JPH039170B2 - - Google Patents

Info

Publication number
JPH039170B2
JPH039170B2 JP29002985A JP29002985A JPH039170B2 JP H039170 B2 JPH039170 B2 JP H039170B2 JP 29002985 A JP29002985 A JP 29002985A JP 29002985 A JP29002985 A JP 29002985A JP H039170 B2 JPH039170 B2 JP H039170B2
Authority
JP
Japan
Prior art keywords
oxygen
flow rate
exhaust gas
sintering machine
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP29002985A
Other languages
Japanese (ja)
Other versions
JPS62149824A (en
Inventor
Ryoji Ito
Tsuneaki Nishikawa
Katsuhiko Shibuta
Kunihiko Tokukasa
Kimio Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29002985A priority Critical patent/JPS62149824A/en
Publication of JPS62149824A publication Critical patent/JPS62149824A/en
Publication of JPH039170B2 publication Critical patent/JPH039170B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は焼結機の酸素流量制御方法に関し、詳
細には必要最小限度の酸素を効率良く供給して焼
結鉱の生産性を高めるのに成功した焼結機の酸素
流量制御方法に関するものである。 [従来の技術] 第2図は、ドワイトロイド式焼結機の典型的な
構成例を示す概略説明図である。第2図に示す様
にドワイトロイド式燃結機では、原料層が装入さ
れる焼結ヘツド13の下部から上方の空気を吸引
しつつ、原料供給部12から供給される原料を点
火炉4で点火し、原料中に混合されている粉コー
クスを順次燃焼させ、原料鉱石粒子相互の焼結反
応及び溶融反応を促進する様にしている。従つ
て、焼結機における焼結鉱の生産性は、前記粉コ
ークスの燃焼速度に大きく依存している。その為
粉コークスの燃焼速度を向上させる方法が種々試
みられ、例えば焼結原料層を通過する空気の量を
増加させる方法、或は特開昭53−108804号公報に
開示される様に焼結層を貫通する気体を富酸素空
気とする方法等が提案されている。 [発明が解決しようとする問題点] また焼結機では第2図に示す様に煙道14の圧
力を一定に保持する為に、煙道14の途中に設け
た主ブロワ15のダンパ16の開度を調整する様
にしている。しかしながら焼結ベツド13を上か
ら下へ通過して各々の風箱2に吸引される空気量
は、風箱2の上部に位置する各焼結ベツド13上
の原料層の通気抵抗に応じて変化する。そして原
料層の通気抵抗は、原料充填状態及び原料粒子等
の変化に対応して時々刻々と変化しており、各風
箱2内を流過する排ガス量は常に変化しているの
である。 焼結ヘツド13上の焼結原料に酸素を供給する
場合において、供給ガス流量を一定にしておき該
供給ガス中の酸素含有率を制御することによつて
総酸素供給量を調整するという様な方法を採用す
ると、焼結ベツド13を通過する空気量が前記し
た理由によつて変化するだけでなく酸素濃度も変
化することになるので、これら2重の変化が重な
り合い酸素供給層量が非常に大きく変化し、操業
の安定性が大幅に低下する。 一方焼結ベツド13上の原料充填高さは300〜
800mm程度であるので空気等の気体が焼結ベツド
13を通過する時間はわずか1秒程度と極めて短
い。また粉コークスは600℃以上でないと酸素と
の燃焼反応を開始せず、且つ600℃以上で空気と
粉コークスとが接触する時間は極めて短時間であ
るので、燃焼反応効率は極めて低い。 この様な焼結過程においては、添加した酸素が
全て粉コークスの燃焼に寄与している訳ではな
く、しかも酸素の供給量が不安定であるから、酸
素は過剰気味にすることにならざるを得ず、余剰
酸素が無駄に排出されているというのが通常の操
業状態である。 以上述べた様に従来技術では、酸素が有効に利
用され得る最適酸素添加範囲については何ら考慮
されておらず、この様な観点からも酸素の最適添
加量を維持する為の制御技術の開発が望まれてい
る。 従つて本発明の目的は、上記現状に鑑み、酸素
を効率良く供給し、焼結鉱の生産コストを低減さ
せようとするものである。 [問題点を解決する為の手段] 本発明は、燃焼用酸素供給ゾーンにおける燃焼
用酸素の導入流量と当該ゾーンに係る風箱内の排
ガス総流量を測定し、燃焼用酸素の導入流量と排
ガス総流量との比が0.15未満となるように制御し
ながら焼結する点に要旨を有するものである。 [作用] 本発明は既述の如く構成されるが、要は第1図
に示す様な焼結機1において、酸素吹込みフード
6(燃焼用酸素供給ゾーン)から焼結ヘツド13
に導入される燃焼用酸素の導入流量を調整しなが
ら操業を行なうものである。そして調整される酸
素の導入流量は、酸素の導入流量と酸素が導入さ
れる風箱2における排ガス流量との比αが予め定
めた値になる様に設定される。当該比αの値は、
導入酸素の利用効率を向上させ更に焼結鉱の生産
性を向上させる為の重要な要件であるが、以下述
べるところから0.15未満であることが必要であ
る。 第3図は前記αと酸素利用効率との関係を示す
グラフであり、酸素利用効率は下記(1)式で示され
る。尚(1)式中「粉コークスの燃焼に寄与した酸素
量」とは、排ガス流量中のCO2濃度の測定値を基
にして数値計算から求められる値である。 酸素利用効率=粉コークスに燃焼に寄与した酸素
量[Nm3/H]/酸素導入流量[Nm3/H]×100(%
)………(1) 第3図から明らかな様に、酸素導入流量を増大
し、α(酸素の導入流量/排ガス総流量)が増大
するに従つて酸素の利用効率は低下する。特にα
が0.15以上になると、酸素利用効率の低下は顕著
となる。 第3図の結果から下記の如く考えることができ
る。即ち粉コークスの燃焼は導入酸素濃度のみに
依存するのではなく、酸素と粉コークスとの反応
接触時間その他の要因が影響している。このこと
は焼結機の実操業に当たり、燃焼用酸素の原単位
が一般的に高価であることを考慮すると、焼結機
の製造コストを低減する為には酸素利用効率の高
い範囲で適正に焼結機を操業するのがいかに重要
であるかと示唆するものである。 [実施例] 第1図は本発明方法を実施する為に構成される
ドワイトロイド式焼結機1(以下単に焼結機と言
う)の概略説明図である。第1図において、3は
主排気煙道、5は排ガスの流量計、6は酸素吹込
フード、7は酸素導入用配管、8は酸素流量調整
弁、9は酸素流量計、10は排ガス流量の演算加
算器、11は導入酸素と排ガス流量の比率設定器
である。その他第2図の従来技術と対応する部分
には同一の参照符号を付す。尚酸素吹込みフード
6は燃焼用酸素供給ゾーンに該当し、該酸素吹込
みフード6は一箇所の風箱2上にあつてもよい
が、複数箇所(実施例では3箇所)の風箱2上に
あつても何ら差し支えない。 焼結機1における酸素導入流量を制御する方法
を説明する。酸素吹込フード6に係る各風箱2の
排ガス流量は、流量計5によつて測定される。流
量計5によつて測定された各風箱2の排ガス流量
は演算加算器10で加算され、酸素が導入されて
いる風箱2における総排ガス流量が測定される。
演算加算器10は、比率設定器に連結されてい
る。 一方焼結ベツド13に供給される燃焼用酸素は
酸素導入用配管7、酸素流量調節弁8及び酸素流
量計9を介して酸素吹込フード6に供給される
が、酸素流量調節弁8及び酸素流量計9は前記比
率設定器11に連結されている。そして酸素流量
計9における酸素流量は、酸素流量と排ガス流量
との比αが比率設定器11によつて設定される値
となる様に酸素流量調節弁8によつて調整され
る。ここで比率設定器11によつて設定される値
とは、前記第3図に関連して述べた様に酸素導入
流量と排ガス流量との比α0.15が未満となる値で
ある。この様にして酸素導入流量と排ガス流量と
の割合を常時一定に保持することができる。 本発明は最終的に酸素導入流量を制御してαの
値を0.15未満になる様に制御するものであるが、
αの値を左右する因子としては前記酸素導入流量
以外に排ガス流量が存在するのは言うまでもな
い。そして排ガス流量は焼結原料の充填状態及び
原料粒子等の要件によつても左右されるものであ
る。従つて本発明においてαが0.15未満になる様
に制御する要件としては、酸素導入流量のみに限
らず、その他の前記各種の要件をも考慮しなけれ
ばならない。 第1図に示した焼結機1を用いて行なつた実操
業における結果を第1表に示す。第1表の結果か
ら明らかな様に、αが0.15以上になると酸素原単
位が40Nm3/Tと著しく悪化するので、前記比α
は0.15未満が最適であるのが理解される。
[Industrial Application Field] The present invention relates to a method for controlling the flow rate of oxygen in a sintering machine, and more specifically, the present invention relates to a method for controlling the flow rate of oxygen in a sintering machine, and in particular, a method for controlling the flow rate of oxygen in a sintering machine, which has succeeded in increasing the productivity of sintered ore by efficiently supplying the minimum necessary amount of oxygen. The present invention relates to an oxygen flow rate control method. [Prior Art] FIG. 2 is a schematic explanatory diagram showing a typical configuration example of a Dwight Lloyd sintering machine. As shown in FIG. 2, in the Dwight Lloyd type sintering machine, the raw material supplied from the raw material supply section 12 is transferred to the ignition furnace 4 while sucking air from above from the lower part of the sintering head 13 into which the raw material layer is charged. The coke powder mixed in the raw material is ignited to sequentially burn the coke powder mixed in the raw material, thereby promoting sintering and melting reactions between the raw material ore particles. Therefore, the productivity of sintered ore in a sintering machine largely depends on the combustion rate of the coke breeze. For this reason, various methods have been tried to improve the combustion rate of coke breeze. For example, there is a method of increasing the amount of air passing through the sintering raw material layer, or a method of increasing the amount of air passing through the sintering raw material layer, A method has been proposed in which the gas penetrating the layer is oxygen-enriched air. [Problems to be Solved by the Invention] In addition, in the sintering machine, in order to maintain the pressure in the flue 14 constant, as shown in FIG. I am trying to adjust the opening degree. However, the amount of air that passes through the sintered bed 13 from top to bottom and is sucked into each wind box 2 changes depending on the ventilation resistance of the raw material layer on each sintered bed 13 located at the top of the wind box 2. do. The ventilation resistance of the raw material layer changes from moment to moment in response to changes in the filling state of the raw material, the raw material particles, etc., and the amount of exhaust gas flowing through each wind box 2 is constantly changing. When supplying oxygen to the sintering raw material on the sintering head 13, the total oxygen supply amount is adjusted by keeping the supply gas flow rate constant and controlling the oxygen content in the supply gas. When this method is adopted, not only the amount of air passing through the sintered bed 13 changes due to the reasons mentioned above, but also the oxygen concentration, so these two changes overlap and the amount of oxygen supply layer becomes extremely large. This will result in significant changes and a significant drop in operational stability. On the other hand, the raw material filling height on the sintering bed 13 is 300~
Since the length is about 800 mm, the time for gas such as air to pass through the sintered bed 13 is extremely short, only about 1 second. Furthermore, coke breeze does not start a combustion reaction with oxygen unless it is above 600°C, and the time that air and coke breeze come into contact at temperatures above 600°C is extremely short, so the efficiency of the combustion reaction is extremely low. In such a sintering process, not all of the added oxygen contributes to the combustion of coke breeze, and the amount of oxygen supplied is unstable, so the amount of oxygen must be slightly excessive. Under normal operating conditions, excess oxygen is wastefully discharged. As mentioned above, in the conventional technology, no consideration is given to the optimal oxygen addition range in which oxygen can be used effectively, and from this perspective, it is necessary to develop control technology to maintain the optimal amount of oxygen addition. desired. Therefore, in view of the above-mentioned current situation, an object of the present invention is to efficiently supply oxygen and reduce the production cost of sintered ore. [Means for solving the problem] The present invention measures the introduction flow rate of combustion oxygen in a combustion oxygen supply zone and the total flow rate of exhaust gas in the wind box related to the zone, and calculates the introduction flow rate of combustion oxygen and exhaust gas. The gist of this is that sintering is performed while controlling the ratio to the total flow rate to be less than 0.15. [Function] The present invention is constructed as described above, but the point is that in a sintering machine 1 as shown in FIG.
The operation is carried out while adjusting the flow rate of combustion oxygen introduced into the reactor. The adjusted oxygen introduction flow rate is set so that the ratio α between the oxygen introduction flow rate and the exhaust gas flow rate in the wind box 2 into which oxygen is introduced becomes a predetermined value. The value of the ratio α is
This is an important requirement for improving the utilization efficiency of introduced oxygen and further improving the productivity of sintered ore, and as described below, it is necessary that it be less than 0.15. FIG. 3 is a graph showing the relationship between α and the oxygen utilization efficiency, and the oxygen utilization efficiency is expressed by the following equation (1). In equation (1), "the amount of oxygen that contributed to the combustion of coke breeze" is a value determined by numerical calculation based on the measured value of the CO 2 concentration in the exhaust gas flow rate. Oxygen utilization efficiency = Amount of oxygen that contributed to the combustion of coke breeze [Nm 3 /H] / Oxygen introduction flow rate [Nm 3 /H] x 100 (%
)......(1) As is clear from FIG. 3, as the oxygen introduction flow rate increases and α (oxygen introduction flow rate/total exhaust gas flow rate) increases, the oxygen utilization efficiency decreases. Especially α
When becomes 0.15 or more, the decrease in oxygen utilization efficiency becomes remarkable. From the results shown in Figure 3, the following can be considered. That is, the combustion of coke breeze does not depend only on the introduced oxygen concentration, but is influenced by the reaction contact time between oxygen and coke breeze and other factors. This means that in actual operation of a sintering machine, considering that the basic unit of oxygen for combustion is generally expensive, it is necessary to reduce the manufacturing cost of a sintering machine by using oxygen within a range with high oxygen utilization efficiency. This suggests how important it is to operate the sintering machine. [Example] FIG. 1 is a schematic explanatory diagram of a Dwight Lloyd type sintering machine 1 (hereinafter simply referred to as sintering machine) configured to carry out the method of the present invention. In Fig. 1, 3 is the main exhaust flue, 5 is the exhaust gas flow meter, 6 is the oxygen blowing hood, 7 is the oxygen introduction pipe, 8 is the oxygen flow rate adjustment valve, 9 is the oxygen flow meter, and 10 is the exhaust gas flow rate meter. The calculation adder 11 is a ratio setting device for the introduced oxygen and the exhaust gas flow rate. Other parts corresponding to those of the prior art shown in FIG. 2 are given the same reference numerals. The oxygen blowing hood 6 corresponds to the combustion oxygen supply zone, and the oxygen blowing hood 6 may be placed on one wind box 2, but it may be placed on the wind box 2 at multiple locations (three locations in the embodiment). There is no problem even if it is on top. A method for controlling the flow rate of oxygen introduced into the sintering machine 1 will be explained. The exhaust gas flow rate of each wind box 2 related to the oxygen blowing hood 6 is measured by a flow meter 5. The exhaust gas flow rate of each wind box 2 measured by the flow meter 5 is added by an arithmetic adder 10, and the total exhaust gas flow rate in the wind box 2 into which oxygen is introduced is measured.
Arithmetic adder 10 is connected to a ratio setter. On the other hand, the combustion oxygen supplied to the sintering bed 13 is supplied to the oxygen blowing hood 6 via the oxygen introduction pipe 7, the oxygen flow rate control valve 8, and the oxygen flow meter 9. A total of 9 are connected to the ratio setter 11. The oxygen flow rate in the oxygen flow meter 9 is adjusted by the oxygen flow control valve 8 so that the ratio α between the oxygen flow rate and the exhaust gas flow rate becomes a value set by the ratio setting device 11. Here, the value set by the ratio setting device 11 is a value at which the ratio α0.15 between the oxygen introduction flow rate and the exhaust gas flow rate is less than 0.15, as described in connection with FIG. 3 above. In this way, the ratio between the oxygen introduction flow rate and the exhaust gas flow rate can be kept constant at all times. The present invention ultimately controls the oxygen introduction flow rate so that the value of α is less than 0.15.
Needless to say, the exhaust gas flow rate exists in addition to the oxygen introduction flow rate as a factor that influences the value of α. The exhaust gas flow rate also depends on the filling state of the sintering raw material, the raw material particles, and other requirements. Therefore, in the present invention, the requirements for controlling α to be less than 0.15 are not limited to the oxygen introduction flow rate, but must also take into consideration the various other requirements mentioned above. Table 1 shows the results of actual operation using the sintering machine 1 shown in FIG. As is clear from the results in Table 1, when α becomes 0.15 or more, the oxygen consumption rate deteriorates significantly to 40Nm 3 /T.
It is understood that less than 0.15 is optimal.

【表】 [発明の効果] 以上述べた如く本発明の方法を実施することに
よつて、焼結機における酸素利用効率を高く維持
できるようになり、経済的な酸素添加操業が実施
でき酸素原単位を低下させるのを可能とし、よつ
て焼結鉱の生産性向上に多いに与し得るものであ
る。
[Table] [Effects of the Invention] As described above, by implementing the method of the present invention, it becomes possible to maintain high oxygen utilization efficiency in the sintering machine, and economical oxygen addition operation can be carried out. This makes it possible to reduce the unit weight, and thus greatly contributes to improving the productivity of sintered ore.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する為に構成される
焼結機1の概略説明図、第2図はドワイトロイド
式焼結機の典型的な従来技術を示す概略説明図、
第3図は比αと酸素利用効率との関係を示すグラ
フである。 1……焼結機、2……風箱、3……主排気煙
道、4……点火炉、5……流量計、6……酸素吹
込フード、7……酸素導入配管、8……酸素流量
調整弁、9……酸素流量計。
FIG. 1 is a schematic explanatory diagram of a sintering machine 1 configured to carry out the method of the present invention, and FIG. 2 is a schematic explanatory diagram showing a typical conventional technique of a Dwight Lloyd type sintering machine.
FIG. 3 is a graph showing the relationship between ratio α and oxygen utilization efficiency. 1... Sintering machine, 2... Wind box, 3... Main exhaust flue, 4... Ignition furnace, 5... Flow meter, 6... Oxygen blowing hood, 7... Oxygen introduction piping, 8... Oxygen flow rate adjustment valve, 9...Oxygen flowmeter.

Claims (1)

【特許請求の範囲】[Claims] 1 ドワイトロイド式焼結機の酸素流量制御方法
において、燃焼用酸素供給ゾーンにおける燃焼用
酸素の導入流量と当該ゾーンに係る風箱内の排ガ
ス総流量を測定し、燃焼用酸素の導入流量と排ガ
ス総流量との比が0.15未満となるように制御しな
がら焼結することを特徴とする焼結機の酸素流量
制御方法。
1 In the oxygen flow rate control method for a Dwight Lloyd sintering machine, the introduction flow rate of combustion oxygen in the combustion oxygen supply zone and the total flow rate of exhaust gas in the wind box related to the zone are measured, and the introduction flow rate of combustion oxygen and exhaust gas are measured. A method for controlling an oxygen flow rate in a sintering machine, characterized in that sintering is performed while controlling the ratio to the total flow rate to be less than 0.15.
JP29002985A 1985-12-23 1985-12-23 Method for controlling flow rate of oxygen in sintering machine Granted JPS62149824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29002985A JPS62149824A (en) 1985-12-23 1985-12-23 Method for controlling flow rate of oxygen in sintering machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29002985A JPS62149824A (en) 1985-12-23 1985-12-23 Method for controlling flow rate of oxygen in sintering machine

Publications (2)

Publication Number Publication Date
JPS62149824A JPS62149824A (en) 1987-07-03
JPH039170B2 true JPH039170B2 (en) 1991-02-07

Family

ID=17750863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29002985A Granted JPS62149824A (en) 1985-12-23 1985-12-23 Method for controlling flow rate of oxygen in sintering machine

Country Status (1)

Country Link
JP (1) JPS62149824A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100419171B1 (en) * 1999-06-11 2004-02-14 주식회사 포스코 Method for preventing formation of coating sinter in furnace
KR20160089552A (en) * 2014-12-16 2016-07-28 주식회사 포스코 Sintering apparatus and sintering method

Also Published As

Publication number Publication date
JPS62149824A (en) 1987-07-03

Similar Documents

Publication Publication Date Title
RU2613007C2 (en) Method of blast furnace operation and method of molten cast iron production
US4541572A (en) Pulverizing, drying and transporting system for injecting a pulverized fuel into a blast furnace
JPH039170B2 (en)
CN85107416A (en) Arc furnace burner control Method and equipment
US20020027317A1 (en) Apparatus for controlling introduced air in metal oxide reducing furnace
CN105506210A (en) Vertical gas furnace and melting method for fusing and reducing metal material
JP2001131616A (en) Method of operating blast and method of operating sintering furnace
JPH0278816A (en) Method of controlling combustion efficiency
JP2637529B2 (en) Furnace temperature and NOx control device
JP3014556B2 (en) Blast furnace operation method
JPH0227406B2 (en) TANZAIJUTENSOGATAYOJUKANGENRONOSOGYOHOHO
JP2889088B2 (en) Blast furnace operation method
JPS6213539A (en) Method of sintering by humidification
JPH033917Y2 (en)
SU1691411A1 (en) Method for controlling conditions of pellet heat treatment
JPS59167627A (en) Automatic control procedure for industrial waste material melting furnace
SU1339383A1 (en) Method of controlling combustion of fuel in multizone continuous furnace
JPH06145729A (en) Blast furnace operation method
SU932170A1 (en) Apparatus for controlling process of alunite ore reduction in fluidised bed furnace
JPH046765B2 (en)
JPS63166914A (en) High oxygen-rich blasting blast furnace
JPH09125122A (en) Method for controlling oxygen concentration corresponding to molten metal tapping temperature in vertical type quick melting furnace
CN102681560B (en) The computational methods of air and oxygen demand in a kind of smelting system
KR20010057419A (en) Device for controlling the discharging height of fine particles in fluidized bed reactor
SU1643615A2 (en) Method for adjusting the run of a blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees