JPS62149824A - Method for controlling flow rate of oxygen in sintering machine - Google Patents

Method for controlling flow rate of oxygen in sintering machine

Info

Publication number
JPS62149824A
JPS62149824A JP29002985A JP29002985A JPS62149824A JP S62149824 A JPS62149824 A JP S62149824A JP 29002985 A JP29002985 A JP 29002985A JP 29002985 A JP29002985 A JP 29002985A JP S62149824 A JPS62149824 A JP S62149824A
Authority
JP
Japan
Prior art keywords
oxygen
flow rate
combustion
sintering
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29002985A
Other languages
Japanese (ja)
Other versions
JPH039170B2 (en
Inventor
Ryoji Ito
伊藤 良二
Tsuneaki Nishikawa
恒明 西川
Katsuhiko Shibuta
渋田 勝彦
Kunihiko Tokukasa
徳嵩 国彦
Kimio Hashimoto
公男 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29002985A priority Critical patent/JPS62149824A/en
Publication of JPS62149824A publication Critical patent/JPS62149824A/en
Publication of JPH039170B2 publication Critical patent/JPH039170B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently supply oxygen for combustion and to reduce production cost of sintered ore, by carrying out sintering while suitably controlling the ratio of introduced flow rate of oxygen for combustion to total flow rate of exhausted gas in wind box. CONSTITUTION:Sintering material is supplied from a material supply part 12 on a sintering bed 13 of Dwight-Lloyd sintering machine, ignited by an ignition furnace 4, air is downwardly sucked through the wind boxes 2, 2... linkedly provided to a main flue 3 and oxygen for combustion is supplied from upside through an oxygen blowing hood 6 to carry out sintering. In the sintering operation, flow meters 5, 5... are arranged to the boxes 2, 2 to measure respective exhausted gas flow rates, further total flow rate of exhausted gas is obtd. by adding calculation at an arithmetic adder 10. On the other hand, flow rate of the oxygen for combustion is measured by an oxygen flowmeter 9, and the ratio of introduced flow rate of the oxygen for combustion to the total flow rate of exhausted gas is controlled through an oxygen flow rate control valve 8 so that the ratio becomes <0.15 at a rate setting device 11.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は焼結機の酸素流量制御方法に関し、詳細には必
要最小限度の酸素を効率良く供給して焼結鉱の生産性を
高めるのに成功した焼結機の酸素流量制御方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling the oxygen flow rate of a sintering machine, and more specifically, a method for efficiently supplying the minimum necessary amount of oxygen to increase the productivity of sintered ore. The present invention relates to a method for controlling the oxygen flow rate of a sintering machine that has been successfully used.

[従来の技術] 第2図は、ドワイトロイド式焼結機の典型的な構成例を
示す概略説明図である。第2図に示す様にドワイトロイ
ド式焼結機では、原料層が装入される焼結ベッド13の
下部から上方の空気を吸引しつつ、原料供給部12から
供給される原料を点火炉4で点火し、原料中に混合され
ている粉コークスを順次燃焼させ、原料鉱石粒子相互の
焼結反応及び溶融反応を促進する様にしている。従って
、焼結機における焼結鉱の生産性は、前記粉コークスの
燃焼速度に大きく依存している。その為粉コークスの燃
焼速度を向上させる方法が種々試みられ、例えば焼結原
料層を通過する空気の量を増加させる方法、或は特開昭
53−108804号公報に開示される様に焼結層を貫
通する気体を富酸素空気とする方法等が提案されている
[Prior Art] FIG. 2 is a schematic explanatory diagram showing a typical configuration example of a Dwight Lloyd sintering machine. As shown in FIG. 2, in the Dwight Lloyd sintering machine, the raw material supplied from the raw material supply section 12 is fed into the ignition furnace 4 while sucking air from above from the lower part of the sintering bed 13 into which the raw material layer is charged. The coke powder mixed in the raw material is ignited to sequentially burn the coke powder mixed in the raw material, thereby promoting sintering and melting reactions between the raw material ore particles. Therefore, the productivity of sintered ore in a sintering machine largely depends on the combustion rate of the coke breeze. For this reason, various methods have been tried to improve the combustion rate of coke breeze. A method has been proposed in which the gas penetrating the layer is oxygen-enriched air.

[発明が解決しようとする問題点コ また焼結機では第2図に示す様に煙道14の圧力を一定
に保持する為に、煙道14の途中に設けた主ブロワ15
のダンパ16の開度を調整する様にしている。しかしな
がら焼結ベッド13を上から下へ通過して各々の風箱2
に吸引される空気量は、風箱2の上部に位置する各焼結
ベッド13上の原料層の通気抵抗に応じて変化する。そ
して原料層の通気抵抗は、原料充填状態及び原料粒子等
の変化に対応して時々刻々と変化しており、各風箱2内
を流過する排ガス量は常に変化しているのである。
[Problems to be Solved by the Invention] In addition, in the sintering machine, as shown in FIG.
The opening degree of the damper 16 is adjusted. However, passing through the sintering bed 13 from top to bottom, each wind box 2
The amount of air sucked in changes depending on the ventilation resistance of the raw material layer on each sintering bed 13 located at the upper part of the wind box 2. The ventilation resistance of the raw material layer changes from moment to moment in response to changes in the filling state of the raw material, the raw material particles, etc., and the amount of exhaust gas flowing through each wind box 2 is constantly changing.

焼結ベッド13上の焼結原料に酸素を供給する場合にお
いて、供給ガス流量を一定にしておき該供給ガス中の酸
素含有率を制御することによって総酸素供給量を調整す
るという様な方法を採用すると、焼結ベッド13を通過
する空気量が前記した理由によって変化するだけでなく
酸素濃度も変化することになるので、これら2重の変化
が重なり合い酸素供給層量が非常に大きく変化し、操業
の安定性が大幅に低下する。
When supplying oxygen to the sintering raw material on the sintering bed 13, there is a method in which the supply gas flow rate is kept constant and the total oxygen supply amount is adjusted by controlling the oxygen content in the supply gas. If adopted, not only the amount of air passing through the sintering bed 13 changes due to the above-mentioned reasons, but also the oxygen concentration, so these two changes overlap and the amount of oxygen supply layer changes greatly, Operational stability will be significantly reduced.

一方焼結ベッド13上の原料充填高さは300〜800
mm程度であるので空気等の気体が焼結ベッド13を通
過する時間はわずか1秒程度と極めて短い。また粉コー
クスは600℃以上でないと酸素との燃焼反応を開始せ
ず、且つ600℃以上で空気と粉コークスとが接触する
時間は極めて短時間であるので、燃焼反応効率は極めて
低い。
On the other hand, the height of raw material filling on the sintering bed 13 is 300 to 800.
Since the diameter is about 1 mm, the time for gas such as air to pass through the sintering bed 13 is extremely short, only about 1 second. Furthermore, coke breeze does not start a combustion reaction with oxygen unless it is above 600°C, and the time that air and coke breeze are in contact at temperatures above 600°C is extremely short, so the efficiency of the combustion reaction is extremely low.

この様な焼結過程においては、添加した酸素が全て粉コ
ークスの燃焼に寄与している訳ではなく、しかも酸素の
供給量が不安定であるから、酸素は過剰気味に供給する
ことにならざるを得す、余剰酸素が無駄に排出されてい
るというのが通常の操業状態である。
In such a sintering process, not all of the added oxygen contributes to the combustion of coke breeze, and the amount of oxygen supplied is unstable, so oxygen is inevitably supplied in excess. Under normal operating conditions, surplus oxygen is wastefully discharged.

以上述べた様に従来技術では、酸素が有効に利用され得
る最適酸素添加範囲については何ら考慮されておらず、
この様な観点からも酸素の最適添加量を維持する為の制
御技術の開発が望まれている。
As mentioned above, in the conventional technology, no consideration is given to the optimal oxygen addition range in which oxygen can be effectively utilized.
From this point of view, it is desired to develop a control technology to maintain the optimum amount of oxygen added.

従って本発明の目的は、上記現状に鑑み、酸素を効率良
く供給し、焼結鉱の生産コストを低減させようとするも
のである。
Therefore, in view of the above-mentioned current situation, an object of the present invention is to efficiently supply oxygen and reduce the production cost of sintered ore.

[問題点を解決する為の手段] 本発明は、燃焼用酸素供給ゾーンにおける燃焼用酸素の
導入流量と当該ゾーンに係る風箱内の排ガス総流量を測
定し、燃焼用酸素の導入流量と排ガス総流量との比が0
.15未満となるように制御しながら焼結する点に要旨
を有するものである。
[Means for solving the problem] The present invention measures the introduction flow rate of combustion oxygen in a combustion oxygen supply zone and the total flow rate of exhaust gas in the wind box related to the zone, and calculates the introduction flow rate of combustion oxygen and exhaust gas. Ratio to total flow rate is 0
.. The key point is that sintering is performed while controlling the temperature to be less than 15.

[作用] 本発明は既述の如く構成されるが、要は第1図に示す様
な焼結機1において、酸素吹込みフード6(燃焼用酸素
供給ゾーン)から焼結ベッド13に導入される燃焼用酸
素の導入流量を調整しながら操業を行なうものである。
[Function] The present invention is configured as described above, but the point is that in the sintering machine 1 as shown in FIG. The system operates while adjusting the flow rate of oxygen introduced for combustion.

モして調整される酸素の導入流量は、酸素の導入流量と
酸素が導入される風箱2における排ガス流量との比αが
予め定めた値になる様に設定される。当該比αの値は、
導入酸素の利用効率を向上させ更に焼結鉱の生産性を向
上させる為の重要な要件であるが、以下述べるところか
ら0.15未満であることが必要である。
The flow rate of oxygen introduced is adjusted such that the ratio α between the flow rate of oxygen introduced and the flow rate of exhaust gas in the wind box 2 into which oxygen is introduced becomes a predetermined value. The value of the ratio α is
This is an important requirement for improving the utilization efficiency of introduced oxygen and further improving the productivity of sintered ore, and as described below, it is necessary that it be less than 0.15.

第3図は前記αと酸素利用効率との関係を示すグラフで
あり、酸素利用効率は下記(1)式で示される。尚(1
)式中「粉コークスの燃焼に寄与した酸素量1どは、排
ガス流量中のco2?fA度の測定値を基にして数値計
算から求められる値である。
FIG. 3 is a graph showing the relationship between α and the oxygen utilization efficiency, and the oxygen utilization efficiency is expressed by the following equation (1). Sho (1
) In the formula, "the amount of oxygen that contributed to the combustion of coke breeze 1" is a value determined by numerical calculation based on the measured value of co2?fA degrees in the exhaust gas flow rate.

酸素利用効率= X100  (%)     ・・・・・・(1)第3
図から明らかな様に、酸素導入流量を増大し、α(酸素
の導入流量/排ガス総流量)が増大するに従って酸素の
利用効率は低下する。特にαが0.15以上になると、
酸素利用効率の低下は顕著となる。
Oxygen utilization efficiency = X100 (%) ・・・・・・(1) 3rd
As is clear from the figure, as the oxygen introduction flow rate increases and α (oxygen introduction flow rate/total exhaust gas flow rate) increases, the oxygen utilization efficiency decreases. Especially when α becomes 0.15 or more,
The decrease in oxygen utilization efficiency becomes significant.

第3図の結果から下記の如く考えることができる。即ち
粉コークスの燃焼は導入酸素濃度のみに依存するのでは
なく、酸素と粉コークスとの反応接触時間その他の要因
が影響している。このことは焼結機の実操業に当たり、
燃焼用酸素の原単位が一般的に高価であることを考慮す
ると、焼結機の製造コストを低減する為には酸素利用効
率の高い範囲で適正に焼結機を操業するのがいかに重要
であるかと示唆するものである。
From the results shown in Figure 3, the following can be considered. That is, the combustion of coke breeze does not depend only on the introduced oxygen concentration, but is influenced by the reaction contact time between oxygen and coke breeze and other factors. This is true in actual operation of the sintering machine.
Considering that the basic unit of oxygen for combustion is generally expensive, it is important to operate the sintering machine properly within a range with high oxygen utilization efficiency in order to reduce the manufacturing cost of the sintering machine. This suggests that there is.

[実施例] 第1図は本発明方法を実施する為に構成されるドワイト
ロイド式焼結機1 (以下単に焼結機と言う)の概略説
明図である。第1図において、3は主排気煙道、5は排
ガスの流量計、6は酸素吹込フード、7は酸素導入用配
管、8は酸素流量調整弁、9は酸素流量計、10は排ガ
ス流量の演算加算器、11は導入酸素と排ガス流量の比
率設定器である。その他第2図の従来技術と対応する部
分には同一の参照符号を付す。尚酸素吹込みフード6は
燃焼用酸素供給ゾーンに該当し、該酸素吹込みフート6
は一箇所の風箱2上にあってもよいが、複数箇所(実施
例では3箇所)の風箱2上にあっても何ら差し支えない
[Example] Fig. 1 is a schematic explanatory diagram of a Dwight Lloyd type sintering machine 1 (hereinafter simply referred to as sintering machine) configured to carry out the method of the present invention. In Fig. 1, 3 is the main exhaust flue, 5 is the exhaust gas flow meter, 6 is the oxygen blowing hood, 7 is the oxygen introduction pipe, 8 is the oxygen flow rate adjustment valve, 9 is the oxygen flow meter, and 10 is the exhaust gas flow rate meter. The calculation adder 11 is a ratio setting device for the introduced oxygen and the exhaust gas flow rate. Other parts corresponding to those of the prior art shown in FIG. 2 are given the same reference numerals. The oxygen blowing hood 6 corresponds to the combustion oxygen supply zone, and the oxygen blowing hood 6 corresponds to the combustion oxygen supply zone.
may be located on one wind box 2, but may be located on multiple wind boxes 2 (three locations in the embodiment) without any problem.

焼結機1における酸素導入流量を制御する方法を説明す
る。酸素吹込フード6に係る各風箱2の排ガス流量は、
流量計5によって測定される。流量計5によって測定さ
れた各風箱2の排ガス流量は演算加算器10で加算され
、酸素が導入されている風箱2における総排ガス流量が
測定される。
A method for controlling the flow rate of oxygen introduced into the sintering machine 1 will be explained. The exhaust gas flow rate of each wind box 2 related to the oxygen blowing hood 6 is
It is measured by flowmeter 5. The exhaust gas flow rate of each wind box 2 measured by the flowmeter 5 is added by an arithmetic adder 10, and the total exhaust gas flow rate in the wind box 2 into which oxygen is introduced is measured.

演算加算器10は、比率設定器に連結されている。Arithmetic adder 10 is connected to a ratio setter.

一方焼結ベッド13に供給される燃焼用酸素は酸素導入
用配管7、酸素流量調節弁8及び酸素流量計9を介して
酸素吹込フード6に供給されるが、酸素流量調節弁8及
び酸素流量計9は前記比率設定器11に連結されている
。そして酸素流量計9における酸素流量は、酸素流量と
排ガス流量との比αが比率設定器11によって設定され
る値となる様に酸素流量調節弁8によって調整される。
On the other hand, the combustion oxygen supplied to the sintering bed 13 is supplied to the oxygen blowing hood 6 via the oxygen introduction pipe 7, the oxygen flow rate control valve 8, and the oxygen flow meter 9. A total of 9 are connected to the ratio setter 11. The oxygen flow rate in the oxygen flow meter 9 is adjusted by the oxygen flow control valve 8 so that the ratio α between the oxygen flow rate and the exhaust gas flow rate becomes a value set by the ratio setting device 11.

ここで比率設定器11によって設定される値とは、前記
第3図に関連して述べた様に酸素導入流量と排ガス流量
との比α0.15が未満となる値である。この様にして
酸素導入流量と排ガス流量との割合を常時一定に保持す
ることができる。
Here, the value set by the ratio setting device 11 is a value such that the ratio α between the oxygen introduction flow rate and the exhaust gas flow rate is less than 0.15, as described in connection with FIG. 3 above. In this way, the ratio between the oxygen introduction flow rate and the exhaust gas flow rate can be kept constant at all times.

本発明は最終的に酸素導入流量を制御してαの値を0.
15未満になる様に制御するものであるが、αの値を左
右する因子としては前記酸素導入流量以外に排ガス流量
が存在するのは言うまでもない。そして排ガス流量は焼
結原料の充填状態及び原料粒子等の要件によっても左右
されるものである。従って本発明においてαが0.15
未満になる様に制御すめ要件としては、酸素導入流量の
みに限らず、その他の前記各種の要件をも考慮しなけれ
ばならない。
The present invention finally controls the oxygen introduction flow rate to set the value of α to 0.
Although the value of α is controlled to be less than 15, it goes without saying that the exhaust gas flow rate exists in addition to the oxygen introduction flow rate as a factor that influences the value of α. The exhaust gas flow rate also depends on the filling state of the sintering raw material, the raw material particles, and other requirements. Therefore, in the present invention, α is 0.15
The requirements to be controlled so as to be less than 100% are not limited to the oxygen introduction flow rate, but must also take into consideration the various other requirements mentioned above.

第1図に示した焼結機1を用いて行なった実操業におけ
る結果を第1表に示す。第1表の結果から明らかな様に
、αが0.15以上になると酸素原単位が408 rn
”/T−5teelと著しく悪化するので、前記比αは
0.15未満が最適であるのが理解される。
Table 1 shows the results of actual operation using the sintering machine 1 shown in FIG. As is clear from the results in Table 1, when α becomes 0.15 or more, the oxygen consumption rate decreases to 408 rn
”/T-5teel, so it is understood that the optimum ratio α is less than 0.15.

第   1   表 [発明の効果コ 以上述べた如く本発明の方法を実施することによって、
焼結機における酸素利用効率を高く維持できるようにな
り、経済的な酸素添加操業が実bfでき酸素原単位を低
下させるのを可能とし、よって焼結鉱の生産性向上に多
いに与し得るものである。
Table 1 [Effects of the invention] By carrying out the method of the present invention as described above,
It is now possible to maintain high oxygen utilization efficiency in the sintering machine, making it possible to perform economical oxygen addition operations and lowering the oxygen consumption rate, which can greatly contribute to improving the productivity of sintered ore. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する為に構成される焼結機1
の概略説明図、第2図はドワイトロイド式焼結機の典型
的な従来技術を示す概略説明図、第3図は比αと酸素利
用効率との関係を示すグラフである。 1・・・焼結機     2・・・風箱3・・・主排気
煙道   4・・・点火炉5・・・流量計     6
・・・酸素吹込フード7・・・酸素導入配管  8・・
・酸素流量調整弁9・・・酸素流量計
Figure 1 shows a sintering machine 1 configured to carry out the method of the present invention.
FIG. 2 is a schematic explanatory diagram showing a typical conventional technique of a Dwight Lloyd sintering machine, and FIG. 3 is a graph showing the relationship between ratio α and oxygen utilization efficiency. 1... Sintering machine 2... Wind box 3... Main exhaust flue 4... Ignition furnace 5... Flow meter 6
...Oxygen blowing hood 7...Oxygen introduction piping 8...
・Oxygen flow rate adjustment valve 9...Oxygen flow meter

Claims (1)

【特許請求の範囲】[Claims] ドワイトロイド式焼結機の酸素流量制御方法において、
燃焼用酸素供給ゾーンにおける燃焼用酸素の導入流量と
当該ゾーンに係る風箱内の排ガス総流量を測定し、燃焼
用酸素の導入流量と排ガス総流量との比が0.15未満
となるように制御しながら焼結することを特徴とする焼
結機の酸素流量制御方法。
In the oxygen flow rate control method for a Dwight Lloyd sintering machine,
Measure the flow rate of combustion oxygen introduced in the combustion oxygen supply zone and the total flow rate of exhaust gas in the wind box related to the zone, and make sure that the ratio of the flow rate of combustion oxygen introduced and the total flow rate of exhaust gas is less than 0.15. A method for controlling an oxygen flow rate in a sintering machine, which is characterized by performing controlled sintering.
JP29002985A 1985-12-23 1985-12-23 Method for controlling flow rate of oxygen in sintering machine Granted JPS62149824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29002985A JPS62149824A (en) 1985-12-23 1985-12-23 Method for controlling flow rate of oxygen in sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29002985A JPS62149824A (en) 1985-12-23 1985-12-23 Method for controlling flow rate of oxygen in sintering machine

Publications (2)

Publication Number Publication Date
JPS62149824A true JPS62149824A (en) 1987-07-03
JPH039170B2 JPH039170B2 (en) 1991-02-07

Family

ID=17750863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29002985A Granted JPS62149824A (en) 1985-12-23 1985-12-23 Method for controlling flow rate of oxygen in sintering machine

Country Status (1)

Country Link
JP (1) JPS62149824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419171B1 (en) * 1999-06-11 2004-02-14 주식회사 포스코 Method for preventing formation of coating sinter in furnace
JP2018503046A (en) * 2014-12-16 2018-02-01 ポスコPosco Sintering machine and sintering method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419171B1 (en) * 1999-06-11 2004-02-14 주식회사 포스코 Method for preventing formation of coating sinter in furnace
JP2018503046A (en) * 2014-12-16 2018-02-01 ポスコPosco Sintering machine and sintering method

Also Published As

Publication number Publication date
JPH039170B2 (en) 1991-02-07

Similar Documents

Publication Publication Date Title
CN85107416A (en) Arc furnace burner control Method and equipment
JPS62149824A (en) Method for controlling flow rate of oxygen in sintering machine
CZ342097A3 (en) Melting process of metallic materials of a charge in a shaft furnace
CN105506210A (en) Vertical gas furnace and melting method for fusing and reducing metal material
JP4759985B2 (en) Blast furnace operation method
RU2395771C2 (en) Procedure for supersonic oxygen blow into furnace
JPS6023714A (en) Fusing method of industrial waste
JP4604788B2 (en) Blast furnace operation method
SU1211573A1 (en) Method of automatic control of ignition process of sinter burden
CN1056887C (en) Control method of oxygen concentration for vertical quick melting furnace
CN108267025A (en) A kind of discharged nitrous oxides control method and device
RU2765476C2 (en) Shaft furnace and oxidizer blowing into it
SU1643615A2 (en) Method for adjusting the run of a blast furnace
JPS6154096B2 (en)
JPH09279261A (en) Two-stage ignition type sintering method
JPH0227406B2 (en) TANZAIJUTENSOGATAYOJUKANGENRONOSOGYOHOHO
US3193379A (en) Method of operating a blast furnace
CN102681560B (en) The computational methods of air and oxygen demand in a kind of smelting system
JP3618163B2 (en) Reduction melting treatment method
JPH09125122A (en) Method for controlling oxygen concentration corresponding to molten metal tapping temperature in vertical type quick melting furnace
JP4245195B2 (en) Reduction melting furnace
JP4162276B2 (en) Reduction melting method and reduction melting furnace
JPH11507721A (en) Melting process of arc furnace interior charge
JPS63166914A (en) High oxygen-rich blasting blast furnace
CN117167772A (en) Method for baking gas of dynamic oxygen-enriched combustion type iron-mixing furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees