Kk | Dry distillation and gasification typed incinerator |
JP2013139966A (en) * | 2012-01-05 | 2013-07-18 | Nippon Steel & Sumitomo Metal Corp | Method and device for automatically controlling nox in heating furnace |
Also Published As
Publication number | Publication date |
---|---|
JP2637529B2 (en) | 1997-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU597783B2 (en) | Process of conditioning dust-containing exhaust gases | |
JPH02178513A (en) | Device to control furnace temperature and nox | |
JPS59195019A (en) | Fluidized-bed type combustion furnace | |
JPS6113531B2 (en) | ||
JPH07280256A (en) | In-furnace pressure controlling method for burning furnace | |
JPH079812B2 (en) | Fuel cell | |
JPS6030415B2 (en) | Control method for preventing black smoke generation from combustion furnace | |
JPH0555765B2 (en) | ||
JPH03199892A (en) | Control of amount of supply gas for waste heat boiler | |
JPH025222Y2 (en) | ||
JP2636906B2 (en) | Combustion control method for refuse incinerator | |
JPH0225624A (en) | Temperature control of cyclone coal combustion furnace | |
JPS5813809B2 (en) | Combustion control method using low excess air | |
JPH04167369A (en) | Fuel cell generation system | |
SU1314213A1 (en) | Device for controlling temperature of cupola furnace blast | |
JP2005249354A (en) | Combustion control method for reduced iron manufacturing plant and its device | |
JPS62149824A (en) | Method for controlling flow rate of oxygen in sintering machine | |
JP3621792B2 (en) | Combustion control method for waste melting furnace generated gas combustion furnace | |
JPH05231783A (en) | Method for controlling amount of gas in waste heat boiler | |
JPS59197729A (en) | Combustion control of small furnace | |
JPS60208405A (en) | Operating method of blast furnace | |
JPS58120022A (en) | Control of combustion in heating furnace | |
JPS53140277A (en) | Control equipment for combustion in heating furnace or the like | |
JPH01318883A (en) | Operation of vertical furnace and equipment thereof | |
JPS6196322A (en) | Combustion control for small-sized furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |