JPH02175803A - Porous metal material - Google Patents
Porous metal materialInfo
- Publication number
- JPH02175803A JPH02175803A JP1105627A JP10562789A JPH02175803A JP H02175803 A JPH02175803 A JP H02175803A JP 1105627 A JP1105627 A JP 1105627A JP 10562789 A JP10562789 A JP 10562789A JP H02175803 A JPH02175803 A JP H02175803A
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- curled
- porous metal
- fibers
- metal material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007769 metal material Substances 0.000 title claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 72
- 239000002184 metal Substances 0.000 claims abstract description 72
- 239000000835 fiber Substances 0.000 claims abstract description 68
- 238000005245 sintering Methods 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 abstract description 17
- 238000001914 filtration Methods 0.000 abstract description 4
- 239000011358 absorbing material Substances 0.000 abstract description 3
- 239000011810 insulating material Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000010935 stainless steel Substances 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 12
- 239000000843 powder Substances 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 239000010439 graphite Substances 0.000 description 8
- 229910002804 graphite Inorganic materials 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000012255 powdered metal Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 239000003082 abrasive agent Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 239000006061 abrasive grain Substances 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 229920006184 cellulose methylcellulose Polymers 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000009760 electrical discharge machining Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 235000019198 oils Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- -1 silane compound Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 150000003755 zirconium compounds Chemical group 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0232—Metals or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Exhaust Silencers (AREA)
- Exhaust Gas After Treatment (AREA)
- Filtering Materials (AREA)
- Powder Metallurgy (AREA)
- Press Drives And Press Lines (AREA)
- Catalysts (AREA)
- Cell Electrode Carriers And Collectors (AREA)
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は多孔質金属材に係わるものであって、特に高温
におけるクツション材、吸音材、断熱材、濾過材、通気
性型材、電極材、触媒又はその担体等として有用な高多
孔率の多孔質金属材およびその製造方法に係わるもので
ある。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to porous metal materials, particularly cushioning materials at high temperatures, sound absorbing materials, heat insulating materials, filtration materials, breathable mold materials, electrode materials, The present invention relates to a porous metal material with high porosity useful as a catalyst or its carrier, and a method for producing the same.
(従来の技術)
従来、銅系、ニッケル系またはステンレス系等の多孔質
金属材は、主として粉状の原料金属を焼結して製造され
ているが、かくして製造される多孔質金属材は多孔率に
限界があり、特に1M以上の厚さで多孔率80%以上の
材料を得ることは困難である。(Prior art) Conventionally, porous metal materials such as copper-based, nickel-based, or stainless steel-based materials have been mainly manufactured by sintering powdered raw material metals. In particular, it is difficult to obtain a material with a porosity of 80% or more at a thickness of 1M or more.
そこで近年金r/!、繊維を焼結して多孔率90〜95
%程度の材料を得る方法が研究されている。So in recent years, gold r/! , the porosity is 90-95 by sintering the fibers.
% of the material is being researched.
(発明が解決しようとする問題点)
しかし、従来の金属繊維を焼結してなる多孔質金属材は
、繊維方向を含む面上の方向と核部に垂直な方向とで性
質が大きく異なり、更に、繊維が障害となって切断加工
及び曲げ加工等の加工が難しくなる欠点がある。(Problems to be Solved by the Invention) However, the porous metal material made by sintering conventional metal fibers has greatly different properties between the direction on the plane including the fiber direction and the direction perpendicular to the core. Furthermore, there is a drawback that processing such as cutting and bending becomes difficult due to the fibers becoming an obstacle.
又、粉状金属及び金属繊維はいずれも高温で焼結され、
特にステンレスの焼結は1200 ”C前後の高温で行
われており、この焼結の思度を少しでも下げることが望
まれている。In addition, both powdered metal and metal fiber are sintered at high temperatures,
In particular, stainless steel is sintered at a high temperature of around 1200''C, and it is desired to lower the degree of sintering as much as possible.
本発明者等はこれらの欠点を解決し、上記の要求を満足
すべく鋭意検討した結果、第1図に示す様カール状金属
短繊維の集合体が、焼結した場合に高多孔率でかつ等方
性であって、上記の粉体焼結晶及び従来の繊維焼結晶の
長所を兼ね備えたものであることを見出し、又、かかる
カール状金属短繊維の集合体が同種の金属の他の繊維及
び粉体より焼結容易であって、焼結に先立つ予備成形及
び/又は焼結時の加圧なしでも焼結し得るものであるこ
とを見出し、本発明に到達した。The inventors of the present invention have made extensive studies to solve these drawbacks and satisfy the above requirements. As a result, as shown in Figure 1, an aggregate of curled short metal fibers has a high porosity and a high porosity when sintered. It has been discovered that it is isotropic and has the advantages of the above-mentioned powder sintered crystals and conventional fiber sintered crystals, and that the aggregate of such curled short metal fibers is similar to other fibers of the same type of metal. The present invention has been achieved based on the discovery that sintering is easier than powder and can be sintered without preforming prior to sintering and/or without pressurization during sintering.
即ち、本発明の目的は、高多孔率でかつ等方性の多孔質
金属材を提供し、かつか\る多孔質金属材を工業的有利
に得ることにある。That is, an object of the present invention is to provide a porous metal material with high porosity and isotropy, and to obtain such a porous metal material with industrial advantage.
(問題点を解決する為の手段)
しかして、かかる本発明の目的は、カール状金属短繊維
の集合体を焼結してなる多孔質金属材により容易に達成
される。(Means for Solving the Problems) Therefore, the object of the present invention can be easily achieved by a porous metal material formed by sintering an aggregate of curled short metal fibers.
(作 用) 以下、本発明の詳細な説明する。(for production) The present invention will be explained in detail below.
本発明に原料として用いるカール状金属短繊維の集合体
は、実質的に、通常短繊維に分類される程度の約1〜1
.5 cm以下、好ましくは約0.5 cra以下、よ
り好ましくは約1M以下の長さの、好ましくは半円以上
にカールした微小な金属繊維このとであって、通常この
程度の長さの他の金属短繊維の集合体において、該集合
体を構成する無数の金属繊維のほとんどが、はっきり認
識できる程度にカールしていることはあり得す、この点
でカール状金属短繊維の集合体と他の金属繊維の集合体
とは明確に区別し得るものである。The aggregate of curled short metal fibers used as a raw material in the present invention is substantially about 1 to 1
.. 5 cm or less, preferably about 0.5 cra or less, more preferably about 1M or less, and preferably curled into a semicircle or more, minute metal fibers, usually other than this length. In an aggregate of short metal fibers, it is possible that most of the countless metal fibers that make up the aggregate are curled to a clearly recognizable extent. It can be clearly distinguished from other metal fiber aggregates.
又、かかるカール状金属短繊維はその製造方法上も他の
金属繊維とは区別されるものであって、製造される金属
短繊維を好ましくは半円以上にカールさせる何らかの作
用を有する工程をその製造工程中に含んでなるものであ
る。In addition, such curled short metal fibers are distinguished from other metal fibers in terms of their manufacturing method, and the process that has the effect of curling the manufactured short metal fibers into a semicircle or more is preferably used. It is included during the manufacturing process.
具体的に一例を挙げれば、不酸化性雰囲気下で、鉄、銅
、アルミニウム、鉛、亜鉛、錫、ニッケル、クロム、金
、銀、白金、マグネシウム、これらの合金又はステンレ
ス等の軟質金属の表面に、砥粒を固着させた回転する研
削材を押圧せしめ、核表面から金属短繊維を削り取る方
法がある。ここで不酸化性雰囲気とは窒素、アルゴン、
ヘリウム等の不活性なガスを雰囲気中に流すか、又は前
記金属表面を水、水溶性研削油、不活性研削油等の溶剤
で冷却して酸化しない様にした状態を指し、また研削の
条件は、金属繊維が削り出せればいかなる条件でもよい
が、研削材の周速を500〜2000m/minとし、
研削される金属表面が前記研削材に対して3〜30m/
minで移動するようにするのが好ましい。To give a specific example, in a non-oxidizing atmosphere, the surface of soft metals such as iron, copper, aluminum, lead, zinc, tin, nickel, chromium, gold, silver, platinum, magnesium, alloys thereof, or stainless steel. Another method involves pressing a rotating abrasive material to which abrasive grains are fixed, and scraping off short metal fibers from the core surface. Here, the non-oxidizing atmosphere is nitrogen, argon,
Refers to the state in which an inert gas such as helium is flowed into the atmosphere, or the metal surface is cooled with a solvent such as water, water-soluble grinding oil, or inert grinding oil to prevent oxidation, and the grinding conditions Any conditions may be used as long as the metal fibers can be cut out, but the peripheral speed of the abrasive material should be 500 to 2000 m/min,
The metal surface to be ground is 3 to 30 m/
It is preferable to move at min.
第1図は上記の研削材で金属表面から金属繊維を削りと
る方法を用いて得られるカール状金属短繊維の形状を説
明する為の模式図であって、該図中1及び2はそれぞれ
該カール状金属短繊維の尖端部及び中央部を、3は該カ
ール状金属短繊維の外径を表す。上記の方法で製造され
るカール状金属短繊維は、製造工程における研削材の回
転速度、研削材の金属表面への押圧の強弱、砥粒の径、
切り込み深さ及び研削さるべき金属の種類等により、そ
の寸法及び形状が異なり、尖端部の肉厚は約0.5〜8
0μm、中央部の肉厚は約5〜1000μm、外径は約
250〜1500μmの範囲で変化し得るが、いずれも
中央部の肉厚が尖端部より大きいのが特徴である。FIG. 1 is a schematic diagram for explaining the shape of curled metal short fibers obtained by using the method of scraping metal fibers from a metal surface with the above-mentioned abrasive, and 1 and 2 in the figure are respectively 3 represents the tip and center portions of the curled metal short fibers, and 3 represents the outer diameter of the curled metal short fibers. The curled metal short fibers produced by the above method are determined by the rotational speed of the abrasive material in the manufacturing process, the strength of the pressure of the abrasive material on the metal surface, the diameter of the abrasive grains,
Its dimensions and shape vary depending on the depth of cut and the type of metal to be ground, etc., and the wall thickness of the tip is approximately 0.5 to 8 mm.
0 μm, the wall thickness at the center is about 5 to 1000 μm, and the outer diameter can vary in the range from about 250 to 1500 μm, but each is characterized in that the wall thickness at the center is larger than at the tip.
この様なカール状金属短繊維は特に微小なものは、外見
上粉体に見える程のものもあり、同種の金属の他の繊維
又は粉体と比べて焼結し易く、より低温、より低加圧下
で焼結可能である。例えばステンレスのカール状金属短
繊維の場合、焼結温度は1000〜1100°C付近が
好ましく、従来の粉末焼結法の焼結温度である1200
″C前後においては、収縮が大きくなってむしろ多孔率
を太き(保つことが困難となる場合がある。These curled short metal fibers, especially those so minute, may look like powder in appearance, and they are easier to sinter than other fibers or powders of the same type of metal, and can be heated at lower temperatures. Can be sintered under pressure. For example, in the case of stainless steel curled short metal fibers, the sintering temperature is preferably around 1000 to 1100°C, and the sintering temperature is 1200°C, which is the sintering temperature of the conventional powder sintering method.
Around "C", the shrinkage becomes large and it may be difficult to maintain the porosity rather thickly.
このカール状金属短繊維の焼結のしやすさは、その製造
工程において無理な力を加えられたために該繊維の各所
で圧縮応力が異なり、DislocationKink
(転位の折れ曲がり)が増大したためと考えられる。The ease of sintering of this curled short metal fiber is due to the fact that compressive stress differs in each part of the fiber due to the excessive force applied during the manufacturing process.
This is thought to be due to an increase in the bending of dislocations.
本発明の多孔質金属材は、その製造過程にかかわりなく
、カール状金属短繊維の集合体を焼結してなるいかなる
多孔質金属材をも含み得るものであって、これには当然
従来粉状金属及び/又は他の繊維の焼結晶の製造過程で
用いられている方法、例えば金型を用いた加圧成型、抄
造又は解繊不織布法等の方法でシート状又はバルク状に
予備成型した後焼成する方法で製造される多孔質金属材
が含まれる。このうち抄造は、紙の製造法をほぼそのま
ま粉状金属又は金属繊維のシート化に応用したものであ
って、本発明の多孔質金属材の場合には、セルローズ繊
維等の有機質繊維ならびにCMC(カルボキシメチルセ
ルロース)、PVA(ポリビニルアルコール)及びPE
O(ポリエチレンオキサイド)等の分散媒のうちから、
下記表1に示した如き組合せを選び、これとカール状金
属短繊維の集合体とを混合して抄造するのが好ましく、
この場合には多孔率50〜95%程度のうずくで均一な
製品が得られ、連続製造も可能である。その際製造すべ
き多孔質金属材の板厚に応じて適当に粘度調整を行うこ
とが好ましい。The porous metal material of the present invention can include any porous metal material formed by sintering an aggregate of curled short metal fibers, regardless of its manufacturing process, and of course includes conventional powder powder. pre-formed into a sheet or bulk shape by a method used in the production process of fired crystals of shaped metals and/or other fibers, such as pressure molding using a mold, paper making, or a defibrated nonwoven fabric method. Includes porous metal materials manufactured by post-firing methods. Among these, papermaking is a method that applies almost the same paper manufacturing method to sheeting powdered metal or metal fibers. In the case of the porous metal material of the present invention, organic fibers such as cellulose fibers and CMC ( carboxymethylcellulose), PVA (polyvinyl alcohol) and PE
Among dispersion media such as O (polyethylene oxide),
It is preferable to select a combination as shown in Table 1 below and mix this with an aggregate of curled short metal fibers to form paper.
In this case, a smooth and uniform product with a porosity of about 50 to 95% can be obtained, and continuous production is also possible. At this time, it is preferable to adjust the viscosity appropriately depending on the thickness of the porous metal material to be manufactured.
表 1
カール状金属短繊維の加圧成型は、従来の粉状金属の加
圧成型と全く同様に行えるが、成型時の圧力は粉状金属
の場合と比べて小さ(てよく、例えば粉状ステンレスの
加圧成型には6〜13 ton/ciを要するところ
をカール状ステンレス短繊維の加圧成型は1 ton
/crl!程度又はそれ以下の圧力で充分である。なぜ
ならカール状金属短繊維はその形状から粉末や他の繊維
と比べて互いによりからみ易く、成型性がよいからであ
る。Table 1 Pressure molding of curled short metal fibers can be performed in exactly the same way as conventional pressure molding of powdered metals, but the pressure during molding may be lower than that for powdered metals (for example, Pressure molding of stainless steel requires 6 to 13 tons/ci, but pressure molding of curled stainless steel short fibers requires 1 ton/ci.
/crl! A pressure of about 100 ml or less is sufficient. This is because curled short metal fibers are easier to entangle with each other than powder or other fibers due to their shape, and have good moldability.
解繊不織布法は、カール状金属短繊維を解繊し、ウェッ
ブとし、積層して不織布とするもので、これは従来他の
繊維又は金属長繊維等で行われていた方法をそのまま適
用すればよい。The defibrated non-woven fabric method involves defibrating curled short metal fibers, forming a web, and laminating them to form a non-woven fabric. good.
また、このほか、従来の粉状金属又は金属繊維の焼結晶
の製造に用いられなかった方法として、圧力をかけず、
PVAもしくはCMC又はメラミン樹脂もしくはアクリ
ル樹脂等の有機バインダー等の接着剤で型の中のカール
状金属短繊維を固めて予備成型後焼成する方法及び予備
成型せずにカール状金属短繊維の集合体を直接焼結容器
に装填して焼結する方法等が採用可能であって、これら
の方法によれば、多孔率50〜98%の製品が掻めて容
易に製造できる。In addition, as a method that has not been used in the conventional production of powdered metal or sintered crystals of metal fibers, there is a method that does not apply pressure.
A method of solidifying curled short metal fibers in a mold with an adhesive such as PVA or CMC or an organic binder such as melamine resin or acrylic resin, and firing after preforming, and an aggregate of curly short metal fibers without preforming. It is possible to adopt a method in which the material is directly loaded into a sintering container and sintered, and according to these methods, a product with a porosity of 50 to 98% can be easily produced.
本発明の多孔質金属材は、セラミックス製、黒鉛製等の
従来用いられているいかなる治具を用いて焼結して製造
してもよいが、耐熱衝撃性に優れ、被焼結物に悪影響を
与える不′It@物の発生が少なく、熱伝導率が大きい
為多段に重ねて使用することができ、且つ耐久性にも優
れている点で、被焼結物の接触し得る箇所に珪酸ジルコ
ニウムを主成分とする被膜を有して成る黒鉛性治具、中
でも(a) アルコキシル基の炭素数が1乃至5であ
るテトラアルコキシシラン、該テトラアルコキシシラン
の加水分解物及び該加水分解物の部分重縮合物から成る
群から選ばれた少なくとも1種のシラン化合物、
(b) アルコキシル基の炭素数が1乃至5であるジ
ルコニウムテトラアルコキシド、該ジルコニウムテトラ
アルコキシドの加水分解物及び該加水分解物の部分重縮
合物から成る群から選ばれた少なくとも1種のジルコニ
ウム化合物、(C) 有機溶剤並びに
((1) 珪酸ジルコニウム粉末
を含む懸濁液を黒鉛成形体に塗布又は含浸し、乾燥して
成る黒鉛製治具を用いるのが好ましく、時に製造すべき
多孔質金属材がステンレス製のときには、他の焼結治具
では耐えられない程の苛酷な焼結条件があり得る為、上
記のジルコン被覆した黒鉛製治具を用いるのが特に好ま
しい。The porous metal material of the present invention may be manufactured by sintering using any conventionally used jig such as ceramic or graphite, but it has excellent thermal shock resistance and has no adverse effect on the object to be sintered. It is possible to use silicic acid in places where it can come into contact with the sintered material, because it has a low generation of impurities that cause sintering, has high thermal conductivity, can be used in multiple layers, and has excellent durability. A graphite jig having a coating mainly composed of zirconium, especially (a) a tetraalkoxysilane whose alkoxyl group has 1 to 5 carbon atoms, a hydrolyzate of the tetraalkoxysilane, and a hydrolyzate of the tetraalkoxysilane; at least one silane compound selected from the group consisting of partial polycondensates; (b) zirconium tetraalkoxide whose alkoxyl group has 1 to 5 carbon atoms; a hydrolyzate of the zirconium tetraalkoxide; and a hydrolyzate of the zirconium tetraalkoxide. A graphite molded body is coated with or impregnated with a suspension containing at least one zirconium compound selected from the group consisting of partial polycondensates, (C) an organic solvent, and ((1) zirconium silicate powder, and dried. It is preferable to use a graphite jig. Sometimes, when the porous metal material to be manufactured is made of stainless steel, there may be harsh sintering conditions that other sintering jigs cannot withstand. It is particularly preferable to use a graphite jig made of graphite.
又、焼結に用いる治具の形態及びその用法は被焼結物の
タイプ及び形状に応じて選べばよ(、それには例えば第
2〜8図に示す様な治具及び用法が考えられる。Furthermore, the form of the jig used for sintering and its usage may be selected depending on the type and shape of the object to be sintered (for example, jigs and usage as shown in FIGS. 2 to 8 can be considered).
第2〜8図は、カール状金属短繊維の焼結に用い得る治
具及びその用法の縦断面説明図であって、各図中におい
て、4はカール状金属短繊維の集合体、5は焼結容器、
6は上蓋、7は荷重板、8は焼結板、9はスペーサ、1
0は厚み調節板を表す。2 to 8 are longitudinal cross-sectional explanatory diagrams of a jig that can be used for sintering curled short metal fibers and its usage. In each figure, 4 is an aggregate of curled short metal fibers, and 5 is an aggregate of curled short metal fibers. sintered container,
6 is an upper lid, 7 is a load plate, 8 is a sintered plate, 9 is a spacer, 1
0 represents the thickness adjustment plate.
カール状金属短繊維の集合体はその焼結性の良さの故、
第2図に示した様なトレー型の焼結容器5に無加圧で散
布装填し、無加圧で焼成しても焼結可能だが、得られる
多孔質金属材の強度を向上せしめる為には該焼成に際し
て第3図に示す通り、上M6及び必要に応じて荷重板7
を用いて被焼結物たるカール状金属短繊維の集合体に軽
い圧力をかけて焼結するのが好ましい。またもちろん機
械的に加圧してもよい。Because of its good sinterability, aggregates of curled short metal fibers are
Although sintering is possible by scattering and loading the tray-shaped sintering container 5 as shown in Fig. 2 without applying pressure and firing without applying pressure, in order to improve the strength of the resulting porous metal material, As shown in FIG.
It is preferable to sinter the aggregate of curled short metal fibers, which is the object to be sintered, by applying light pressure using a sintering material. Of course, mechanical pressure may also be applied.
これらの焼結治具及び焼結方法を用い、荷重板7及び上
蓋6として充分重いものを用いるか又は機械的加圧によ
り被焼結物を充分に加圧して焼結した場合には、得られ
る多孔質金属材の厚みは第4図の如く上M6を容器5に
完全に嵌合せしめたときに残る上蓋6と焼結容器5の底
との間の隙間の厚みに等しくなり、これに対して焼結容
器内に装填するカール状金属短繊維の集合体又はその予
備成形品等の被焼結物の量を調節すれば、得られる多孔
質金属材の多孔率を容易に調節できる。If these sintering jigs and sintering methods are used, and the load plate 7 and top lid 6 are sufficiently heavy, or the object to be sintered is sintered with sufficient mechanical pressure, The thickness of the porous metal material is equal to the thickness of the gap remaining between the top lid 6 and the bottom of the sintered container 5 when the upper M6 is completely fitted into the container 5, as shown in FIG. On the other hand, the porosity of the resulting porous metal material can be easily adjusted by adjusting the amount of the material to be sintered, such as an aggregate of curled short metal fibers or a preformed product thereof, loaded into the sintering container.
更に、厚肉品用の焼結治具及びその用法を説明した第5
図に示す通り、上蓋6と被焼結物4との間に別の厚みv
4節板10を挿入することとすれば、用いる厚み調節板
10の厚みを変えるだけで、焼結容器5や上蓋6を変え
ることなく得られる多孔質金属材の厚みを変えることが
できる。Furthermore, Section 5 explains the sintering jig for thick-walled products and its usage.
As shown in the figure, there is a different thickness v between the upper lid 6 and the object to be sintered 4.
If the four-section plate 10 is inserted, the thickness of the porous metal material obtained can be changed simply by changing the thickness of the thickness adjustment plate 10 used, without changing the sintered container 5 or the top lid 6.
又、同時に複数枚の多孔質金属板を製造する場合には第
7図の様に、底部を上面開口部より小さく形成せしめた
焼結容器5を積重ねて用いればよく、予備成型品の場合
には、第8図に示す通り焼結用治具として焼結台板8と
スペーサ9を用い、用いるスペーサ9の厚みによって製
品の厚みを調節するのが便利である。又、本発明の多孔
質金属材としては異型品を得ることも比較的容易であっ
て、−例として第6図に中空円筒型用の焼結治具及びそ
の用法を示した。In addition, when manufacturing a plurality of porous metal plates at the same time, as shown in FIG. As shown in FIG. 8, it is convenient to use a sintering base plate 8 and a spacer 9 as a sintering jig, and to adjust the thickness of the product depending on the thickness of the spacer 9 used. Furthermore, it is relatively easy to obtain irregularly shaped products using the porous metal material of the present invention. As an example, FIG. 6 shows a sintering jig for a hollow cylindrical shape and its usage.
焼結の条件は、温度、圧力ともに従来の粉状金属又は他
の金属繊維の焼結より低くてよく、例えばステンレスな
ら温度は1100°C前後、加圧の圧力は求められる多
孔率によるが、0.3〜l ton/cal程度であ
って、この様により低温、より低加圧下で焼結・製造可
能であることが、本発明多孔質金属材の最大の特徴であ
る。The sintering conditions may be lower than those for conventional sintering of powdered metal or other metal fibers; for example, in the case of stainless steel, the temperature is around 1100°C, and the pressure of pressurization depends on the required porosity. The most important feature of the porous metal material of the present invention is that it can be sintered and manufactured at a lower temperature and under lower pressure.
かくして得られる本発明多孔質金属材は多孔率および気
孔径の点で多様な性質を有する製品を自在に製造可能で
、又、金属材であるから耐熱性もあり、材料としての金
属を選べば相当の高温に耐え且つ耐蝕性にも優れた製品
が得られ、切断、切削、研碧、放電加工、ウォーター・
ジェット、レーザー加工等により容易に加工でき、異形
品も簡単に製造でき、これらの優れた特性を生かして多
様な用途が考えられる。The thus obtained porous metal material of the present invention can be freely manufactured into products having various properties in terms of porosity and pore diameter, and since it is a metal material, it is heat resistant, and if the metal is selected as the material, A product that can withstand considerable high temperatures and has excellent corrosion resistance can be obtained, and can be used for cutting, machining, grinding, electrical discharge machining, water treatment, etc.
It can be easily processed by jet, laser processing, etc., and irregularly shaped products can also be manufactured easily, and a variety of uses can be considered by taking advantage of these excellent properties.
例えば、気孔径の小ささ及び通気性を生かした用途とし
て、集塵用、エアフィルター用等の気体用フィルターま
たは水、水溶液、植物油、鉱物油、フィルム・紡糸用原
料の合成樹脂等の濾過用もしくは合成中間体分離用等の
液体用フィルター等の濾過材が挙げられる。又、樹脂ま
たはエラストマー等の成形用金型、即ちモールド金型、
キャスティング、インジェクシヨン等の金型の一部又は
全体の材料に本発明多孔質金属材を用いると、その気孔
径の小ささ及び通気性の故に溶融状態の樹脂またはエラ
ストマーが洩れず、且つ別途空気抜き用の孔を設けなく
ても成形でき、異形の金型を作ることも容易である。For example, applications that take advantage of the small pore size and breathability include dust collection, gas filters such as air filters, and filtration of water, aqueous solutions, vegetable oils, mineral oils, and synthetic resins used as raw materials for films and spinning. Alternatively, filtration materials such as liquid filters for separating synthetic intermediates can be mentioned. In addition, a mold for molding resin or elastomer, that is, a mold,
When the porous metal material of the present invention is used as a material for part or all of a mold for casting, injection, etc., the molten resin or elastomer will not leak due to its small pore diameter and breathability, and additional air venting will be required. It can be molded without making any holes, and it is easy to make irregularly shaped molds.
自動車または産業用内燃機関の排気系の高温部品、特に
振動・熱膨張緩衝材及び吸音材として本発明多孔質金属
材は効果が大きい。中でもステンレス製の本発明品は断
熱性、耐熱性及び耐蝕性に特に優れ、この分野に幅広い
用途が考えられる。The porous metal material of the present invention is highly effective as a high-temperature component in the exhaust system of an automobile or industrial internal combustion engine, particularly as a vibration/thermal expansion buffer material and a sound absorbing material. Among them, the stainless steel product of the present invention has particularly excellent heat insulation, heat resistance, and corrosion resistance, and can be used in a wide range of fields.
このほか、本発明の表面積の大きさを利用した用途とし
て、電橿材及び触媒担体の用途が挙げられる。高温燃料
電池用の1橿接続用端子、またはニラカドミ池用多孔質
電掻用にはニッケル製の本発明多孔質金属材が好適に使
用でき、又、本発明品は触媒担体として好適である。In addition, applications utilizing the large surface area of the present invention include applications for electric rod materials and catalyst carriers. The porous metal material of the present invention made of nickel can be suitably used as a single rod connection terminal for high-temperature fuel cells or a porous electric scraper for a Nirakadomi pond, and the product of the present invention is also suitable as a catalyst carrier.
以下、実施例により本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.
(実施例)
ステンレススチールJ I ’J格304の第1図に示
した如き形状のカール状金属短繊維の集合体であって、
第1図中1として示される端部の平均線径が1〜5μm
、2で示される中央部の平均線径が5〜30μm、3で
示されるカール直径の平均が200〜350μmのカー
ル状金属短繊維の嵩密度0.3〜0.4 g /cIf
iの集合体を解繊し、被焼結物の接触し得る箇所に珪酸
ジルコニウムを主成分とする被膜を形成せしめた黒鉛製
容器に散布装填し、これを第7図に示す通りに積重ね、
還元雰囲気下、1100°C1露点−40°Cにて1時
間焼結したところ、厚さ10印、巾100−1長さ30
0卿の多孔質金属材が得られた。核子孔質金属材の性質
は表2に示す通りであった。(Example) An aggregate of curled short metal fibers having a shape as shown in FIG. 1 of stainless steel J I 'J grade 304,
The average wire diameter of the end indicated as 1 in Figure 1 is 1 to 5 μm.
, the bulk density of the curled short metal fibers having an average wire diameter of 5 to 30 μm at the center, indicated by 2, and an average curl diameter of 200 to 350 μm, indicated by 3, 0.3 to 0.4 g/cIf
The aggregate of i was defibrated and sprayed into a graphite container in which a film containing zirconium silicate as a main component was formed on the parts that could come into contact with the object to be sintered, and these were stacked as shown in Fig. 7.
When sintered for 1 hour at 1100°C, dew point -40°C in a reducing atmosphere, the thickness was 10 marks, the width was 100-1, the length was 30
A porous metal material of 0.0 cm was obtained. The properties of the nuclear porous metal material were as shown in Table 2.
(実施例2)
バルブ1重量部を水46重量部に加え、叩解機で叩解し
て得た叩解バルブ25gに、水10f、ポリエチレンオ
キサイド2g、実施例1で用いたのと同じカール状金属
短繊維の集合体500gを夫々添加して60分間攪拌後
、その5分の1をシートマシンにて抄紙し、ロールで水
切りし、水切りプレスにかけた後乾燥して厚さ2M、巾
300mm。(Example 2) 1 part by weight of bulb was added to 46 parts by weight of water and beaten in a beating machine. To 25 g of beaten bulb, 10 f of water, 2 g of polyethylene oxide, and the same curled metal shorts as used in Example 1 were added. After adding 500 g of each fiber aggregate and stirring for 60 minutes, one-fifth of it was made into paper using a sheet machine, drained with a roll, applied to a drain press, and dried to a thickness of 2M and a width of 300 mm.
長さ500Mのカール状金属短繊維複合紙を得た。A curled short metal fiber composite paper with a length of 500M was obtained.
尚、抄造用バインダーとしてポリビニルアルコール10
gをシートマシンによる脱水工程終了間際に加えた。In addition, polyvinyl alcohol 10 is used as a binder for papermaking.
g was added just before the end of the dehydration process using the sheet machine.
前記複合紙を第8図に示す通りの方法で積み重ね、実施
例1と同様にして焼結したところ、表2に示す通りの性
質を有する厚さ1.5 mm、巾300mm、長さ50
0mmの板状多孔質金属材が得られた。When the composite paper was stacked as shown in FIG. 8 and sintered in the same manner as in Example 1, it had a thickness of 1.5 mm, a width of 300 mm, and a length of 50 mm, having the properties shown in Table 2.
A plate-shaped porous metal material of 0 mm was obtained.
(実施例3)
実施例1で用いたのと同じカール状金属短繊維の集合体
を、下記の焼結容器より若干小さめの圧粉成型金型に装
填し、油圧プレスで面圧1.Ot、/C(でプレスし、
厚さ60mm、中200mm、長さ300mmで多孔率
40%の予備成形品を得、これを第5図中5で表される
形状の被焼結物の接触し得る箇所に珪酸ジルコニウムを
主成分とする被膜を形成せしめてなる黒鉛製焼結容器で
あって、中200 mm長さ300mmの焼結容器内で
還元雰囲気下、1100°C1露点−40°Cにて1時
間焼結したところ、表2に示す通りの性質を有する厚さ
60皿中200M長さ300mmの板状多孔質金属材が
得られた。(Example 3) The same aggregate of curled short metal fibers used in Example 1 was loaded into a compacting mold slightly smaller than the sintering container described below, and a surface pressure of 1. Press with Ot, /C(,
A preformed product with a thickness of 60 mm, a medium diameter of 200 mm, a length of 300 mm and a porosity of 40% was obtained, and this was placed on a part of the object to be sintered having the shape indicated by 5 in FIG. A graphite sintered container with a coating formed thereon, which was sintered in a reducing atmosphere at 1100°C and a dew point of -40°C for 1 hour in a sintered container with a diameter of 200 mm and a length of 300 mm. A plate-like porous metal material having properties as shown in Table 2 and having a thickness of 60 plates and a length of 200 mm and a length of 300 mm was obtained.
(実施例4)
実施例1で用いたのと同じカール状金属短繊維の集合体
を実施例3で用いたのと同じ焼結容器に装入し、上蓋及
び荷重板を重ね、単位表面積当たり0.1kg/cff
lの初期荷重をかけた状態で焼結を開始し、実施例3と
同一の条件下、−時間焼結したところ、表2に示す通り
の性質を有する厚さ60mm巾200M長さ300II
lluノ板状多孔質金属材が得られた。(Example 4) The same aggregate of curled short metal fibers used in Example 1 was charged into the same sintering container used in Example 3, and the upper lid and load plate were stacked on top of each other, and the 0.1kg/cff
Sintering was started with an initial load of 200 m and 300 m long, having the properties shown in Table 2 under the same conditions as in Example 3.
A plate-like porous metal material was obtained.
(実施例5及び6)
原料としてステンレスのかわりに銅のカール状金属短繊
維を用い、焼結時の温度及び露点をそれぞれ800°C
及び−35°Cとした以外はそれぞれ実施例1及び2と
全く同様にしたところ、それぞれ実施例1及び2と同一
の寸法であって、表2に示す通りの性質を有する板状多
孔質金属が得られた。(Examples 5 and 6) Curled copper short metal fibers were used instead of stainless steel as raw materials, and the temperature and dew point during sintering were 800°C.
The same procedure as in Examples 1 and 2 was carried out except that the temperatures were set at -35°C and -35°C, respectively, and a plate-like porous metal having the same dimensions as in Examples 1 and 2 and the properties shown in Table 2 was obtained. was gotten.
(実施例7及び8)
原料としてステンレスのかわりにニッケルのカール状金
属短繊維を用い、焼結時の温度及び露点をそれぞれ10
00°C及び−35°Cとした以外はそれぞれ実施例1
及・び2と全く同様にしたところ、それぞれ実施例1及
び2と同一の寸法であって、表2に示す通りの性質を有
する板状多孔質金属材が得られた。(Examples 7 and 8) Using nickel curled short metal fibers instead of stainless steel as raw materials, the temperature and dew point during sintering were set to 10
Example 1 except that the temperatures were 00°C and -35°C, respectively.
By carrying out exactly the same procedures as in Examples 1 and 2, plate-shaped porous metal materials having the same dimensions as in Examples 1 and 2 and properties shown in Table 2 were obtained.
表2
(効 果)
本発明の多孔質金属材は従来の他の金属繊維の焼結品及
び等方性の粉状金属の焼結品の長所を兼ね備えたもので
あって、高多孔率で、通気性、断熱性、加工性に優れ、
切断、切削、研磨、放電加工、ウォーター・ジェット、
レーザー加工等種々の加工方法が適用可能で、又、従来
の多孔質金属材より低温低加圧下で製造でき、多孔率の
調節も容易であって、その用途は広く、多大な工業的利
益を提供するものである。Table 2 (Effects) The porous metal material of the present invention combines the advantages of other conventional sintered metal fiber products and isotropic powder metal sintered products, and has a high porosity. , has excellent breathability, heat insulation, and processability.
Cutting, machining, polishing, electrical discharge machining, water jet,
Various processing methods such as laser processing can be applied, and it can be manufactured at a lower temperature and pressure than conventional porous metal materials, and the porosity can be easily adjusted.It has a wide range of uses and has great industrial benefits. This is what we provide.
第1図は本発明の多孔質金属材の原料として用いられる
カール状金属短繊維の一例であって、金属ブロックを研
削材でひっかきとる方法により製造されたカール状金属
短繊維の模式図、第2〜8図は、本発明の多孔質金属材
の製造に用いられる焼結治具の縦断面説明図である。
1・・・カール状金属短繊維の尖端部、2・・・カール
状金属短繊維の中央部、3・・・カール状金属短繊維の
外径、4・・・カール状金属短繊維の集合体、5・・・
焼結容器、6・・・上蓋、7・・・荷重板、8・・・焼
結台板、9・・・スペーサ、
0・・・厚み調節板。
出 願 人 東洋カーボン株式会社FIG. 1 is an example of curled short metal fibers used as a raw material for the porous metal material of the present invention, and is a schematic diagram of curled short metal fibers produced by a method of scratching a metal block with an abrasive. 2 to 8 are explanatory longitudinal cross-sectional views of the sintering jig used for manufacturing the porous metal material of the present invention. DESCRIPTION OF SYMBOLS 1... Tip part of curled short metal fibers, 2... Center part of curled short metal fibers, 3... Outer diameter of curled short metal fibers, 4... Collection of curled short metal fibers. Body, 5...
Sintering container, 6... Top lid, 7... Load plate, 8... Sintering base plate, 9... Spacer, 0... Thickness adjustment plate. Applicant: Toyo Carbon Co., Ltd.
Claims (1)
質金属材。(1) A porous metal material made by sintering an aggregate of curled short metal fibers.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16974488 | 1988-07-07 | ||
JP63-169744 | 1988-07-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02175803A true JPH02175803A (en) | 1990-07-09 |
JP2724617B2 JP2724617B2 (en) | 1998-03-09 |
Family
ID=15892044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1105627A Expired - Lifetime JP2724617B2 (en) | 1988-07-07 | 1989-04-25 | Porous metal material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2724617B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5716429A (en) * | 1994-03-15 | 1998-02-10 | Dsm N.V. | Method for the separation of impurities from a hot synthesis gas mixture in the preparation of melamine |
US5868810A (en) * | 1996-09-10 | 1999-02-09 | Schwarzkopf Technologies Corporation | Filtering cartridge |
JP2001243966A (en) * | 2000-02-02 | 2001-09-07 | Haldor Topsoe As | Solid oxide fuel cell |
WO2002047854A1 (en) * | 2000-12-13 | 2002-06-20 | N.V. Bekaert S.A. | A sintered product |
US6436163B1 (en) * | 1994-05-23 | 2002-08-20 | Pall Corporation | Metal filter for high temperature applications |
KR20030026549A (en) * | 2001-09-26 | 2003-04-03 | 주식회사 미래소재 | Manufacturing Method for Filter of Cars |
WO2005047208A3 (en) * | 2003-11-06 | 2005-07-21 | Volker Gallatz | Fibre used as a component of a composite material, composite material and method for the production of said type of fibre |
JP2005296450A (en) * | 2004-04-14 | 2005-10-27 | Masahiko Chiba | Manufacturing method of porous member for living body |
JP2007070727A (en) * | 2005-08-12 | 2007-03-22 | Toho Titanium Co Ltd | Method for producing sheet-shaped porous sintered compact |
JP2008121912A (en) * | 2006-11-08 | 2008-05-29 | Denso Corp | Adsorption module and manufacturing method of adsorption module |
US7445853B2 (en) * | 2002-10-17 | 2008-11-04 | Nv Bekaert Sa | Layered filter structure comprising short metal fibers |
JP2008264602A (en) * | 2007-04-16 | 2008-11-06 | Toyota Motor Corp | Filter and separator equipped with it |
CN104209518A (en) * | 2014-08-20 | 2014-12-17 | 西安菲尔特金属过滤材料有限公司 | Preparation method of nickel-based alloy fiber felt |
EP4130368A4 (en) * | 2020-03-27 | 2023-09-06 | Tomoegawa Co., Ltd. | Metal fiber molded body, temperature regulation unit, and method for manufacturing metal fiber molded body |
CN117483769A (en) * | 2023-11-24 | 2024-02-02 | 艾氢技术(苏州)有限公司 | Method for manufacturing metal particle block beneficial to chemical reaction and metal particle block |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111380091B (en) * | 2018-12-28 | 2022-05-17 | 宁波方太厨具有限公司 | Filtering and noise-reducing device and range hood applying same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51135807A (en) * | 1975-05-20 | 1976-11-25 | Ntn Toyo Bearing Co Ltd | Porous and low-density sintered body using iron powder as a material |
JPS51147413A (en) * | 1975-06-12 | 1976-12-17 | Ntn Toyo Bearing Co Ltd | A process for producing a filter using copper powder substituted with grinding powder of steel |
JPS61250132A (en) * | 1985-04-26 | 1986-11-07 | Mazda Motor Corp | Manufacture of composite member |
-
1989
- 1989-04-25 JP JP1105627A patent/JP2724617B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51135807A (en) * | 1975-05-20 | 1976-11-25 | Ntn Toyo Bearing Co Ltd | Porous and low-density sintered body using iron powder as a material |
JPS51147413A (en) * | 1975-06-12 | 1976-12-17 | Ntn Toyo Bearing Co Ltd | A process for producing a filter using copper powder substituted with grinding powder of steel |
JPS61250132A (en) * | 1985-04-26 | 1986-11-07 | Mazda Motor Corp | Manufacture of composite member |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5716429A (en) * | 1994-03-15 | 1998-02-10 | Dsm N.V. | Method for the separation of impurities from a hot synthesis gas mixture in the preparation of melamine |
US6436163B1 (en) * | 1994-05-23 | 2002-08-20 | Pall Corporation | Metal filter for high temperature applications |
US5868810A (en) * | 1996-09-10 | 1999-02-09 | Schwarzkopf Technologies Corporation | Filtering cartridge |
JP2001243966A (en) * | 2000-02-02 | 2001-09-07 | Haldor Topsoe As | Solid oxide fuel cell |
US7045219B2 (en) | 2000-12-13 | 2006-05-16 | N.V. Bekaert S.A. | Short metal fibers |
WO2002047854A1 (en) * | 2000-12-13 | 2002-06-20 | N.V. Bekaert S.A. | A sintered product |
US7048996B2 (en) | 2000-12-13 | 2006-05-23 | N.V. Bekaert S.A. | Temperature resistant material comprising short metal fibers |
KR20030026549A (en) * | 2001-09-26 | 2003-04-03 | 주식회사 미래소재 | Manufacturing Method for Filter of Cars |
US7445853B2 (en) * | 2002-10-17 | 2008-11-04 | Nv Bekaert Sa | Layered filter structure comprising short metal fibers |
WO2005047208A3 (en) * | 2003-11-06 | 2005-07-21 | Volker Gallatz | Fibre used as a component of a composite material, composite material and method for the production of said type of fibre |
JP4524776B2 (en) * | 2004-04-14 | 2010-08-18 | 晶彦 千葉 | Method for producing porous body for living body |
JP2005296450A (en) * | 2004-04-14 | 2005-10-27 | Masahiko Chiba | Manufacturing method of porous member for living body |
JP2007070727A (en) * | 2005-08-12 | 2007-03-22 | Toho Titanium Co Ltd | Method for producing sheet-shaped porous sintered compact |
JP2008121912A (en) * | 2006-11-08 | 2008-05-29 | Denso Corp | Adsorption module and manufacturing method of adsorption module |
JP2008264602A (en) * | 2007-04-16 | 2008-11-06 | Toyota Motor Corp | Filter and separator equipped with it |
CN104209518A (en) * | 2014-08-20 | 2014-12-17 | 西安菲尔特金属过滤材料有限公司 | Preparation method of nickel-based alloy fiber felt |
EP4130368A4 (en) * | 2020-03-27 | 2023-09-06 | Tomoegawa Co., Ltd. | Metal fiber molded body, temperature regulation unit, and method for manufacturing metal fiber molded body |
CN117483769A (en) * | 2023-11-24 | 2024-02-02 | 艾氢技术(苏州)有限公司 | Method for manufacturing metal particle block beneficial to chemical reaction and metal particle block |
Also Published As
Publication number | Publication date |
---|---|
JP2724617B2 (en) | 1998-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02175803A (en) | Porous metal material | |
US6582651B1 (en) | Metallic articles formed by reduction of nonmetallic articles and method of producing metallic articles | |
US3127668A (en) | High strength-variable porosity sintered metal fiber articles and method of making the same | |
US5592686A (en) | Porous metal structures and processes for their production | |
KR20020090226A (en) | Co-forming metal foam articles | |
GB2049735A (en) | Sintered porous metal plate and its production | |
DE10044656A1 (en) | Open-cell silicon carbide foam ceramic and process for its production | |
CN107000249A (en) | Ceramic preform and method | |
JP2006522215A5 (en) | ||
JP2010515829A (en) | Ceramic composite molded body and / or powder metallurgy composite molded body and method for producing the same | |
US3278279A (en) | Uniformly porous product consisting basically of metal fibers and process of making it | |
KR20130130787A (en) | Heat insulating material and method for producing same | |
KR20010007294A (en) | Cylinder Block and preform for metal-based composite materials | |
US4080413A (en) | Porous carbon fuel cell substrates and method of manufacture | |
KR20030081508A (en) | Sintered, highly porous body and method for the production thereof | |
EP1421042A1 (en) | Filter for molten metal filtration and method for producing such filters | |
JP3094148B2 (en) | Manufacturing method of lightweight refractory | |
KR20180129820A (en) | Manufacturing method of latent heat accumulator and latent heat accumulator | |
JP7442588B2 (en) | Method for producing porous titanium material and porous titanium material | |
SU390862A1 (en) | METHOD OF MANUFACTURING METAL-CERAMIC | |
KR20030034560A (en) | A Ceramic Article Having Interconnected Pores and Method of Making the Same | |
KR100373741B1 (en) | A process for producing porous aluminum using the pressure-assisted current sintering | |
JPH0221566A (en) | Electrode substrate for battery | |
KR20010086757A (en) | A Process for Preparing Porous Aluminum Using Water Based Binder | |
JP2003201188A (en) | Inorganic porous body and production method therefor |