JP4245195B2 - Reduction melting furnace - Google Patents

Reduction melting furnace Download PDF

Info

Publication number
JP4245195B2
JP4245195B2 JP07342196A JP7342196A JP4245195B2 JP 4245195 B2 JP4245195 B2 JP 4245195B2 JP 07342196 A JP07342196 A JP 07342196A JP 7342196 A JP7342196 A JP 7342196A JP 4245195 B2 JP4245195 B2 JP 4245195B2
Authority
JP
Japan
Prior art keywords
packed bed
melt
combustion chamber
melting furnace
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07342196A
Other languages
Japanese (ja)
Other versions
JPH09264671A (en
Inventor
岳 藤井
道夫 二川
尚久 辰巳
勇次 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP07342196A priority Critical patent/JP4245195B2/en
Publication of JPH09264671A publication Critical patent/JPH09264671A/en
Application granted granted Critical
Publication of JP4245195B2 publication Critical patent/JP4245195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属還元技術並びに廃棄物処理技術に関すものであり、炉内に、炭素系可燃物質からなる充填層を形成するとともに、この充填層に処理対象物を投入し、充填層で還元溶融して、還元溶融物を下部より取り出し可能に構成される還元溶融炉に関する。
【0002】
【従来の技術】
このような還元溶融炉としては、所謂、キュポラ型の還元溶融炉が知られている。このような還元溶融炉にあっては、図2に示すように、炉内に炭素系可燃物質からなる充填層を形成し、この充填層を高温還元状態として、処理対象物の還元溶融が行われる。炉の運転にあたっては、炉頂部近傍から還元処理対象物、還元促進材等が投入され、充填層を処理物が通過する際に、処理がされ、炉底部から還元溶融物が取り出される。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のようなキュラ型の炉にあっては、以下のような問題があった。即ち、従来型の炉においては、コークス等の固体燃料のみを熱源、還元雰囲気形成源として利用するため、還元溶融に必要な温度並びに還元雰囲気の制御を安定しておこなうことが比較的難しい。従って、炉の運転に熟練した運転員が必要とされ、熟練運転員を育生するための時間、費用が過大になっていた。一方、熟練度の低い運転員では、炉の運転が難しく、炉から得られる還元溶融物の品質が安定しないという問題があった。
さらに、炉内の温度管理については、固体燃料を高温化させるため、多分に酸素含有ガスを充填層近傍に取り付けた羽口から供給しておこなう必要があったため、羽口付近は酸化雰囲気となり炉内の各部によって不均一な還元溶融ゾーンが形成されるという問題があった。
また、還元促進材を処理対象物とともに炉上部から投入していたため、充填層を通過する時間が長くなり、炉下部から取り出された製品が不良品であった場合、短時間で製品不良を解決する手段を取ることが困難であった。
従って、本発明の目的は、上記のような問題を解決することにある。
【0004】
【課題を解決するための手段】
この目的を達成するための本発明による請求項1に係わる、炭素系可燃物質からなる充填層を形成するとともに、この充填層に処理対象物を投入し、充填層で還元溶融された還元溶融物を下部より取り出し可能な還元溶融炉の特徴構成は、以下のとおりである。
〔構成〕
即ち、充填層の下側に、この充填層を下方より支持する支持部を還元溶融物が滴下可能な状態で設け、支持部の下側に酸素含有ガスの空燃比を調節可能なバーナを備えた燃焼室を設け、還元溶融物が貯留する燃焼室下部から前記処理対象物の還元溶融物を取り出し可能に構成され、前記充填層において前記支持部から前記炭素系可燃物質が充填された充填層高さの半分以下の部位である前記支持部側部位に、酸素含有ガスを供給可能な羽口を設けて、バーナと羽口から供給される酸素含有ガスの供給量を調節して、充填層及び燃焼室を還元雰囲気状態に維持可能であるとともに、燃焼室内の燃焼空間に、還元溶融物に対する処理材を投入可能な還元溶融物処理材投入口を設けて還元溶融炉を構成するのである。
〔作用〕
本願の還元溶融炉においては、処理対象物が充填層に投入され、従来の炉と同様に充填層において還元溶融される。ここで、充填層の下側にはバーナを備えた燃焼室が設けられており、この燃焼室に於けるバーナの燃焼及び炭素系可燃物質の燃焼により、溶融に必要な熱が主に供給される。この場合、炭素系可燃物質は、充填層の保形の用及び温度維持程度の役割を果たす。さらに、充填層の還元雰囲気状態は、燃焼室に設けられるバーナに於ける燃焼制御と羽口から供給される燃焼用酸素の量との関係に主に支配されるが、この羽口からの酸素供給量の炉運転に果たす役割は従来より軽減される。即ち、バーナに於ける空燃比等を適切に制御することにより、比較的容易に還元状態を形成することが可能となる。
即ち、炉の熱的制御及び還元雰囲気制御が容易となる。
充填層で還元溶融された還元溶融物は、支持部を滴下し、燃焼室内に侵入して、燃焼室底部に貯留され、炉内から取り出される。
さて、この構造の還元溶融炉にあっては、以上の理由から、従来のように、熟練した運転員による運転を必要とすることが少なくなる。さらに、炭素系可燃物質の消費量を低減化できる。
また、本願の構造にあっては、燃焼室内にバーナからの燃焼炎が形成されることにより、還元溶融物が貯留する燃焼室底部を比較的高温に長時間、安定して維持することが可能となる。従って、後述するように製品品質の制御が容易となる。
一方、バーナからの熱では溶融に必要な熱量が十分に得られない場合もあり得る。さらに、支持部を構成する場合に、この支持部を冷却構造を備えたもの(例えば水管等の冷却管)から構成することとなるが、このような場合、支持部付近の温度が低下することも考えられる。従って、本願の還元溶融炉にあっては、充填層の支持部側部位に、酸素含有ガスを供給可能な羽口を設ける。この羽口の取付位置である上記支持部側の部位は、充填層において支持部から炭素系可燃物質が充填された充填層高さの半分以下の部位である。そして、この羽口から、充填層内に於ける還元状態を阻害しない程度の酸素を炭素系可燃物質から形成される充填層に向けて供給する。このようにすると、支持部近傍に於ける温度低下、溶融不良の問題を適宜制御することができる。
さらに、このような羽口を別途設けることにより、炭素系可燃物質で形成された充填層内の温度や雰囲気の制御が容易となり、処理対象物の処理条件として欠かせない充填層高さの制御をすることも可能となる。
そして、還元溶融物処理材投入口からは、還元溶融物に対する処理材が投入されるのであるが、このような処理材としては、還元促進材、燃焼室内に存する酸素と結合する材料、還元溶融物の流動性を調整する流動性調整材等を投入することができる。
そして、比較的高温(例えば1000℃程度)に維持できる、燃焼室底部に溜まった溶融還元物を、この高温下で良好に比較的長時間反応させて、還元溶融物を所望の状態として、取り出すことができる。
【0005】
〔構成・作用・効果〕
ここで、前記処理材が、前記還元溶融物に対する還元促進材である場合には、還元溶融物に直接的に還元促進材を投入することができるようになり、処理対象物の還元溶融物に対するさらなる還元処理を温度、ガス雰囲気並びに時間を、適切に制御した状態で行うことが可能となり、良い品質の製品を効率よく且つ容易に得ることができるようになる。
さらに、還元不足により製品品質に不良品が発生した場合、直接還元溶融物に処理材を投入することにより、迅速な対応が可能となる。この点、従来構造にあっては、充填層より上部から投入される還元促進材が、炉底部に至って始めて効果を発揮するため、タイムラグが大きく、品質制御が難しいという大きな問題点を改良きる。
【0006】
〔構成・作用・効果〕
さらにここで、前記処理材が、還元溶融物表面に浮遊して燃焼室内に存する酸素と結合する材料である場合には、以下のような作用、効果を奏することができる。
本願の還元溶融炉にあっては、燃焼室にバーナを備えるため、いかに還元状態を得るといっても、このバーナの燃焼のために酸素が燃焼室内に供給される。この酸素は、燃焼室下部に貯留されている還元溶融物に対しては、その酸化作用を及ぼすこととなりやすい。しかしながら、前記処理材として、燃焼室内に存する酸素と結合する材料(例えば、溶融処理物表面に浮遊できるコークス粉)を投入すようにしておくと、このような酸素と還元溶融物との接触が抑制され、安定した還元物を得ることができる。
【0007】
〔構成・作用・効果〕
さらにここで、前記処理材が、還元溶融物の流動性を調整する流動性調整材であると、流動性調整材の投入量を調整することにより、還元溶融物の流動性を調整して、炉からの取り出しを容易、迅速におこなうことができる。
【0008】
【発明の実施の形態】
本願の還元溶融炉1の構成を図面に基づいて説明する。
図1には、本願の還元溶融炉1の縦断面図が示されている。
図示するように、本願の還元溶融炉1は、充填層形成用の縦型筒状の充填層形成部2と、この充填層形成部2の下部に設けられる燃焼室3とを主な機能部位として構成されている。図示するように、炉頂部には、処理対象物、還元促進材さらには溶融物の流動性を調整するための流動性調整材を投入可能な材料投入口4が設けられている。さらに、この材料投入口4の近傍で、これとは別に、排ガス放出用の煙道5が、水平方向に延出されている。
さて、前述の充填層形成部2と燃焼室3の間は、複数の水管6が所定の間隔で炉を水平方向に横断して配設されており、この水管6の上部に、炭素系可燃物質である塊状のコークスを投入することにより、所定高さのコークスの充填層7を形成できるように構成されている。従って、これら水管6は支持部として構成されており、充填層7で溶融され還元溶融物は、この水管間を滴下して、燃焼室3に落下可能となっている。
【0009】
さて、前述の燃焼室3は、充填層7に対して、下面全面に亘ってその断面積が大きな縦型筒状の空間として構成されており、この燃焼室3に、空燃比を調節可能なバーナ8(都市ガスバーナ)が備えられている。また、この燃焼室3の底部は、還元溶融物の貯留部として構成されており、炉外9と接続される還元溶融物導出部10を備えることにより、還元溶融炉1において、燃焼室下部から処理対象物の還元物並びに溶融物を取り出し可能に構成されている。
さらに、前述の充填層形成部2にあって、その水管側位置にあたる支持部側部位に、燃焼用酸素含有ガスを供給可能な羽口11が設けられている。この羽口11の取付位置は、充填層7の断面直径をDとして、水管配設位置から1/5〜2Dの距離にある位置である。但し、この羽口11の位置は、Dとの関係のみから決定されるものではなく、運転状態にあっては、この羽口11位置より上部側に所定高さ以上の充填層が形成されることは当然であり、この充填層高さの半分以下程度である。
また、燃焼室内の燃焼空間に、還元溶融物に対する処理材を、投入可能な還元溶融物処理材投入口12が複数個設けられている。
以上が、還元溶融炉1の概略構成である。
【0010】
以下、この還元溶融炉1の運転状態について説明する。
運転にあたっては、前記充填層形成部2にコークスの充填層7が、運転前段階で形成される。燃焼室内のバーナ8を運転した状態で、充填層7は、赤熱高温状態に維持される。ここで、処理対象物の投入直前で、炉への燃焼用酸素含有ガスの供給量(羽口11及びバーナ8を介するもの)を調節して、炉内を還元雰囲気状態に維持する。
そして、還元溶融処理する処理対象物である非鉄金属酸化物(例えば酸化鉛)を材料投入口4から投入する。この時、処理対象物に対して重量比約1〜10%のコークスを合わせて投入する。この状態において、充填層7に取り付けた羽口11から予熱した空気を、投入した前記コークスの必要空気量に対して、0.3〜1.0の範囲で供給を行い、充填層7の温度、雰囲気並びに充填高さを制御する。
投入した処理対象物は、充填層内で燃焼室3から送られてきた高温の還元ガスや前述した充填層7に供給され空気とコークスとの反応により発生した高温の還元ガスにより、還元溶融され水管6を通過して、液体として燃焼室内に滴下する。
この還元物並びに溶融物は、バーナ8によって高温に保持された燃焼室内の炉底に溜まる。
さらに、この炉底に溜られた還元物から硫黄等の不純物を取り除くため、還元促進材である鉄の塊を、還元溶融物処理材投入口12から投入する。この処理材の投入間隔は、炉底部の滞留時間から算出し、投入量は炉に投入する処理対象物量当たり約0.5%〜3%の範囲でおこなう。
そして、還元溶融物導出部10から還元溶融物を連続取り出しする。
【0011】
〔別実施の形態〕
上記の実施の形態にあっては、還元処理される材料としては、これが酸化鉛である例を示したが、還元処理する材料以外、例えば多くの材料から構成されるものの不純物除去などにも使用できる。具体的には、銅、アルミニウム、錫等をも対象とすることができる。
さらに、上記の実施の形態にあっては、燃焼用酸素含有ガスの供給用羽口を炉上下方向で一段のみ備える構成としたが、これは複数段備えることが好ましい。
さらに、上記の還元溶融物処理材投入口から投入される処理材としては、これを、還元促進材(鉄)としたが、こういった材料としては処理対象物との関係でコークス等も利用できる。さらに、この他、還元溶融物表面に浮遊して燃焼室内に存する酸素と結合する材料(コークス粉、プラスチック廃棄物等)、還元溶融物の流動性を調整する流動性調整材(酸化カルシウム、二酸化珪素等)としてもよい。
さらに、支持部を構成する部材としては、冷却管としての前述の水管等、所謂、冷却機構を備えた部材を採用できる。
【図面の簡単な説明】
【図1】本願の還元溶融炉の縦断面図
【図2】従来のキュポラ型の還元溶融炉の縦断面図
【符号の説明】
3 燃焼室
6 支持部(水管)
7 充填層
8 バーナ
11 羽口
12 還元溶融物処理材投入口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal reduction technique and a waste treatment technique. In the furnace, a packed bed made of a carbon-based combustible material is formed. The present invention relates to a reduction melting furnace configured to be melted so that a reduced melt can be taken out from a lower part.
[0002]
[Prior art]
As such a reduction melting furnace, a so-called cupola type reduction melting furnace is known. In such a reductive melting furnace, as shown in FIG. 2, a packed bed made of a carbon-based combustible material is formed in the furnace, and this packed bed is brought into a high-temperature reducing state to perform reduction melting of the object to be treated. Is called. In the operation of the furnace, a reduction target object, a reduction accelerator, and the like are introduced from the vicinity of the top of the furnace.
[0003]
[Problems to be solved by the invention]
However, in the furnace of the queue port la type as described above has the following problems. That is, in a conventional furnace, since only solid fuel such as coke is used as a heat source and a reducing atmosphere forming source, it is relatively difficult to stably control the temperature and reducing atmosphere required for reducing melting. Therefore, an operator who is skilled in the operation of the furnace is required, and the time and cost for nurturing the skilled operator are excessive. On the other hand, there is a problem that the operation of the furnace is difficult for operators with low skill levels, and the quality of the reduced melt obtained from the furnace is not stable.
Furthermore, regarding the temperature control in the furnace, in order to raise the temperature of the solid fuel, it was necessary to supply oxygen-containing gas from the tuyere attached in the vicinity of the packed bed. There was a problem that a non-uniform reductive melting zone was formed by each part inside.
In addition, since the reduction accelerator was put together with the object to be treated from the top of the furnace, it took a long time to pass through the packed bed. It was difficult to take measures to do.
Accordingly, an object of the present invention is to solve the above problems.
[0004]
[Means for Solving the Problems]
According to the first aspect of the present invention for achieving this object, a packed bed made of a carbon-based combustible material is formed, and an object to be treated is introduced into the packed bed, and the reduced melt melted by reduction in the packed bed The characteristic configuration of the reductive melting furnace that can be taken out from the lower part is as follows.
〔Constitution〕
That is, a support part that supports the packed bed from below is provided in a state in which the reduced melt can be dropped, and a burner that can adjust the air-fuel ratio of the oxygen-containing gas is provided below the support part. A packed bed in which the reduced melt of the object to be treated can be taken out from the lower part of the combustion chamber in which the reduced melt is stored, and the packed bed is filled with the carbon-based combustible material from the support portion. Provide a tuyere that can supply oxygen-containing gas at the part on the side of the support, which is less than half the height, and adjust the supply amount of oxygen-containing gas supplied from the burner and tuyere to fill The reductive melting furnace is configured by providing a reductive melt treatment material input port capable of supplying a treatment material for the reductive melt in the combustion space in the combustion chamber while maintaining the bed and the combustion chamber in a reducing atmosphere state. .
[Action]
In the reductive melting furnace of the present application, the object to be treated is put into the packed bed and is reduced and melted in the packed bed as in the conventional furnace. Here, a combustion chamber provided with a burner is provided below the packed bed, and heat necessary for melting is mainly supplied by combustion of the burner and combustion of the carbon-based combustible material in the combustion chamber. The In this case, the carbon-based combustible material plays the role of maintaining the shape of the packed bed and maintaining the temperature. Further, the reducing atmosphere state of the packed bed is mainly governed by the relationship between the combustion control in the burner provided in the combustion chamber and the amount of combustion oxygen supplied from the tuyere. The role of the supply amount in the furnace operation is reduced compared to the conventional one. That is, it is possible to form a reduced state relatively easily by appropriately controlling the air-fuel ratio in the burner.
That is, the thermal control of the furnace and the reducing atmosphere control are facilitated.
The reduced melt melted by reduction in the packed bed drops the support portion, enters the combustion chamber, is stored at the bottom of the combustion chamber, and is taken out from the furnace.
Now, in the reduction melting furnace having this structure, the operation by a skilled operator is reduced as in the prior art for the above reasons. Furthermore, the consumption of carbon-based combustible substances can be reduced.
Further, in the structure of the present application, the combustion flame from the burner is formed in the combustion chamber, so that the bottom of the combustion chamber storing the reduced melt can be stably maintained at a relatively high temperature for a long time. It becomes. Accordingly, as will be described later, the product quality can be easily controlled.
On the other hand, the amount of heat necessary for melting may not be obtained sufficiently by the heat from the burner. Furthermore, when the support portion is configured, the support portion is configured with a cooling structure (for example, a cooling pipe such as a water pipe). In such a case, the temperature near the support portion is lowered. Is also possible. Therefore, in the reductive melting furnace of the present application, a tuyere capable of supplying an oxygen-containing gas is provided at a site on the support portion side of the packed bed. The portion on the support portion side, which is the attachment position of the tuyere, is a portion of the packed bed that is less than half the height of the packed bed filled with the carbon-based combustible material from the support. From this tuyere, oxygen that does not inhibit the reduced state in the packed bed is supplied toward the packed bed formed of the carbon-based combustible material. If it does in this way, the problem of the temperature fall in the vicinity of a support part and a fusion defect can be controlled suitably.
Furthermore, by providing such tuyere separately, it becomes easy to control the temperature and atmosphere in the packed bed formed of carbon-based combustible materials, and control of the packed bed height, which is indispensable as a processing condition of the processing object. It is also possible to do.
And, the treatment material for the reduced melt is introduced from the reduced melt treatment material charging port. As such a treatment material, a reduction accelerator, a material that combines with oxygen existing in the combustion chamber, a reduced melt A fluidity adjusting material or the like for adjusting the fluidity of an object can be introduced.
Then, the molten reductate collected at the bottom of the combustion chamber, which can be maintained at a relatively high temperature (for example, about 1000 ° C.), is reacted at this high temperature for a relatively long time, and the reduced melt is taken out as a desired state. be able to.
[0005]
[Configuration / Function / Effect]
Here, when the treatment material is a reduction promoting material for the reducing melt, the reduction promoting material can be directly introduced into the reducing melt, and the treatment object is reduced to the reducing melt. Further reduction treatment can be performed in a state in which the temperature, gas atmosphere and time are appropriately controlled, and a product of good quality can be obtained efficiently and easily.
Furthermore, when a defective product is generated due to insufficient reduction, it is possible to respond quickly by putting the treatment material directly into the reduced melt. In this regard, in the conventional structure, reduction promoting material to be introduced from above the packed bed, for effective starting led to the furnace bottom, a time lag is large, cut with improved large problem that it is difficult quality control .
[0006]
[Configuration / Function / Effect]
Further, here, when the treatment material is a material that floats on the surface of the reduced melt and is combined with oxygen existing in the combustion chamber, the following actions and effects can be obtained.
In the reduction melting furnace of the present application, since the combustion chamber is provided with a burner, oxygen is supplied into the combustion chamber for combustion of the burner no matter how the reduction state is obtained. This oxygen tends to exert an oxidizing action on the reduced melt stored in the lower part of the combustion chamber. However, as the treated material, a material that binds with oxygen existing in the combustion chamber (e.g., coke powder which can be suspended in the molten treated surface) If left as you put, contact with such oxygen and reducing melt Is suppressed, and a stable reduced product can be obtained.
[0007]
[Configuration / Function / Effect]
Further, when the treatment material is a fluidity adjusting material that adjusts the fluidity of the reduced melt, the fluidity of the reduced melt is adjusted by adjusting the input amount of the fluidity adjusting material, It can be easily and quickly removed from the furnace.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The structure of the reduction melting furnace 1 of this application is demonstrated based on drawing.
FIG. 1 shows a longitudinal sectional view of a reduction melting furnace 1 of the present application.
As shown in the figure, the reductive melting furnace 1 of the present application includes a vertical cylindrical packed bed forming portion 2 for forming a packed bed and a combustion chamber 3 provided below the packed bed forming portion 2 as main functional parts. It is configured as. As shown in the figure, the furnace top is provided with a material inlet 4 into which a fluidity adjusting material for adjusting the fluidity of the object to be treated, the reduction accelerator, and the melt can be introduced. In addition, a flue 5 for exhaust gas discharge is extended in the horizontal direction separately from the material inlet 4.
Now, a plurality of water pipes 6 are disposed horizontally across the furnace at a predetermined interval between the packed bed forming portion 2 and the combustion chamber 3, and a carbon-based combustible is disposed above the water pipe 6. It is configured such that a coke packed layer 7 having a predetermined height can be formed by charging a block of coke which is a substance. Therefore, these water pipes 6 are configured as support portions, and the reduced melt melted in the packed bed 7 can drop between the water pipes and fall into the combustion chamber 3.
[0009]
The combustion chamber 3 is configured as a vertical cylindrical space having a large cross-sectional area over the entire lower surface of the packed bed 7, and the air-fuel ratio can be adjusted in the combustion chamber 3. A burner 8 (city gas burner) is provided. In addition, the bottom of the combustion chamber 3 is configured as a reductive melt reservoir, and is provided with a reductive melt outlet 10 connected to the outside of the furnace 9. It is configured to be able to take out a reduced product and a melt of the processing object.
Further, in the packed bed forming unit 2 described above, a tuyere 11 capable of supplying combustion oxygen-containing gas is provided at a portion on the support unit side corresponding to the water pipe side position. The attachment position of the tuyere 11 is a position at a distance of 1/5 to 2D from the water pipe disposition position, where D is the cross-sectional diameter of the packed bed 7. However, the position of the tuyere 11 is not determined only from the relationship with D, and in the operating state, a packed bed having a predetermined height or more is formed above the tuyere 11 position. Naturally, it is about half or less of the height of the packed bed .
Further, a plurality of reducing melt treatment material inlets 12 through which a treatment material for the reduced melt can be charged are provided in the combustion space in the combustion chamber.
The above is the schematic configuration of the reduction melting furnace 1.
[0010]
Hereinafter, the operating state of the reduction melting furnace 1 will be described.
In operation, the packed bed 7 of coke is formed in the packed bed forming section 2 in the pre-operation stage. In a state where the burner 8 in the combustion chamber is operated, the packed bed 7 is maintained in a red hot state. Here, immediately before the processing object is charged, the amount of combustion oxygen-containing gas supplied to the furnace (through the tuyere 11 and the burner 8) is adjusted to maintain the inside of the furnace in a reducing atmosphere.
Then, a non-ferrous metal oxide (for example, lead oxide) that is a processing object to be reduced and melted is charged from the material charging port 4. At this time, coke having a weight ratio of about 1 to 10% is added to the object to be treated. In this state, the preheated air from the tuyere 11 attached to the packed bed 7 is supplied in the range of 0.3 to 1.0 with respect to the required air amount of the supplied coke, and the temperature of the packed bed 7 Control the atmosphere and filling height.
The charged processing object is reduced and melted by the high-temperature reducing gas sent from the combustion chamber 3 in the packed bed or by the high-temperature reducing gas supplied to the packed bed 7 and generated by the reaction between air and coke. It passes through the water pipe 6 and drops as a liquid into the combustion chamber.
The reduced product and the melted material are accumulated at the bottom of the combustion chamber held at a high temperature by the burner 8.
Further, in order to remove impurities such as sulfur from the reductant stored at the bottom of the furnace, a lump of iron, which is a reduction accelerator, is introduced from the reductive melt treatment material inlet 12. The processing material charging interval is calculated from the residence time at the bottom of the furnace, and the charging amount is in the range of about 0.5% to 3% per amount of processing object to be charged into the furnace.
Then, the reduced melt is continuously taken out from the reduced melt outlet 10.
[0011]
[Another embodiment]
In the above embodiment, an example in which the material to be reduced is lead oxide has been shown, but it is also used for removing impurities other than the material to be reduced, for example, composed of many materials. it can. Specifically, copper, aluminum, tin and the like can also be targeted.
Furthermore, in the above-described embodiment, the supply tuyere for supplying the combustion oxygen-containing gas is provided with only one stage in the furnace vertical direction, but it is preferable to provide a plurality of stages.
Furthermore, as the treatment material introduced from the above-mentioned reducing melt treatment material inlet, this was a reduction promoting material (iron), but as such a material, coke or the like is used in relation to the treatment object. it can. In addition, materials that float on the surface of the reduced melt and combine with oxygen existing in the combustion chamber (coke powder, plastic waste, etc.), and fluidity modifiers that adjust the flowability of the reduced melt (calcium oxide, dioxide dioxide) Or silicon).
Furthermore, as a member constituting the support portion, a member provided with a so-called cooling mechanism such as the above-described water pipe as a cooling pipe can be adopted.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a reduction melting furnace of the present application. FIG. 2 is a longitudinal sectional view of a conventional cupola type reduction melting furnace.
3 Combustion chamber 6 Support section (water pipe)
7 Packing layer 8 Burner 11 Tuyere 12 Reduced melt treatment material inlet

Claims (4)

炭素系可燃物質からなる充填層を形成するとともに、前記充填層に処理対象物を投入し、前記充填層で還元溶融された還元溶融物を下部より取り出し可能な還元溶融炉であって、
前記充填層の下側に、前記充填層を下方より支持する支持部を前記還元溶融物が滴下可能な状態で設け、前記支持部の下側に酸素含有ガスの空燃比を調節可能なバーナを備えた燃焼室を設け、前記還元溶融物が貯留する燃焼室下部から前記処理対象物の還元溶融物を取り出し可能に構成され、
前記充填層において前記支持部から前記炭素系可燃物質が充填された充填層高さの半分以下の部位である前記支持部側部位に、酸素含有ガスを供給可能な羽口を設けて、前記バーナと前記羽口から供給される酸素含有ガスの供給量を調節して、前記充填層及び前記燃焼室を還元雰囲気状態に維持可能であるとともに、
前記燃焼室内の燃焼空間に、前記還元溶融物に対する処理材を投入可能な還元溶融物処理材投入口を設けた還元溶融炉。
A reductive melting furnace capable of forming a packed bed made of a carbon-based combustible material, throwing a processing object into the packed bed, and taking out the reduced melt melted in the packed bed from the lower part;
A support part that supports the packed bed from below is provided below the packed bed in a state where the reduced melt can be dropped, and a burner that can adjust the air-fuel ratio of the oxygen-containing gas is provided below the support part. Provided with a combustion chamber provided, configured to be able to take out the reduced melt of the object to be processed from the lower portion of the combustion chamber in which the reduced melt is stored,
In the packed bed , a tuyere capable of supplying an oxygen-containing gas is provided at a site on the support unit side , which is a site less than half of the packed bed height filled with the carbon-based combustible material from the support unit , By adjusting the amount of oxygen-containing gas supplied from the burner and the tuyere, the packed bed and the combustion chamber can be maintained in a reducing atmosphere,
A reducing melting furnace provided with a reducing melt treatment material charging port capable of charging a treatment material for the reducing melt in a combustion space in the combustion chamber.
前記処理材が、前記還元溶融物に対する還元促進材である請求項1記載の還元溶融炉。  The reduction melting furnace according to claim 1, wherein the treatment material is a reduction accelerator for the reduction melt. 前記処理材が、前記還元溶融物表面に浮遊して前記燃焼室内に存する酸素と結合する材料である請求項1記載の還元溶融炉。  The reductive melting furnace according to claim 1, wherein the treatment material is a material that floats on the surface of the reductive melt and combines with oxygen existing in the combustion chamber. 前記処理材が、前記還元溶融物の流動性を調整する流動性調整材である請求項1記載の還元溶融炉。  The reduction melting furnace according to claim 1, wherein the treatment material is a fluidity adjusting material that adjusts the fluidity of the reduced melt.
JP07342196A 1996-03-28 1996-03-28 Reduction melting furnace Expired - Fee Related JP4245195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07342196A JP4245195B2 (en) 1996-03-28 1996-03-28 Reduction melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07342196A JP4245195B2 (en) 1996-03-28 1996-03-28 Reduction melting furnace

Publications (2)

Publication Number Publication Date
JPH09264671A JPH09264671A (en) 1997-10-07
JP4245195B2 true JP4245195B2 (en) 2009-03-25

Family

ID=13517750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07342196A Expired - Fee Related JP4245195B2 (en) 1996-03-28 1996-03-28 Reduction melting furnace

Country Status (1)

Country Link
JP (1) JP4245195B2 (en)

Also Published As

Publication number Publication date
JPH09264671A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
RU2242520C2 (en) Method of starting up of a process of a direct melting
JP2750136B2 (en) Method for melting metal scrap and apparatus for performing the method
CN1224064A (en) Apparatus and process system for preheating of steel scrap for melting metallurgical furnaces with concurrent flow of scrap and heating gases
US4328019A (en) Melting system and process for use in the production of high temperature mineral wool insulation
RU2127321C1 (en) Method of steel making and device for its embodiment
JP2009270815A (en) Device and method for manufacturing siliceous molten material
JP6369910B2 (en) Starting the smelting process
US2201738A (en) Process for effecting reducing metallurgical reactions
JP4245195B2 (en) Reduction melting furnace
US2034071A (en) Metallurgical furnace
JPS6053091B2 (en) Aluminum smelting method using smelting furnace method
CN106381403A (en) Combined smelting method for crude copper
US2339337A (en) Furnace launder construction
US1819239A (en) Electric smelting apparatus and process
US4378105A (en) Apparatus for melting metals
US1599885A (en) Smelting furnace
JP4077533B2 (en) Metal melting method
CN103392013B (en) Manufacture molten iron and the method and apparatus of steel
US1904684A (en) Method of melting
JPS6023714A (en) Fusing method of industrial waste
US432280A (en) Metallurgical furnace
US4045212A (en) Method of operation of a cupola
JP4162276B2 (en) Reduction melting method and reduction melting furnace
CN108413767A (en) Novel cokeless furnace cupola and the method for utilizing the device molten iron
JPH0346723B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees