JPH0221566A - Electrode substrate for battery - Google Patents

Electrode substrate for battery

Info

Publication number
JPH0221566A
JPH0221566A JP63170229A JP17022988A JPH0221566A JP H0221566 A JPH0221566 A JP H0221566A JP 63170229 A JP63170229 A JP 63170229A JP 17022988 A JP17022988 A JP 17022988A JP H0221566 A JPH0221566 A JP H0221566A
Authority
JP
Japan
Prior art keywords
nickel
sintering
fibers
battery electrode
electrode substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63170229A
Other languages
Japanese (ja)
Other versions
JP2799572B2 (en
Inventor
Toru Morimoto
徹 森本
Toshinao Ito
伊藤 敏直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Carbon Co Ltd
Original Assignee
Toyo Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Carbon Co Ltd filed Critical Toyo Carbon Co Ltd
Priority to JP63170229A priority Critical patent/JP2799572B2/en
Publication of JPH0221566A publication Critical patent/JPH0221566A/en
Application granted granted Critical
Publication of JP2799572B2 publication Critical patent/JP2799572B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a substrate whose porosity is high, active material filling capability is good, and shape holding capability is good by sintering a nickel fiber aggregate and a porous nickel plate. CONSTITUTION:A nickel fiber aggregate 3 and a porous nickel plate 4 are sintered. Nickel fiber manufactured by stick-slip vibration are preferable as raw material in terms of less oxide film. 25-40mm long nickel fibers are preferable since they are easily formed in a sheet before sintering. The porous nickel plate 4 sandwiched between nickel fiber aggregates 3 is put in a sintering container 1 and a heavy cover 2 is put on the container 1. A substrate having high porosity and good shape holding capability can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電池用電極基板に係わるものであって、より詳
しくはニッカド電池、溶融塩燃料電池等の電池内のニッ
ケルメッキとして有用な電池用電極基板に係わるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrode substrate for batteries, and more specifically, to an electrode substrate for batteries useful as nickel plating in batteries such as NiCd batteries and molten salt fuel cells. This relates to an electrode substrate.

(従来の技術) 従来電池用電極基板として多用されてきたニッケル極板
としては、ニッケルメッキした鋼板等のニッケル系金属
板にニッケル微粉を焼結せしめてなる多孔性の基板が一
般的であって、ニッカド電池の場合にはかかる多孔性の
基板に水酸化カドミウム、水酸化ニッケル及び金属カド
ミウム等の活物質を充填せしめて電極として使用してい
た。又、ほかに近年特にニッカド電池に求められている
高容量密度化に対応可能な高多孔率の電池用電極基板と
してシート状に成形したニッケル繊維の集合体を焼結し
てなる電池用電極基板がある。
(Prior art) Nickel electrode plates, which have been widely used as electrode substrates for batteries, are generally porous substrates made by sintering fine nickel powder onto a nickel-based metal plate such as a nickel-plated steel plate. In the case of NiCd batteries, such porous substrates are filled with active materials such as cadmium hydroxide, nickel hydroxide, and metal cadmium and used as electrodes. In addition, there is also a battery electrode substrate made by sintering an aggregate of nickel fibers formed into a sheet as a battery electrode substrate with a high porosity that can meet the high capacity density demands of NiCd batteries in recent years. There is.

(発明が解決しようとする問題点) しかし、従来一般的に用いられているニッケル系金属板
にニッケル微粉を焼結せしめてなる電池用電極板では?
θ係以上の多孔率を実現するのは難しく、強度及び曲げ
加工性にも問題があり又該基板の有する微孔の径が小さ
く、上記活物質の充填に多大の労力を要する欠点がある
(Problems to be solved by the invention) However, what about battery electrode plates made by sintering fine nickel powder onto nickel-based metal plates, which have been commonly used in the past?
It is difficult to achieve a porosity greater than the θ factor, there are problems with strength and bending workability, and the substrate has a drawback that the diameter of the micropores is small, requiring a great deal of effort to fill with the active material.

又、シート状に成形したニッケル繊維の集合体を焼結し
てなる電池用電極板は、多孔率及び活物質の充填の容易
さの点では満足すべき品質を呈するが、形が崩れ易い欠
点がある。
In addition, a battery electrode plate made by sintering an aggregate of nickel fibers formed into a sheet has satisfactory quality in terms of porosity and ease of filling with active material, but has the disadvantage that it easily loses its shape. There is.

本発明者等はこれらの欠点を解決すべく鋭意検討した結
果、従来ニッケル粉の焼結の基板としてのみ認識されて
いたニッケル系金属板を、ニッケル繊維を焼結してなる
電池用電極の形を保つ為の芯金として用いることに想到
し、父、ニッケル繊維として特殊な形状の易焼結性の短
繊維を用いること及び/又は焼結用治具として表面に特
殊な被膜を形成せしめた黒鉛治具を用いることを組合せ
れば、芯金とニッケル繊維の集合体とをより容易に焼結
せしめ得ることを見出し、本発明に到達した。
As a result of intensive studies to solve these shortcomings, the inventors of the present invention have developed a nickel-based metal plate, which had previously been recognized only as a substrate for sintering nickel powder, into a battery electrode made by sintering nickel fibers. My father came up with the idea of using it as a core metal to maintain the nickel fiber, and decided to use short fibers with a special shape that are easy to sinter as nickel fibers and/or form a special coating on the surface as a sintering jig. It was discovered that the core metal and the nickel fiber aggregate could be more easily sintered by combining the use of a graphite jig, and the present invention was achieved based on this finding.

即ち、本発明の目的は、高多孔率で且つ活物質の充填が
容易で、しかも保形性のよい電池用電極基板を工業的有
利に得ることにある。
That is, an object of the present invention is to obtain an industrially advantageous battery electrode substrate that has high porosity, is easy to fill with an active material, and has good shape retention.

(問題点を解決する為の手段) しかして、かかる本発明の目的は、ニッケル繊維の集合
体とニッケル系多孔〆金属板とを焼結してなる電池用電
極基板により容易に達成される。
(Means for Solving the Problems) Therefore, the object of the present invention can be easily achieved by a battery electrode substrate formed by sintering an aggregate of nickel fibers and a nickel-based porous metal plate.

(作 用) 以下、本発明の詳細な説明する。(for production) The present invention will be explained in detail below.

本発明の電池用電極基板はニッケル繊維の集合体とニッ
ケル系多孔γ金属板とを焼結してなるものである。
The battery electrode substrate of the present invention is formed by sintering an aggregate of nickel fibers and a nickel-based porous γ metal plate.

一般によほど細かい粉体でない限り、粉状の金属より繊
維状金属の方が、重量当たりの繊維同士の接触点が多い
為、より焼結が容易であって、本発明の電池用電極基板
の場合にも、長さ、太さ、形状及び製法等の別に図らず
、あらゆるニッケル繊維が従来のニッケル微粉にかわる
焼結容易な原材料として使用可能であるが、特公昭jA
−!10タ0号公報に示されている通りのどとり振動法
により製造されるニッケル繊維は、焼結を阻害する酸化
被膜が少ない点で原材料として好ましく、中でも焼結前
のシート化が容易な点で長さ25〜μOttrm程度の
ニッケル繊維が好ましい。このほか従来知られていなか
った材料だが、第7図にその模式図を示す様なカール状
ニッケル短繊維は本発明の原材料として最も好ましい。
In general, unless the powder is very fine, fibrous metal has more contact points between fibers per weight than powdered metal, so it is easier to sinter, and in the case of the battery electrode substrate of the present invention However, any nickel fiber, regardless of length, thickness, shape, manufacturing method, etc., can be used as a raw material that can be easily sintered in place of conventional nickel fine powder.
-! Nickel fibers manufactured by the Nodotori vibration method as shown in Publication No. 10ta No. 0 are preferable as raw materials because they have less oxide film that inhibits sintering, and in particular, they are easy to form into sheets before sintering. Nickel fibers having a length of about 25 to μOttrm are preferred. Although it is a previously unknown material, curled short nickel fibers as shown schematically in FIG. 7 are most preferable as the raw material of the present invention.

本明細書中でいうカール状ニッケル短繊維の集合体とは
実質的に、通常短繊維に分類される程度の約7〜7.5
m以下、好ましくは約O0!σ以下、より好ましくは約
/w以下の長さの、好ましくけ半円以上にカールした微
小なニッケル繊維からなる集合体のことであって、通常
この程度の長さの他のニッケル短繊維の集合体において
、該集合体を構成する無数のニッケル繊維のほとんどが
、はっきり認識できる程度にカールしていることはあり
得す、この点でカール状ニッケル短繊維の集合体と他の
ニッケル繊維の集合体とは明確に区別し得るものである
In this specification, the aggregate of curled nickel short fibers is substantially about 7 to 7.5, which is classified as short fibers.
m or less, preferably about O0! An aggregate of minute nickel fibers, preferably curled into a semicircle or more, with a length of σ or less, more preferably about In an aggregate, it is possible that most of the countless nickel fibers that make up the aggregate are curled to a clearly recognizable degree. It can be clearly distinguished from an aggregate.

又、かかるカール状ニッケル短繊維は、その製造方法上
も他のニッケル繊維とは区別されるものであって、製造
されるニッケル短繊維を好ましくは半円以上にカールさ
せる何らかの作用を有する工程をその製造工程中に含ん
でなるものである。
In addition, such curled nickel short fibers are distinguished from other nickel fibers in terms of their manufacturing method, which preferably involves a process that has some effect of curling the manufactured nickel short fibers into a semicircle or more. It is included during the manufacturing process.

具体的に一例を挙げれば、不酸化性雰囲気下でニッケル
基材の表面に、砥粒を固着せしめた回転する研削材を押
圧せしめ、該表面からニッケル短繊維を削り徹る方法が
ある。ここで不酸化性雰囲気とは窒素、アルゴン、ヘリ
ウム等の不活性なガスを雰囲気中に流すか、又は前記金
属表面を水、水溶性研削油、不活性研削油等の溶剤で冷
却して酸化しない様にした状態を指し、また研削の条件
は、ニッケル繊維が削り出せればいかなる条件でもよい
が、研削材の周速を! 00−2000 m / ’a
、研磨されるニッケル基材表面が一前記研削材に対して
3〜30 m / pninで移動するようにするのが
好ましい。
To give one specific example, there is a method in which a rotating abrasive material to which abrasive grains are fixed is pressed against the surface of a nickel base material in a non-oxidizing atmosphere, and the short nickel fibers are removed from the surface. Here, the non-oxidizing atmosphere is oxidized by flowing an inert gas such as nitrogen, argon, or helium into the atmosphere, or by cooling the metal surface with a solvent such as water, water-soluble grinding oil, or inert grinding oil. This refers to the condition in which the grinding conditions are any, as long as the nickel fibers can be removed, but the circumferential speed of the abrasive material must be controlled! 00-2000 m/'a
Preferably, the surface of the nickel substrate to be polished moves at a rate of 3 to 30 m/pnin with respect to the abrasive material.

第7図は上記の研削材でニッケル基材表面からニッケル
繊維を削りとる方法を用いて得られるカール状ニッケル
短繊維の形状を説明する為の模式図であって、該図中/
2及び13はそれぞれ該カール状ニッケル短繊維の尖端
部及び中央部を/≠は該カール状ニッケル短繊維の外径
を表す。上記の方法で製造されるカール状ニッケル短繊
維は、製造工程における研削材の回転速度、研削材の金
属表面への押圧の強弱、砥粒の径及び切込み深さ等によ
りその寸法及び形状が異なり、尖端部12の肉厚は約θ
、5〜toμm、中央部13の肉厚は約5〜1000μ
m1外径は約25O〜/ jt00μmの範囲で変化し
得るが、いずれも中央部13の肉厚が尖端部/2より大
きいのが特徴である。
FIG. 7 is a schematic diagram for explaining the shape of curled short nickel fibers obtained using the method of scraping off nickel fibers from the surface of a nickel base material using the above-mentioned abrasive material.
2 and 13 represent the tip and center portions of the curled nickel short fibers, respectively; /≠ represents the outer diameter of the curled nickel short fibers. The curled short nickel fibers produced by the above method vary in size and shape depending on the rotational speed of the abrasive in the manufacturing process, the strength of the pressure of the abrasive on the metal surface, the diameter of the abrasive grain, the depth of cut, etc. , the wall thickness of the tip 12 is approximately θ
, 5 to μm, and the thickness of the central part 13 is approximately 5 to 1000 μm.
The outer diameter m1 can vary in the range of about 250 to /jt00 μm, but each is characterized in that the thickness of the central portion 13 is larger than that of the tip portion /2.

この様なカール状ニッケル短繊維は、特に微小なものは
、外見上粉体に見える程のものもあり、他のニッケル繊
維又はニッケル微粉と比べて焼結し易く、より低温より
低加圧下で焼結可能である。
Such curled short nickel fibers, especially those so small, may look like powder in appearance, and they are easier to sinter than other nickel fibers or fine nickel powder, and can be sintered at lower temperatures or under less pressure. Can be sintered.

このカール状ニッケル短繊維の焼結のしやすさは、その
製造工程において無理な力を加えられたために該繊維の
各所で圧縮応力が異なり、Dislocation K
ink  (転位の折れ曲がり)が増大したためと考え
られる。
The ease with which this curled nickel short fiber can be sintered is due to the compression stress being different at each location of the fiber due to the excessive force applied during the manufacturing process.
This is thought to be due to an increase in ink (bending of dislocations).

上記のニッケル繊維の集合体は、必要に応じてシート状
に成型して多孔金属板との焼結に供するとよい。ビビリ
振動法により得られるニッケル繊維の集合体の場合には
解繊後、ランダム維の集合体の場合には、解繊後、ラン
ダムウェーバ−又はカードを用いて不織布とする方法の
他に、解繊後、トレーに散布し、接着剤を添加し、乾燥
する方法又はセルローズ繊維等の有機質繊維とともにC
MC(カルボキシメチルセルロース)、PVA(ポリビ
ニルアルコール)及びPE0(ポリエチレンオキサイド
)等の分散媒に分散せしめ、抄造する方法等によりシー
ト状に成型することができるが、他のニッケル繊維より
低温、低加圧下で焼結可能であるという性質を生かして
、予備成型せずに、多孔金属板上に散布し、無加圧又は
蓋板の重量程度の軽加圧下で焼結することもできる。
The above-mentioned nickel fiber aggregate may be formed into a sheet shape and subjected to sintering with a porous metal plate, if necessary. In the case of an aggregate of nickel fibers obtained by the chatter vibration method, after defibration, in the case of an aggregate of random fibers, after defibration, in addition to the method of making a nonwoven fabric using a random weber or card, there are two methods: C
It can be formed into a sheet by dispersing it in a dispersion medium such as MC (carboxymethyl cellulose), PVA (polyvinyl alcohol), and PE0 (polyethylene oxide) and forming it into a sheet, but it can be formed into a sheet at a lower temperature and pressure than other nickel fibers. By taking advantage of the property that it can be sintered in a vacuum, it is also possible to spray it on a porous metal plate without preforming and sinter it without applying pressure or under a light pressure of about the weight of the lid plate.

ら、下記表1に示した如き組合せを選び、これとカール
状ニッケル短繊維の集合体とを混合して抄造するのが好
ましく、その際製造すべき電池用電極基板の板厚に応じ
て適当に粘度調整を行うことが好ましく、この方法によ
れば、薄く均一で且つ破断しにくいニッケル繊維のシー
トが得られる。
It is preferable to select a combination as shown in Table 1 below and mix this with an aggregate of curled short nickel fibers to form a paper. It is preferable to adjust the viscosity, and according to this method, a thin, uniform, and hard-to-break nickel fiber sheet can be obtained.

表  l 従来のニッケル微粉を原材料として用いてなる電池用電
極基板には、焼結の基板としてニッケルメッキを施した
普通鋼又は高ニツケル系ステンレス等電池の清液、特に
濃厚なアルカリに浸されない材質の多孔性の薄板、金網
、エキスバンドメタル又はパンチングメタル等が用いら
れ、その厚み、開孔率及び孔径等は非常に広い範囲から
選択されていたが、本発明の電池用電極基板に芯金とし
て用いるニッケル系多孔金属板も、上記の従来用いられ
てきた焼結の基板と同様のものがいずれも使用可能であ
って、その中から電池用電極として求められる保形性及
び表面積並びに清液の流通のし易さ等を考慮し、電池の
種類にも応じて選べばよく、例えば通常のニッカド電池
用としては、例えば厚さjO〜700 am、孔径0.
j N2 tm、開孔率10N20%程度の普通鋼薄板
にニッケルメッキを施したもの等が用いられる。
Table 1 Conventional battery electrode substrates made using fine nickel powder as a raw material are made of materials that cannot be immersed in battery liquid, especially concentrated alkalis, such as nickel-plated ordinary steel or high-nickel stainless steel as a sintered substrate. Porous thin plates, wire mesh, expanded metal, punched metal, etc., have been used, and their thickness, porosity, pore diameter, etc. have been selected from a very wide range. As for the nickel-based porous metal plate used as the electrode, any of the same materials as the conventionally used sintered substrate mentioned above can be used. The choice may be made depending on the type of battery, taking into consideration the ease of distribution of the battery, etc. For example, for a normal NiCd battery, a thickness of JO~700 am and a pore diameter of 0.
A thin plate of ordinary steel with a porosity of about 10N20% and a nickel plating is used.

本発明の電池用電極基板は、上記の必要に応じてシート
化したニッケル繊維の集合体を上記のニッケル系多孔金
属板と焼結せしめてなるも具を用いてもよいが、耐熱衝
撃性に優れ、被焼結物に悪影響を与える不純物の発生が
少なく、熱伝導率が大きい為多段に重ねて使用すること
ができ且つ耐久性にも優れている点で、少なくとも被焼
結物の接触し得る箇所に珪酸ジルコニウムを主成分とす
る被膜を有して成る黒鉛製治具、中でも ■ アルコキシル基の炭素数がl乃至!であるテトラア
ルコキシシラン、該テトラアルコキジシランの加水分解
物及び該加水分解物の部分重縮合物から成る群から選ば
れた少なくとも7種の7ラン化合物、 ■ アルコキシル基の炭素数が/乃至!であるジルコニ
ウムテトラアルコキシド、該ジルコニウムテトラアルコ
キシドの加水分解物及び該加水分解物の部分重縮合物か
ら成る群から選ばれた少なくとも7種のジルコニウム化
合物、 ■ 有機溶剤並びに ■ 珪酸ジルコニウム粉末 を含む懸濁液を黒鉛成形体に塗布又は含浸し、乾燥して
成る黒鉛製治具を用いるとよい。
The battery electrode substrate of the present invention may use a component made by sintering an aggregate of nickel fibers formed into a sheet according to the above needs with the above nickel-based porous metal plate. It is excellent in that it generates few impurities that adversely affect the object to be sintered, has high thermal conductivity, can be used in multiple stages, and has excellent durability. A graphite jig comprising a coating mainly composed of zirconium silicate on the area to be obtained, especially ■ The number of carbon atoms in the alkoxyl group is 1 to 1! at least seven types of 7-ranan compounds selected from the group consisting of tetraalkoxysilanes, hydrolysates of the tetraalkoxysilanes, and partial polycondensates of the hydrolysates; (1) the number of carbon atoms in the alkoxyl group is / to! at least seven zirconium compounds selected from the group consisting of a zirconium tetraalkoxide, a hydrolyzate of the zirconium tetraalkoxide, and a partial polycondensate of the hydrolyzate; ■ an organic solvent; and ■ a suspension containing zirconium silicate powder. It is preferable to use a graphite jig made by coating or impregnating a graphite molded body with a liquid and drying it.

次に、実際の焼結の態様を図面に基づいて説明する。第
1図及び第2図は本発明の電池用電極基板を1枚ずつ製
造するのに用いられる焼結治具及びその用法を説明する
縦断面説明図であって、第1図は焼結直前、第2図は焼
結直後の状態を表す。第3図は本発明の電池用電極基板
を複数枚同時に焼結して製造するのに用いられる焼結治
具及びその用法を説明する縦断面説明図、第弘図は本発
明の電池用電極基板を連続的に製造する装置の横面説明
図であって、第5図及び第6図は該装置の2つの例につ
いての第弘図中のAA線に沿う断面説明図である。各図
中lは焼結容器、コは上蓋、3はニッケル繊維の集合体
、≠はニッケル系多孔金属板、jは該多孔金属板の孔を
表し、乙はシート状に成型したニッケル繊維の集合体、
7は焼結治具、rは焼結炉、りは厚み調節用ロール、1
0は電池用電極基板、//はチェーン又はメツシュ・コ
ンベアーを表す。
Next, the mode of actual sintering will be explained based on the drawings. 1 and 2 are vertical cross-sectional explanatory diagrams illustrating the sintering jig used to manufacture the battery electrode substrates of the present invention one by one and its usage, and FIG. , FIG. 2 shows the state immediately after sintering. FIG. 3 is a vertical cross-sectional explanatory diagram illustrating a sintering jig used to simultaneously sinter and manufacture a plurality of battery electrode substrates of the present invention and its usage, and FIG. FIG. 5 is an explanatory side view of an apparatus for continuously manufacturing substrates, and FIGS. 5 and 6 are explanatory cross-sectional views of two examples of the apparatus taken along line AA in FIG. In each figure, l is a sintered container, C is a top lid, 3 is an aggregate of nickel fibers, ≠ is a nickel-based porous metal plate, j is a hole in the porous metal plate, and B is a nickel fiber formed into a sheet. Aggregation,
7 is a sintering jig, r is a sintering furnace, RI is a roll for adjusting thickness, 1
0 represents a battery electrode substrate, // represents a chain or mesh conveyor.

本発明の電池用電極基板を1枚ずつ焼結して製造する場
合には、第1図に示す通りの焼結容器/及び上蓋2から
なる焼結治具、を用いるのが好ましく、この場合焼結容
器lにニッケル繊維の集合体3で、ニッケル系多孔金属
材≠をサシドイッテ状に両面から挾む恰好で装填し、上
蓋として充分重いものを用いれば、焼結に伴うニッケル
繊維の焼き縮み、ニッケル繊維の集合体の自重及び上蓋
からの加圧により、製造される電池用電極基板は収縮し
、その厚みは第2図の隙間の厚みに等しくなる。
When manufacturing the battery electrode substrates of the present invention by sintering them one by one, it is preferable to use a sintering jig consisting of a sintering container/and an upper lid 2 as shown in FIG. If a sintering container L is loaded with a nickel-based porous metal material ≠ in a sintering container L with a nickel fiber aggregate 3 sandwiched between both sides in a sashidite-like manner, and a sufficiently heavy lid is used, the nickel fibers will shrink during sintering. Due to the weight of the nickel fiber aggregate and the pressure applied from the top cover, the manufactured battery electrode substrate contracts, and its thickness becomes equal to the thickness of the gap shown in FIG.

上蓋2による加圧は、ニッケル繊維の集合体3とニッケ
ル系多孔金属板グとを焼結させる為に不可欠で、少なく
とも10?/cr/l程度の加圧を要するが、先述した
通りニッケル繊維は従来この分野に用いられてきたニッ
ケル微粉よりも焼結容易であるから、焼結の際の加圧は
1o14/d以下で充分であって、該ニッケル繊維がカ
ール状ニッケル短繊維の場合にはr却/cr/l以下程
度で充分である。
Pressure applied by the upper lid 2 is essential for sintering the nickel fiber aggregate 3 and the nickel-based porous metal plate, and is applied at least 10? /cr/l, but as mentioned earlier, nickel fibers are easier to sinter than the fine nickel powder conventionally used in this field, so the pressure during sintering is less than 1o14/d. When the nickel fibers are curled short nickel fibers, it is sufficient that the ratio is less than r/cr/l.

同時に複数枚の電池用電極基板を焼結し、製造する場合
には、第3図の様に、底部を上面開口部より小さく形成
せしめた焼結容器lを積重ねて用いればよい。
When sintering and manufacturing a plurality of battery electrode substrates at the same time, sintering containers L each having a bottom opening smaller than the top opening may be stacked and used as shown in FIG.

又、第≠図にその横面説明図を示す如き装置、即ちニッ
ケル系多孔金属板弘の両面をシート状に成型されたニッ
ケル繊維の集合体tで挾んでなる被焼結物を、焼結治具
7、好ましくは該被焼結物の接触し得る箇所に珪酸ジル
コニウムを主成分とする被膜を形成せしめてなる黒鉛製
焼結治具をとりつけたチェーン又はメツシュ・コンベア
ーl/で上下から挾みつつ焼結炉gに送りこみ焼結する
装置を用いれば、本発明の電池用電極基板10が連続的
に製造できる。
In addition, a device as shown in the side view diagram in Fig. 1 is used to sinter a material to be sintered, in which both sides of a nickel-based porous metal plate are sandwiched between aggregates of nickel fibers formed into sheets. A jig 7, preferably a graphite sintering jig formed by forming a coating mainly composed of zirconium silicate on the parts that can come into contact with the object to be sintered, is sandwiched from above and below with a chain or a mesh conveyor l/. By using a device that simultaneously feeds the material into the sintering furnace g and sinters it, the battery electrode substrate 10 of the present invention can be manufactured continuously.

以下、本発明を実施例により更に詳細に説明するが本発
明はその要旨を超えない限り、下記実施例により限定さ
れるものではない。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

(実施例/) 厚さ/鴫の普通鋼(C含有率0.1%)のパンチングメ
タル(孔径/+m、ピッチ2夕籠)の表面に7μmの厚
さでニッケルメッキしてなる多孔金属板に、第7図に示
した如き形状のカール状ニッケル短繊維であって、第7
図中72として示される端部の平均線径が/ −、−j
’μm、/3で示される中央部の平均線径が!〜30μ
m、/4tで示されるカール直径の平均が200〜3j
r0μmのカール状ニッケル短繊維からなる面密度30
0?/rr?の不織布をサンドインチ状に両面に合わせ
、これを第1図に示した通りの形状の黒鉛製容器であっ
て、被焼結物に接する面に珪酸ジルコニウムを主成分と
する被膜を形成せしめてなる黒鉛製容器以下、単にジル
コン被覆黒鉛製容器という)に装填して還元性雰囲気(
アンモニア分解ガス露点−36’C)下、不織布にかか
る上蓋の圧力を!09/cdtとして、  7020℃
で7時間焼結したところ、多孔率73係の電池用電極基
板が得られた。該電池用電極基板はニッケルメッキとニ
ッケル繊維とが強固に焼結しており、チゼルテストを行
っても常にニッケル繊維はニッケルメッキと一体になっ
て芯金から剥離した。
(Example/) A porous metal plate made by plating the surface of a punched metal (hole diameter/+m, pitch 2 Yugogo) of ordinary steel (C content 0.1%) with a thickness of 7 μm using nickel. A curled short nickel fiber having a shape as shown in FIG.
The average wire diameter of the end indicated as 72 in the figure is / -, -j
'μm, the average wire diameter at the center is expressed as /3! ~30μ
The average curl diameter expressed in m, /4t is 200 to 3j
Areal density 30 consisting of curled nickel short fibers of r0μm
0? /rr? The non-woven fabrics of the above were put together on both sides in the shape of a sandwich, and this was made into a graphite container having the shape shown in Fig. 1, and a coating mainly composed of zirconium silicate was formed on the surface in contact with the object to be sintered. A reducing atmosphere (hereinafter simply referred to as a zircon-coated graphite container)
Under the ammonia decomposition gas dew point -36'C), the pressure of the top lid on the nonwoven fabric! As 09/cdt, 7020℃
After sintering for 7 hours, a battery electrode substrate with a porosity of 73 was obtained. In the battery electrode substrate, the nickel plating and the nickel fibers were strongly sintered, and even when a chisel test was performed, the nickel fibers were always separated from the core metal together with the nickel plating.

(実施例λ〜弘) 焼結温度を表2に示す通りとしたほかは、実施例1と全
く同様にしたところ表2に示す通りの多孔率を有する電
池用電極基板が得られ、チゼルテストの結果も実施例1
と同様に良好であつた0 (実施例!〜!r) 焼結治具として、ジルコン被膜黒鉛製容器のかわりにア
ルミナをりr%以上含むセラミックス製容器を用い、焼
結温度を表2に示した通りにしたほかは実施例1と全く
同様にしたところ、表2に示した通りの多孔率を有する
電池用電極基板が得られた。又、得られた電池用電極基
板をチゼルテストにかけたところ、焼結温度を10!0
℃以下とした場合、ニッケル繊維がニッケルメッキを伴
わずに芯金から剥離した箇所がわずかに見られたが、焼
結温度が/ 070 ’C以上の場合には良好な結集が
得られた。
(Example λ~Hiro) The same procedure as Example 1 was carried out except that the sintering temperature was changed as shown in Table 2. A battery electrode substrate having a porosity shown in Table 2 was obtained, and a chisel test was performed. The results of Example 1
0 (Example!~!r) As a sintering jig, a ceramic container containing more than r% of alumina was used instead of a zircon-coated graphite container, and the sintering temperatures were as shown in Table 2. When the same procedure as in Example 1 was carried out except as shown, a battery electrode substrate having a porosity as shown in Table 2 was obtained. Furthermore, when the obtained battery electrode substrate was subjected to a chisel test, the sintering temperature was 10!0.
When the sintering temperature was below 0.5°C, there were a few places where the nickel fibers were peeled off from the core metal without nickel plating, but when the sintering temperature was above 070'C, good cohesion was obtained.

(実施例7及び10) カール状ニッケル短繊維からなる不織布のかわりにビビ
リ振動法により製造されたニッケル繊維(以下、単にビ
ビリという)からなる不織布を用い、焼結温度を表λに
示した通りとした以外は実施例/と全く同様にしたとこ
ろ、得られた電池用電極基板の多孔率は表2に示した通
りとなり、チゼルテストの結果も実施例1と同様に良好
であった。
(Examples 7 and 10) A nonwoven fabric made of nickel fibers produced by the chatter vibration method (hereinafter simply referred to as chatter) was used instead of a nonwoven fabric made of curled short nickel fibers, and the sintering temperature was as shown in Table λ. The same procedure as in Example 1 was carried out except that the porosity of the obtained battery electrode substrate was as shown in Table 2, and the results of the chisel test were also good as in Example 1.

(実施例//及び/2) カール状ニッケル短繊維からなる不織布のかわりにビビ
リからなる不織布を用い、焼結温度を表1に示した通り
にしたほかは実施例!と全く同様にしたところ、得られ
た電池用電極基板の多孔率及びそのチゼルテストの結果
は表2に示した通りとなった。チゼルテストの結果、焼
結温度を/ OjO″Cとした場合は、一部にニッケル
繊維がニッケルメッキを伴わずに剥離した箇所が見られ
、一方焼結温度1ioo°Cとした場合にはニッケル繊
維がニッケルメッキを伴わずに剥離した箇所は焼結温度
1oso℃の場合と比べれば少なく、わずかに見られる
程度だったO 表  1 尚、各実施例においてはチゼルテストを行う為に芯金と
してすべて厚さ/[/もの金属板を用いたが、実用に供
する電池用電極基板に芯金として用いられるニッケル系
多孔金属板はこれに限られるものではなく、その厚み、
孔径及び開孔率等は非常に広い範囲から選択され得るも
のであって、特に通常のニッカド電池用の芯金が実施例
で用いたものよりはるかに薄いものであることは、本明
細書中に記載した通りである。
(Example // and /2) Example except that a nonwoven fabric made of chatter was used instead of the nonwoven fabric made of curled nickel staple fibers, and the sintering temperature was set as shown in Table 1! The porosity of the obtained battery electrode substrate and the results of the chisel test were as shown in Table 2. As a result of the chisel test, when the sintering temperature was set to /OjO''C, there were some areas where the nickel fibers were peeled off without nickel plating, whereas when the sintering temperature was set to 1ioo°C, the nickel fibers were peeled off without nickel plating. The number of places where the fibers peeled off without nickel plating was smaller than when the sintering temperature was 1 oso℃, and could only be seen. Although metal plates with a thickness of
The pore size, porosity, etc. can be selected from a very wide range, and it is noted in this specification that the core metal for ordinary NiCd batteries is much thinner than that used in the examples. As described in.

又、表1における多孔率は芯金として用いたニッケル系
多孔金属板を除いた部分についての値である。
Further, the porosity in Table 1 is the value for the portion excluding the nickel-based porous metal plate used as the core metal.

(効 果) 本発明の電池用電極基板は高多孔率で且つ保形性に優れ
、又、原材料としてカール状ニッケル短繊維を用いるこ
と及び/又は焼結治具としてジルコン被覆黒鉛製治具を
用いることを採用した場合には従来のいかなる電池用電
極基板と比較しても格段に工業的有利に製造可能なもの
であって、多大な工業的利益を提供するものでちる。
(Effects) The battery electrode substrate of the present invention has high porosity and excellent shape retention, and also uses curled short nickel fibers as a raw material and/or a zircon-coated graphite jig as a sintering jig. If this method is adopted, it can be manufactured with great industrial advantage compared to any conventional battery electrode substrate, and it will provide great industrial benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の電池用電極基板を1枚ずつ
製造するのに用いられる焼結治具及びその用法を説明す
る縦断面説明図であって、第1図は焼結直前、第2図は
焼結直後の状態を表す。第3図は本発明の電池用電極基
板を複数枚同時に焼結して製造するのに用いられる焼結
治具及びその用法を説明する縦断面説明図、第≠図は本
発明の電池用電極基板を連続的に製造する装置の横面説
明図であって、第5図及び第6図は該装置の2つの例に
ついての第μ図中のAA線に沿う断面説明図である。 又、第7図は本発明の電池用電極基板の原材料として好
適なカール状ニッケル短繊維の形状を説明する模式図で
ある。 f・・・・・・焼結容器、 λ・・・・・・上蓋、 3・・・・・・ニッケル繊維の集合体、μ・・・・・・
ニッケル系多孔金属板、j・・・・・・ニッケル系多孔
金属板の孔、6・・・・・・シート状に成型したニッケ
ル繊維の集合体、 7・・・・・・焼結治具、 r・・・・・・焼結炉、 り・・・・・・厚み調節用ロール、 10・・・・・・電池用電極基板、 l/・・・・・・チェーン又ハメッシュ・コンベアー1
2・・・・・・カール状ニッケル短繊維の尖端部、/3
・・・・・・カール状ニッケル短繊維の中央部、/l’
・・・・・・カール状ニッケル短繊維の外径。
1 and 2 are vertical cross-sectional explanatory diagrams illustrating the sintering jig used to manufacture the battery electrode substrates of the present invention one by one and its usage, and FIG. , FIG. 2 shows the state immediately after sintering. Fig. 3 is a vertical cross-sectional explanatory diagram illustrating a sintering jig used to simultaneously sinter and manufacture a plurality of battery electrode substrates of the present invention and its usage; FIG. 5 is an explanatory side view of an apparatus for continuously manufacturing substrates, and FIGS. 5 and 6 are cross-sectional views taken along line AA in FIG. μ of two examples of the apparatus. Further, FIG. 7 is a schematic diagram illustrating the shape of curled short nickel fibers suitable as a raw material for the battery electrode substrate of the present invention. f...Sintered container, λ...Top lid, 3...Nickel fiber aggregate, μ...
Nickel-based porous metal plate, j... Holes of nickel-based porous metal plate, 6... Aggregate of nickel fibers formed into a sheet, 7... Sintering jig , r...Sintering furnace, Ri...Thickness adjustment roll, 10...Battery electrode substrate, l/...Chain or Hamesh conveyor 1
2... Point end of curled short nickel fiber, /3
・・・・・・Central part of curled short nickel fiber, /l'
・・・・・・Outer diameter of curled short nickel fiber.

Claims (1)

【特許請求の範囲】[Claims] (1)ニッケル繊維の集合体とニッケル系多孔金属板と
を焼結してなる電池用電極基板。
(1) A battery electrode substrate formed by sintering a nickel fiber aggregate and a nickel-based porous metal plate.
JP63170229A 1988-07-08 1988-07-08 Electrode substrate for battery Expired - Lifetime JP2799572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63170229A JP2799572B2 (en) 1988-07-08 1988-07-08 Electrode substrate for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63170229A JP2799572B2 (en) 1988-07-08 1988-07-08 Electrode substrate for battery

Publications (2)

Publication Number Publication Date
JPH0221566A true JPH0221566A (en) 1990-01-24
JP2799572B2 JP2799572B2 (en) 1998-09-17

Family

ID=15901061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63170229A Expired - Lifetime JP2799572B2 (en) 1988-07-08 1988-07-08 Electrode substrate for battery

Country Status (1)

Country Link
JP (1) JP2799572B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335755A (en) * 1993-11-30 1994-08-09 Harry Miller Fail-safe load support system
JP2008106299A (en) * 2006-10-24 2008-05-08 Mitsubishi Materials Corp Floor plate for use in sintering of porous body and method for manufacturing porous sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359841A (en) * 1976-11-11 1978-05-30 Furukawa Battery Co Ltd Method of manufacturing sintered base plate for storage battery electrode
JPS62170157A (en) * 1986-01-22 1987-07-27 Sanyo Electric Co Ltd Porous sintered substrate for electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5359841A (en) * 1976-11-11 1978-05-30 Furukawa Battery Co Ltd Method of manufacturing sintered base plate for storage battery electrode
JPS62170157A (en) * 1986-01-22 1987-07-27 Sanyo Electric Co Ltd Porous sintered substrate for electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335755A (en) * 1993-11-30 1994-08-09 Harry Miller Fail-safe load support system
JP2008106299A (en) * 2006-10-24 2008-05-08 Mitsubishi Materials Corp Floor plate for use in sintering of porous body and method for manufacturing porous sintered body

Also Published As

Publication number Publication date
JP2799572B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
US8492021B2 (en) Flexible, porous ceramic composite film
CA2437914C (en) Titanium powder sintered compact
US2819962A (en) Method of producing sintered plates for galvanic cells
US4440835A (en) Thin non-flat gas electrode, current collector and process of manufacture
US5290332A (en) Ceramic articles and methods for preparing ceramic articles and for sintering
KR20200078521A (en) Separator for lithium sulfur batteries
KR20210033006A (en) Network of metal fibers, method for manufacturing networks of metal fibers, electrodes and batteries
DE10044656A1 (en) Open-cell silicon carbide foam ceramic and process for its production
JP2724617B2 (en) Porous metal material
EP1056144A2 (en) Metallic porous body and method of manufacturing the same and battery current collector having the same
JPH0644966A (en) Manufacture of hydrogen storage electrode
JPH0221566A (en) Electrode substrate for battery
CA1269575A (en) Production of flat products from particulate material
GB2062948A (en) Electrolyte structure with strontium titanate matrix for molten carbonate fuel cells
JP4610501B2 (en) Method for producing sheet-like porous body
SU592523A1 (en) Method of making porous sheet
JPS6238825B2 (en)
JPH0340894B2 (en)
JPH05217584A (en) Manufacture of sintered substrate for alkaline battery
JPS6266573A (en) Manufacture of plate for alkaline storage battery
JP3046683B2 (en) Manufacturing method of ceramic perforated plate
JPH10183203A (en) Production of metallic porous body
JPH01236578A (en) Electrode plate for battery and its manufacture
JPH1173952A (en) Positive pole plate for cylindrical alkaline storage battery and the cylindrical alkaline storage battery
JPH0318303B2 (en)