JP2724617B2 - Porous metal material - Google Patents

Porous metal material

Info

Publication number
JP2724617B2
JP2724617B2 JP1105627A JP10562789A JP2724617B2 JP 2724617 B2 JP2724617 B2 JP 2724617B2 JP 1105627 A JP1105627 A JP 1105627A JP 10562789 A JP10562789 A JP 10562789A JP 2724617 B2 JP2724617 B2 JP 2724617B2
Authority
JP
Japan
Prior art keywords
metal
sintering
curled
thickness
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1105627A
Other languages
Japanese (ja)
Other versions
JPH02175803A (en
Inventor
徹 森本
敏直 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KAABON KK
Original Assignee
TOKAI KAABON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KAABON KK filed Critical TOKAI KAABON KK
Publication of JPH02175803A publication Critical patent/JPH02175803A/en
Application granted granted Critical
Publication of JP2724617B2 publication Critical patent/JP2724617B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Exhaust Silencers (AREA)
  • Catalysts (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Fuel Cell (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Materials (AREA)
  • Press Drives And Press Lines (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は多孔質金属材に係わるものであって、特に高
温におけるクッション材、吸音材、断熱材、濾過材、通
気性型材、電極材、触媒又はその担体等として有用な高
多孔率の多孔質金属材に関するものである。
The present invention relates to a porous metal material, and particularly relates to a cushion material, a sound absorbing material, a heat insulating material, a filtering material, a permeable material, an electrode material at a high temperature. The present invention relates to a porous metal material having a high porosity useful as a catalyst or a carrier thereof.

(従来の技術) 従来、銅系、ニッケル系またはステンレス系等の多孔
質金属材は、主として粉状の原料金属を焼結して製造さ
れているが、かくして製造される多孔質金属材は多孔率
に限界があり、特に1mm以上の厚さで多孔率80%以上の
材料を得ることは困難である。
(Prior art) Conventionally, porous metal materials such as copper-based, nickel-based, and stainless steel-based materials are mainly produced by sintering powdery raw metal, but the porous metal materials thus produced are porous. The porosity is limited, and it is particularly difficult to obtain a material having a porosity of 80% or more with a thickness of 1 mm or more.

そこで近年金属繊維を焼結して多孔率90〜95%程度の
材料を得る方法が研究されている。
Therefore, in recent years, a method of sintering a metal fiber to obtain a material having a porosity of about 90 to 95% has been studied.

(発明が解決しようとする問題点) しかし、従来の金属繊維を焼結してなる多孔質金属材
は、繊維方向を含む面上の方向と該面に垂直な方向とで
性質が大きく異なり、更に、繊維が障害となって切断加
工及び曲げ加工等の加工が難しくなる欠点がある。
(Problems to be Solved by the Invention) However, the properties of a porous metal material obtained by sintering a conventional metal fiber greatly differ between a direction on a plane including a fiber direction and a direction perpendicular to the plane. Further, there is a drawback that the fiber becomes an obstacle to make processing such as cutting and bending difficult.

又、粉状金属及び金属繊維はいずれも高温で焼結さ
れ、特にステンレスの焼結は1200℃前後の高温で行われ
ており、この焼結の温度を少しでも下げることが望まれ
ている。
Further, both powdered metal and metal fiber are sintered at a high temperature. In particular, sintering of stainless steel is performed at a high temperature of about 1200 ° C., and it is desired to lower the sintering temperature as much as possible.

本発明者等はこれらの欠点を解決し、上記の要求を満
足すべく鋭意検討した結果、第1図に示すように中央部
の肉厚が突端部の肉厚より大きい特定の繊維形態を有す
るカール状金属短繊維の集合体を、焼結した場合に高多
孔率でかつ等方性であって、上記の粉体焼結品及び従来
の繊維焼結品の長所を兼ね備えたものであることを見出
し、又、かかるカール状金属短繊維の集合体が同種の金
属の他の繊維及び粉体より焼結容易であって、焼結に先
立つ予備成形及び/又は焼結時の加圧なしでも焼結し得
るものであることを見出し、本発明に到達した。
The present inventors have solved the above drawbacks and have studied diligently to satisfy the above requirements. As a result, as shown in FIG. 1, the present invention has a specific fiber form in which the thickness at the center is larger than the thickness at the protruding end. The aggregate of the curled short metal fibers, when sintered, has a high porosity and isotropic, and has the advantages of the powder sintered product and the conventional fiber sintered product. In addition, the aggregate of such curled metal short fibers is easier to sinter than other fibers and powders of the same kind of metal, and can be formed without preforming and / or sintering prior to sintering. They have found that they can be sintered, and have reached the present invention.

即ち、本発明の目的は、高多孔率でかつ等方性の多孔
質金属材を提供し、かつかゝる多孔質金属材を工業的有
利に得ることにある。
That is, an object of the present invention is to provide an isotropic porous metal material having a high porosity and to obtain such a porous metal material in an industrially advantageous manner.

(問題点を解決する為の手段) しかして、かかる本発明の目的は、突端部の肉厚が0.
5〜80μm、中央部の肉厚が5〜1000μm、外径が250〜
1500μmの範囲内で中央部の肉厚が突端部より大きく、
かつ半円以上にカールした微小な金属繊維形状を有する
カール状金属短繊維の集合体を焼結してなる多孔質金属
材により達成するとができる。
(Means for Solving the Problems) However, the object of the present invention is to make the thickness of the protruding end portion less than 0.
5-80 μm, center thickness 5-1000 μm, outer diameter 250-
Within the range of 1500μm, the thickness at the center is greater than the tip,
It can be achieved by a porous metal material obtained by sintering an aggregate of curled metal short fibers having a fine metal fiber shape curled into a semicircle or more.

(作 用) 以下、本発明を詳細に説明する。(Operation) Hereinafter, the present invention will be described in detail.

本発明に原料として用いるカール状金属短繊維の集合
体は、実質的に、通常短繊維に分類される程度の約1〜
1.5cm以下、好ましくは約0.5cm以下、より好ましくは約
1mm以下の長さの、好ましくは半円以上にカールした微
小な金属繊維このとであって、通常この程度の長さの他
の金属短繊維の集合体において、該集合体を構成する無
数の金属繊維のほとんどが、はっきり認識できる程度に
カールしていることはあり得ず、この点でカール状金属
短繊維の集合体と他の金属繊維の集合体とは明確に区別
し得るものである。
The aggregate of the curled metal short fibers used as a raw material in the present invention is substantially in the range of about 1 to about a level generally classified as short fibers.
1.5 cm or less, preferably about 0.5 cm or less, more preferably about
This is a minute metal fiber having a length of 1 mm or less, preferably curled into a semicircle or more, and in an aggregate of other short metal fibers of this length, which is usually innumerable, Most of the metal fibers are unlikely to be curlable to any appreciable extent, and in this respect the aggregate of curled metal short fibers and the aggregate of other metal fibers can be clearly distinguished. .

又、かかるカール状金属短繊維はその製造方法上も他
の金属繊維とは区別されるものであって、製造される金
属短繊維を好ましくは半円以上にカールさせる何らかの
作用を有する工程をその製造工程中に含んでなるもので
ある。
Further, such a curled metal short fiber is also distinguished from other metal fibers in the production method, and a step having some action of curling the produced metal short fiber preferably into a semicircle or more is performed. It is included during the manufacturing process.

具体的に一例を挙げれば、不酸化性雰囲気下で、鉄、
銅、アルミニウム、鉛、亜鉛、錫、ニッケル、クロム、
金、銀、白金、マグネシウム、これらの合金又はステン
レス等の軟質金属の表面に、砥粒固着させた回転する研
削材を押圧せしめ、該表面から金属短繊維を削り取る方
法がある。ここで、不酸化性雰囲気とは窒素、アルゴ
ン、ヘリウム等の不活性なガスを雰囲気中に流すか、又
は前記金属表面を水、水溶性研削油、不活性研削油等の
溶剤で冷却して酸化しない様にした状態を指し、また研
削の条件は、金属繊維が削り出せればいかなる条件でも
よいが、研削材の周速を500〜2000m/minとし、研削され
る金属表面が前記研削材に対して3〜30m/minで移動す
るようにするのが好ましい。
To give a specific example, under a non-oxidizing atmosphere, iron,
Copper, aluminum, lead, zinc, tin, nickel, chromium,
There is a method in which a rotating abrasive material having abrasive grains fixed thereto is pressed against the surface of a soft metal such as gold, silver, platinum, magnesium, an alloy thereof, or stainless steel to scrape short metal fibers from the surface. Here, the non-oxidizing atmosphere is nitrogen, argon, flowing an inert gas such as helium into the atmosphere, or cooling the metal surface with a solvent such as water, water-soluble grinding oil, and inert grinding oil. It refers to a state where it is not oxidized, and the grinding conditions may be any conditions as long as the metal fiber can be cut out, but the peripheral speed of the grinding material is 500 to 2000 m / min, and the metal surface to be ground is applied to the grinding material. On the other hand, it is preferable to move at a speed of 3 to 30 m / min.

第1図は上記の研削材で金属表面から金属繊維を削り
とる方法を用いて得られるカール状金属短繊維の形状を
説明する為の模式図であって、該図中1及び2はそれぞ
れ該カール状金属短繊維の尖端部及び中央部を、3は該
カール状金属短繊維の外径を表す。上記の方法で製造さ
れるカール状金属短繊維は、製造工程における研削材の
回転速度、研削材の金属表面への押圧の強弱、砥粒の
径、切り込み深さ及び研削さるべき金属の種類等によ
り、その寸法及び形状が異なり、尖端部の内厚は約0.5
〜80μm、中央部の肉厚は約5〜1000μm、外径は約25
0〜1500μmの範囲で変化し得るが、いずれも中央部の
肉厚が尖端部より大きいのが特徴である。
FIG. 1 is a schematic view for explaining the shape of a curled metal short fiber obtained by using a method of scraping a metal fiber from a metal surface with the above-mentioned abrasive, wherein 1 and 2 in the figure are respectively the same. The point and the center of the curled metal short fiber, and 3 represents the outer diameter of the curled metal short fiber. The curled metal staple fibers produced by the above method include the rotational speed of the abrasive in the manufacturing process, the strength of pressing the abrasive against the metal surface, the diameter of the abrasive grains, the depth of cut, the type of metal to be ground, etc. Depending on the size and shape, the inner thickness of the point is about 0.5
~ 80μm, center thickness about 5-1000μm, outer diameter about 25
The thickness can vary in the range of 0 to 1500 μm, but in any case, it is characterized in that the thickness at the center is larger than that at the tip.

この様なカール状金属短繊維は特に微小なものは、外
見上粉体に見える程のものもあり、同種の金属の他の繊
維又は粉体と比べて焼結し易く、より低温、より低加圧
下で焼結可能である。例えばステンレスのカール状金属
短繊維の場合、焼結温度は1000〜1100℃付近が好まし
く、従来の粉末焼結法の焼結温度である1200℃前後にお
いては、収縮が大きくなってむしろ多孔率を大きく保つ
ことが困難となる場合がある。
Such curled metal short fibers, especially minute ones, are so small that they can be seen as powder in appearance, are easier to sinter than other fibers or powders of the same kind of metal, and have lower temperatures and lower temperatures. It can be sintered under pressure. For example, in the case of a curled short metal fiber of stainless steel, the sintering temperature is preferably around 1000 to 1100 ° C. At around 1200 ° C, which is the sintering temperature of the conventional powder sintering method, the shrinkage becomes large and the porosity is rather increased. It may be difficult to keep large.

このカール状金属短繊維の焼結のしやすさは、その製
造工程において無理な力を加えられたために該繊維の各
所で圧縮応力が異なり、Dislocation Kink(転位の折れ
曲がり)が増大したためと考えられる。
It is considered that the ease of sintering of the curled metal short fibers is due to the fact that an excessive force was applied in the manufacturing process, so that the compressive stress was different at various points of the fibers, and the Dislocation Kink (bending of dislocations) was increased. .

本発明の多孔質金属材は、その製造過程にかかわりな
く、カール状金属短繊維の集合体を焼結してなるいかな
る多孔質金属材をも含み得るものであって、これには当
然従来紛状金属及び/又は他の繊維の焼結品の製造過程
で用いられている方法、例えば金型を用いた加圧成型、
抄造又は解繊不織布法等の方法でシート状又はバルク状
に予備成型した後焼成する方法で製造される多孔質金属
材が含まれる。このうち抄造は、紙の製造法をほぼその
まま粉状金属又は金属繊維のシート化に応用したもので
あって、本発明の多孔質金属材の場合には、セルローズ
繊維等の有機質繊維ならびにCMC(カルボキシメチルセ
ルロース)、PVA(ポリビニルアルコール)及びPEO(ポ
リエチレンオキサイド)等の分散媒のうちから、下記表
1に示した如き組合せを選び、これとカール状金属短繊
維の集合体とを混合して抄造するのが好ましく、この場
合には多孔率50〜95%程度のうすくて均一な製品が得ら
れ、連続製造も可能である。その際製造すべき多孔質金
属材の板厚に応じて適当に粘度調整を行うことが好まし
い。
The porous metal material of the present invention can include any porous metal material obtained by sintering an aggregate of curled metal short fibers, regardless of the manufacturing process, and naturally includes conventional powders. Method used in the manufacturing process of sintered products of metal-like metal and / or other fibers, for example, pressure molding using a mold,
It includes a porous metal material produced by a method of preforming into a sheet or bulk by a method such as a papermaking or defibrating nonwoven fabric method and then firing. Papermaking is an application of the paper manufacturing method almost directly to sheeting of powdered metal or metal fiber. In the case of the porous metal material of the present invention, organic fiber such as cellulose fiber and CMC ( From the dispersion media such as carboxymethylcellulose), PVA (polyvinyl alcohol) and PEO (polyethylene oxide), select a combination as shown in Table 1 below and mix it with the aggregate of curled metal short fibers to form a paper. In this case, a thin and uniform product having a porosity of about 50 to 95% is obtained, and continuous production is also possible. At that time, it is preferable to appropriately adjust the viscosity according to the thickness of the porous metal material to be manufactured.

カール状金属短繊維の加圧成型は、従来の粉状金属の
加圧成型と全く同様に行えるが、成型時の圧力は粉状金
属の場合と比べて小さくてよく、例えば粉末ステンレス
の加圧成型には6〜8ton/cm2を要するところをカール状
ステンレス短繊維の加圧成型は1ton/cm2程度又はそれ以
下の圧力で充分である。なぜならカール状金属短繊維は
その形状から粉末や他の繊維と比べて互いによりからみ
易く、成型性がよいからである。
The pressure molding of curled metal short fibers can be performed in exactly the same way as the conventional pressure molding of powdered metal, but the pressure during molding may be smaller than that of powdered metal, for example, pressing of powdered stainless steel. Where the molding requires 6 to 8 ton / cm 2 , the pressure of about 1 ton / cm 2 or less is sufficient for pressure molding of curled stainless steel short fibers. This is because curled metal short fibers are more easily entangled with each other than powder or other fibers due to their shape, and have good moldability.

解繊不織布法は、カール状金属短繊維を解繊し、ウエ
ツブとし、積層して不織布とするもので、これは従来他
の繊維又は金属長繊維等で行われていた方法をそのまま
適用すればよい。
In the defibrated nonwoven fabric method, a curled metal short fiber is defibrated, formed into a web, and laminated to form a nonwoven fabric. This can be achieved by directly applying a method conventionally performed with other fibers or long metal fibers. Good.

また、このほか、従来の粉状金属又は金属繊維の焼結
品の製造に用いられなかった方法として、圧力をかけ
ず、PVAもしくはCMC又はメラミン樹脂もしくはアクリル
樹脂等の有機バインダー等の接着剤で型の中のカール状
金属短繊維を固めて予備成型後焼成する方法及び予備成
型せずにカール状金属短繊維の集合体を直接焼結容器に
装填して焼結する方法等が採用可能であって、これらの
方法によれば、多孔率50〜98%の製品が極めて容易に製
造できる。
In addition, as a method that has not been used in the production of conventional powdered metal or metal fiber sintered products, an adhesive such as PVA or CMC or an organic binder such as melamine resin or acrylic resin is used without applying pressure. It is possible to adopt a method in which the curled short metal fibers in the mold are solidified and pre-molded and fired, or a method in which the aggregate of curled short metal fibers is directly loaded into the sintering container and sintered without pre-forming. According to these methods, a product having a porosity of 50 to 98% can be produced very easily.

本発明の多孔質金属は、セラミックス製、黒鉛製等の
従来用いられているいかなる治具を用いて焼結して製造
してもよいが、耐熱衝撃性に優れ、被焼結物に悪影響を
与える不純物の発生が少なく、熱伝導率が大きい為多段
に重ねて使用することができ、且つ耐久性にも優れてい
る点で、被焼結物の接触し得る箇所に珪酸ジルコニウム
を主成分とする被膜を有して成る黒鉛性治具、中でも (a) アルコキシル基の炭素数が1乃至5であるテト
ラアルコキシシラン、該テトラアルコキシシランの加水
分解物及び該加水分解物の部分重縮合物から成る群から
選ばれた少なくとも1種のシラン化合物、 (b) アルコキシル基の炭素数が1乃至5であるジル
コニウムテトラアルコキシド、該ジルコニウムテトラア
ルコキシドの加水分解物及び該加水分解物の部分重縮合
物から成る群から選ばれた少なくとも1種のジルコニウ
ム化合物、 (c) 有機溶剤並びに (d) 珪酸ジルコニウム粉末 を含む懸濁液を黒鉛成形体に塗布又は含浸し、乾燥して
成る黒鉛製治具を用いるのが好ましく、特に製造すべき
多孔質金属材がステンレス製のときには、他の焼結治具
では耐えられない程の苛酷な焼結条件があり得る為、上
記のジルコン被覆した黒鉛製治具を用いるのが特に好ま
しい。
The porous metal of the present invention may be manufactured by sintering using any conventionally used jig such as ceramics and graphite, but it has excellent thermal shock resistance and adversely affects the material to be sintered. Since it gives little impurities and has high thermal conductivity, it can be used in multiple layers and has excellent durability. Zirconium silicate is used as a main component in places where the material to be sintered can contact. Jigs having a coating to be formed, in particular, (a) tetraalkoxysilane in which the alkoxyl group has 1 to 5 carbon atoms, a hydrolyzate of the tetraalkoxysilane, and a partial polycondensate of the hydrolyzate; At least one silane compound selected from the group consisting of: (b) a zirconium tetraalkoxide in which the alkoxyl group has 1 to 5 carbon atoms, a hydrolyzate of the zirconium tetraalkoxide, and the hydrolyzate. A suspension containing at least one zirconium compound selected from the group consisting of partial polycondensates of the pulverized product, (c) an organic solvent and (d) zirconium silicate powder is applied or impregnated to a graphite molded body, and dried. It is preferable to use a graphite jig made of, particularly when the porous metal material to be manufactured is made of stainless steel, since there may be severe sintering conditions that other sintering jigs cannot endure. It is particularly preferable to use a graphite jig coated with zircon.

又、焼結に用いる治具の形態及びその用法は被焼結物
のタイプ及び形状に応じて選べばよく、それには例えば
第2〜8図に示す様な治具及び用法が考えられる。
The form and use of the jig used for sintering may be selected according to the type and shape of the material to be sintered. For example, the jig and use shown in FIGS.

第2〜8図は、カール状金属短繊維の焼結に用い得る
治具及びその用法の縦断面説明図であって、各図中にお
いては、4はカール状金属短繊維の集合体、5は焼結容
器、6は上蓋、7は荷重板、8は焼結板、9はスペー
サ、10は厚み調節板を表す。
2 to 8 are vertical cross-sectional views of a jig which can be used for sintering curled metal short fibers and a method of using the same. In each of the drawings, reference numeral 4 denotes an aggregate of curled metal short fibers; Denotes a sintered container, 6 denotes an upper lid, 7 denotes a load plate, 8 denotes a sintered plate, 9 denotes a spacer, and 10 denotes a thickness adjusting plate.

カール状金属短繊維の集合体はその焼結性の良さの
故、第2図に示した様なトレー型の焼結容器5に無加圧
で散布装填し、無加圧で焼成しても焼結可能だが、得ら
れる多孔質金属材の強度を向上せしめる為には該焼成に
際して第3図に示す通り、上蓋6及び必要に応じて荷重
板7を用いて被焼結物たるカール状金属短繊維の集合体
に軽い圧力をかけて焼結するのが好ましい。またもちろ
ん機械的に加圧してもよい。
Due to the good sinterability of the aggregate of the curled short metal fibers, even if they are sprayed and loaded without pressure into a tray type sintering vessel 5 as shown in FIG. Although it is possible to sinter, in order to improve the strength of the obtained porous metal material, at the time of the sintering, as shown in FIG. It is preferable to sinter the assembly of short fibers by applying light pressure. Of course, it may be mechanically pressurized.

これらの焼結治具及び焼結方法を用い、荷重板7及び
上蓋6として充分重いものを用いるか又は機械的加圧に
より被焼結物を充分に加圧して焼結した場合には、得ら
れる多孔質金属材の厚みは第4図の如く上蓋6を容器5
に完全に嵌合せしめたときに残る上蓋6と焼結容器5の
底との間の隙間の厚みに等しくなり、これに対して焼結
容器内に装填するカール状金属短繊維の集合体又はその
予備成形品等の被焼結物の量を調節すれば、得られら多
孔質金属材の多孔率を容易に調節できる。
Using these sintering jigs and sintering methods, when using a sufficiently heavy load plate 7 and upper lid 6 or when sufficiently sintering the material to be sintered by mechanical pressing, the As shown in FIG. 4, the thickness of the porous metal material to be
The thickness of the gap between the upper lid 6 and the bottom of the sintering vessel 5 remaining when completely fitted into the sintering vessel 5 becomes equal to the thickness of the aggregate of curled metal short fibers to be loaded in the sintering vessel. The porosity of the resulting porous metal material can be easily adjusted by adjusting the amount of the sintering material such as the preform.

更に、厚肉品用の焼結治具及びその用法を説明した第
5図に示す通り、上蓋6と被焼結物4との間に別の厚み
調節板10を挿入することとすれば、用いる厚み調節板10
の厚みを変えるだけで、焼結容器5や上蓋6を変えるこ
となく得られる多孔質金属材の厚みを変えることができ
る。
Further, as shown in FIG. 5 for explaining a sintering jig for thick products and its use, if another thickness adjusting plate 10 is inserted between the upper lid 6 and the sintering object 4, Thickness adjustment plate 10 to be used
By changing the thickness of the porous metal material, the thickness of the porous metal material can be changed without changing the sintering vessel 5 or the upper lid 6.

又、同時に複数枚の多孔質金属板を製造する場合には
第7図の様に、底部を上面開口部より小さく形成せしめ
た焼結容器5を積重ねて用いればよく、予備成型品の場
合には、第8図に示す通り焼結用治具として焼結台板8
とスペーサ9を用い、用いるスペーサ9の厚みによって
製品の厚みを調節するのが便利である。又、本発明の多
孔質金属材としては異型品を得ることも比較的容易であ
って、一例として第6図に中空円筒型用の焼結治具及び
その用法を示した。
In the case where a plurality of porous metal plates are manufactured at the same time, as shown in FIG. 7, the sintered containers 5 each having a bottom portion formed smaller than the upper opening portion may be stacked and used. Is a sintering base plate 8 as a sintering jig as shown in FIG.
It is convenient to adjust the thickness of the product by using the spacer 9 and the thickness of the spacer 9 to be used. It is also relatively easy to obtain an irregular shaped product as the porous metal material of the present invention. As an example, FIG. 6 shows a sintering jig for a hollow cylinder and its use.

焼結の条件は、温度、圧力ともに従来の粉状金属又は
他の金属繊維の焼結より低くてよく、例えばステンレス
なら温度は1100℃前後、加圧の圧力は求められる多孔率
によるが、0.3〜1ton/cm2程度であって、この様により
低温、より低加圧下で焼結・製造可能であることが、本
発明多孔質金属材の最大の特徴である。
The sintering conditions may be lower in temperature and pressure than in the conventional sintering of powdered metal or other metal fibers.For example, in the case of stainless steel, the temperature is around 1100 ° C, and the pressure for pressurization depends on the required porosity. a ~1ton / cm 2 or so, lower temperatures in this manner, to be more sintering-manufacturable at low pressure, which is the greatest feature of the present invention the porous metal material.

かくして得られる本発明多孔質金属材は多孔率および
気孔径の点で多様な性質を有する製品を自在に製造可能
で、又、金属材であるから耐熱性もあり、材料としての
金属を選べば相当の高温に耐え且つ耐蝕性にも優れた製
品が得られ、切断、切削、研磨、放電加工、ウォーター
・ジェット、レーザー加工等により容易に加工でき、異
形品も簡単に製造でき、これらの優れた特性を生かして
多用な用途が考えられる。
The porous metal material of the present invention thus obtained can freely produce products having various properties in terms of porosity and pore diameter, and since it is a metal material, it also has heat resistance. Products that endure considerable high temperatures and have excellent corrosion resistance can be obtained, and can be easily processed by cutting, cutting, polishing, electric discharge machining, water jet, laser processing, etc. Various uses can be considered by taking advantage of the characteristics.

例えば、気孔径の小ささ及び通気性を生かした用途と
して、集塵用、エアフィルター用等の気体用フィルター
または水、水溶液、植物油、鉱物油、フィルム・紡糸用
原料の合成樹脂等の濾過用もしくは合成中間体分離用等
の液体用フィルター等の濾過材が挙げられる。又、樹脂
またはエラストマー等の成形用金型、即ちモールド金
型、キャスティング、インジェクション等の金型の一部
又は全体の材料に本発明多孔質金属材を用いると、その
気孔径の小ささ及び通気性の故に溶融状態の樹脂または
エラストマーが洩れず、且つ別途空気抜き用の孔を設け
なくても成形でき、異形の金型を作ることも容易であ
る。
For example, as applications that make use of the small pore size and air permeability, dust filters, gas filters such as air filters, or filtration of water, aqueous solutions, vegetable oils, mineral oils, synthetic resins as raw materials for film and spinning, etc. Alternatively, a filtering material such as a liquid filter for separating a synthetic intermediate may be used. Further, when the porous metal material of the present invention is used for a part of or a whole material of a molding die such as a resin or an elastomer, that is, a mold such as a molding die, casting, injection, etc., the pore diameter is small and the air permeability is low. Due to its properties, the resin or elastomer in the molten state does not leak and can be molded without separately providing a hole for venting, and it is easy to produce a deformed mold.

自動車または産業用内燃機関の排気系の高音部品、特
に振動・熱膨張緩衝材及び吸音材として本発明多孔質金
属材は効果が大きい。中でもステンレス製の本発明品は
断熱性、耐熱性及び耐蝕性に特に優れ、この分野に幅広
い用途が考えられる。
The porous metal material of the present invention has a great effect as a high sound component of an exhaust system of an automobile or an industrial internal combustion engine, particularly as a vibration / thermal expansion buffer material and a sound absorbing material. Among them, the stainless steel product of the present invention is particularly excellent in heat insulation, heat resistance, and corrosion resistance, and is expected to be widely used in this field.

このほか、本発明の表面積の大きさを利用した用途と
して、電極材及び触媒担体の用途が挙げられる。高温燃
料電池用の電極接続用端子、またはニッカド電池用多孔
質電極用にはニッケル製の本発明多孔質金属材が好適に
使用でき、又、本発明品は触媒担体として好適である。
In addition, applications utilizing the surface area of the present invention include applications for electrode materials and catalyst carriers. The porous metal material of the present invention made of nickel can be suitably used for an electrode connection terminal for a high-temperature fuel cell or a porous electrode for a nickel-cadmium battery, and the product of the present invention is suitable as a catalyst carrier.

以下、実施例により本発明を更に詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.

(実施例) ステンレススチールJIS規格304の第1図に示した如き
形状のカール状金属短繊維の集合体であって、第1図中
1として示される突端部の平均肉厚が1〜5μm、2で
示される中央部の平均肉厚が5〜30μm、3で示される
カール直径の平均外径が250〜350μmのカール状金属短
繊維の嵩密度0.3〜0.4g/cm2の集合体を解繊し、被焼結
物の接触し得る箇所に珪酸ジルコニウムを主成分とする
被膜を形成せしめた黒鉛製容器に散布装填し、これを第
7図に示す通りに積重ね、還元雰囲気下、1100℃、露点
−40℃にて1時間焼結したところ、厚さ10mm、巾100m
m、長さ300mmの多孔質金属材が得られた。該多孔質金属
材の性質は表2に示す通りであった。
(Example) A set of curled metal short fibers having a shape as shown in FIG. 1 of JIS standard 304 of stainless steel, and an average thickness of a tip shown as 1 in FIG. An aggregate having a bulk density of 0.3 to 0.4 g / cm 2 of a curled metal short fiber having an average outer diameter of 5 to 30 μm in the central portion shown by 2 and a curl diameter of 250 to 350 μm shown by 3 is solved. The fibers are spread and charged in a graphite container having a coating containing zirconium silicate as a main component at a place where the material to be sintered can come into contact with, and stacked as shown in FIG. 7 at 1100 ° C. in a reducing atmosphere. After sintering for 1 hour at a dew point of -40 ° C, a thickness of 10 mm and a width of 100 m
m, a porous metal material having a length of 300 mm was obtained. The properties of the porous metal material were as shown in Table 2.

(実施例2) パルプ1重量部を水46重量部に加え、叩解機で叩解し
て得た叩解パルプ25gに、水10、ポリエチレンオキサ
イド2g、実施例1で用いたのと同じカール状金属短繊維
の集合体500gを夫々添加して60分間撹拌後、その5分の
1をシートマシンにて抄紙し、ロールで水切りし、水切
りプレスにかけた後乾燥して厚さ2mm、巾300mm、長さ50
0mmのカール状金属短繊維複合紙を得た。尚、抄造用バ
インダーとしてポリビニルアルコール10gをシートマシ
ンによる脱水工程終了間際に加えた。
(Example 2) 1 part by weight of pulp was added to 46 parts by weight of water, and 25 g of beaten pulp obtained by beating with a beater was mixed with 10 g of water and 2 g of polyethylene oxide. 500 g of the fiber aggregate was added and stirred for 60 minutes. One-fifth of the paper was made with a sheet machine, drained with a roll, drained, dried and dried to a thickness of 2 mm, a width of 300 mm, and a length of 50
A 0 mm curled short metal fiber composite paper was obtained. Incidentally, as a binder for papermaking, 10 g of polyvinyl alcohol was added just before the end of the dehydration step using a sheet machine.

前記複合紙を第8図に示す通りの方法で積み重ね、実
施例1と同様にして焼結したところ、表2に示す通りの
性質を有する厚さ1.5mm、巾300mm、長さ500mmの板状多
孔質金属材が得られた。
The composite paper was stacked by the method shown in FIG. 8 and sintered in the same manner as in Example 1. As a result, a sheet having the properties shown in Table 2 and having a thickness of 1.5 mm, a width of 300 mm and a length of 500 mm was obtained. A porous metal material was obtained.

(実施例3) 実施例1で用いたのと同じカール状金属短繊維の集合
体を、下記の焼結容器より若干小さめの圧粉成型金型に
装填し、油圧プレスで面圧1.0t/cm2でプレスし、厚さ60
mm、巾200mm、長さ300mmで多孔率40%の予備成形品を
得、これを第5図中5で表される形状の被焼結物の接触
し得る箇所に珪酸ジルコニウムを主成分とする被膜を形
成せしめてなる黒鉛製焼結容器であって、巾200mm長さ3
00mmの焼結容器内で還元雰囲気下、1100℃、露点−40℃
にて1時間焼結したところ、表2に示す通りの性質を有
する厚さ60mm巾200mm長さ300mmの板状多孔質金属材が得
られた。
(Example 3) The same aggregate of curled metal short fibers as used in Example 1 was loaded into a compacting mold slightly smaller than the following sintering container, and a surface pressure of 1.0 t / h was applied by a hydraulic press. Pressed in cm 2 and thickness 60
5 mm, width 200 mm, length 300 mm, and a porosity of 40% were obtained. The preform was made of zirconium silicate as a main component at a place where the sintered body having a shape represented by 5 in FIG. This is a graphite sintering vessel with a coating formed, width 200 mm, length 3
1100 ° C, dew point -40 ° C in a reducing atmosphere in a 00mm sintering vessel
After sintering for 1 hour, a plate-shaped porous metal material having the properties shown in Table 2 and having a thickness of 60 mm, a width of 200 mm, and a length of 300 mm was obtained.

(実施例4) 実施例1で用いたのと同じカール状金属短繊維の集合
体を実施例3で用いたのと同じ焼結容器に装入し、上蓋
及び荷重板を重ね、単位表面積当たり0.1kg/cm2の初期
荷重をかけた状態で焼結を開始し、実施例3と同一の条
件下、一時間焼結したところ、表2に示す通りの性質を
有する厚さ60mm巾200mm長さ300mmの板状多孔質金属材が
得られた。
(Example 4) The same aggregate of the curled short metal fibers used in Example 1 was placed in the same sintering container as used in Example 3, the upper lid and the load plate were stacked, and the weight per unit surface area was measured. Sintering was started under an initial load of 0.1 kg / cm 2 , and sintering was performed for 1 hour under the same conditions as in Example 3. The sintering had the properties shown in Table 2 and had a thickness of 60 mm and a width of 200 mm. A plate-shaped porous metal material having a thickness of 300 mm was obtained.

(実施例5及び6) 原料としてステンレスのかわりに銅のカール状金属短
繊維を用い、焼結時の温度及び露点をそれぞれ800℃及
び−35℃とした以外はそれぞれ実施例1及び2と全く同
様にしたところ、それぞれ実施例1及び2と同一の寸法
であって、表2に示す通りの性質を有する板状多孔質金
属が得られた。
(Examples 5 and 6) Except for using curled short metal fibers of copper instead of stainless steel as the raw material, and setting the temperature and dew point during sintering to 800 ° C. and −35 ° C., respectively, completely as in Examples 1 and 2, respectively. In the same manner, plate-shaped porous metals having the same dimensions as those of Examples 1 and 2 and having the properties shown in Table 2 were obtained.

(実施例7及び8) 原料としてステンレスのかわりにニッケルのカール状
金属短繊維を用い、焼結時の温度及び露点をそれぞれ10
00℃及び−35℃とした以外はそれぞれ実施例1及び2と
全く同様にしたところ、それぞれ実施例1及び2と同一
の寸法であって、表2に示す通りの性質を有する板状多
孔質金属材が得られた。
(Examples 7 and 8) As a raw material, a curled short metal fiber of nickel was used in place of stainless steel, and the temperature and dew point at the time of sintering were set to 10 respectively.
Except that the temperature was changed to 00 ° C. and −35 ° C., it was made exactly the same as in Examples 1 and 2, respectively, and had the same dimensions as Examples 1 and 2, respectively, and had the properties shown in Table 2 A metal material was obtained.

(効 果) 本発明の多孔質金属材は従来の他の金属繊維の焼結品
及び等方性の粉状金属の焼結品の長所を兼ね備えたもの
であって、高多孔率で、通気性、断熱性、加工性に優
れ、切断、切削、研磨、放電加工、ウォーター・ジェッ
ト、レーザー加工等種々の加工方法が適用可能で、又、
従来の多孔質金属材より低温低加工下で製造でき、多孔
率の調節も容易であって、その用途は広く、多大な工業
的利益を提供するものである。
(Effects) The porous metal material of the present invention combines the advantages of other conventional sintered products of metal fibers and sintered products of isotropic powdered metal, and has a high porosity and air permeability. Excellent processing, heat insulation, workability, various processing methods such as cutting, cutting, polishing, electric discharge machining, water jet, laser machining, etc. are applicable.
Compared to conventional porous metal materials, it can be manufactured under low temperature and low processing, the porosity can be easily adjusted, and its use is wide and offers great industrial benefits.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の多孔質金属材の原料として用いられる
カール状金属短繊維の一例であって、金属ブロックを研
削材でひっかきとる方法により製造されたカール状金属
短繊維の模式図、第2〜8図は、本発明の多孔質金属材
の製造に用いられる焼結治具の縦断面説明図である。 1……カール状金属短繊維の尖端部、2……カール状金
属短繊維の中央部、3……カール状金属短繊維の外径、
4……カール状金属短繊維の集合体、5……焼結容器、
6……上蓋、7……荷重板、8……焼結台板、9……ス
ペーサ、10……厚み調節板。
FIG. 1 is an example of a curled metal short fiber used as a raw material of a porous metal material of the present invention, and is a schematic diagram of a curled metal short fiber produced by a method of scratching a metal block with an abrasive. 2 to 8 are longitudinal sectional explanatory views of a sintering jig used for manufacturing the porous metal material of the present invention. 1 ... pointed end of curled metal short fiber, 2 ... center of curled metal short fiber, 3 ... outer diameter of curled metal short fiber,
4 ... an assembly of curled metal short fibers, 5 ... a sintered container,
6 ... top lid, 7 ... load plate, 8 ... sintered plate, 9 ... spacer, 10 ... thickness adjustment plate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/86 B01J 32/00 32/00 35/02 D 35/02 F01N 1/24 A F01N 1/24 3/28 Q 3/28 H01M 4/80 A H01M 4/80 8/02 Z 8/02 B30B 15/34 A // B30B 15/34 B01J 23/74 321A ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location B01J 23/86 B01J 32/00 32/00 35/02 D 35/02 F01N 1/24 A F01N 1 / 24 3/28 Q 3/28 H01M 4/80 A H01M 4/80 8/02 Z 8/02 B30B 15/34 A // B30B 15/34 B01J 23/74 321A

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】突端部の肉厚が0.5〜80μm、中央部の肉
厚が5〜1000μm、外径が250〜1500μmの範囲内で中
央部の肉厚が突端部より大きく、かつ半円以上にカール
した微小な金属繊維形状を有するカール状金属短繊維の
集合体を焼結してなる多孔質金属材。
1. The thickness of the central part is larger than the semicircle within a range of 0.5 to 80 μm, the thickness of the central part is 5 to 1000 μm, and the outer diameter is 250 to 1500 μm. A porous metal material obtained by sintering an aggregate of curled metal short fibers having a fine metal fiber shape curled into a shape.
JP1105627A 1988-07-07 1989-04-25 Porous metal material Expired - Lifetime JP2724617B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-169744 1988-07-07
JP16974488 1988-07-07

Publications (2)

Publication Number Publication Date
JPH02175803A JPH02175803A (en) 1990-07-09
JP2724617B2 true JP2724617B2 (en) 1998-03-09

Family

ID=15892044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1105627A Expired - Lifetime JP2724617B2 (en) 1988-07-07 1989-04-25 Porous metal material

Country Status (1)

Country Link
JP (1) JP2724617B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380091A (en) * 2018-12-28 2020-07-07 宁波方太厨具有限公司 Filtering and noise-reducing device and range hood applying same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1008133A3 (en) * 1994-03-15 1996-01-23 Dsm Nv Process for pollution of the separation of a hot synthesis gas mixture in the preparation melamine.
US6436163B1 (en) * 1994-05-23 2002-08-20 Pall Corporation Metal filter for high temperature applications
AT1322U1 (en) * 1996-09-10 1997-03-25 Plansee Ag FILTER ELEMENT
DK174654B1 (en) * 2000-02-02 2003-08-11 Topsoe Haldor As Solid oxide fuel cell and its applications
US7048996B2 (en) * 2000-12-13 2006-05-23 N.V. Bekaert S.A. Temperature resistant material comprising short metal fibers
KR20030026549A (en) * 2001-09-26 2003-04-03 주식회사 미래소재 Manufacturing Method for Filter of Cars
US7445853B2 (en) * 2002-10-17 2008-11-04 Nv Bekaert Sa Layered filter structure comprising short metal fibers
DE10352709A1 (en) * 2003-11-06 2005-06-16 Volker Gallatz Fiber for use as a component of a composite material and such a composite material and a production method for such a fiber
JP4524776B2 (en) * 2004-04-14 2010-08-18 晶彦 千葉 Method for producing porous body for living body
JP4859585B2 (en) * 2005-08-12 2012-01-25 東邦チタニウム株式会社 Method for producing sheet-like porous sintered body
JP4830799B2 (en) * 2006-11-08 2011-12-07 株式会社デンソー Adsorption module
JP2008264602A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Filter and separator equipped with it
CN104209518B (en) * 2014-08-20 2016-06-08 西安菲尔特金属过滤材料有限公司 A kind of preparation method of nickel-base alloy fiber felt
KR20220134034A (en) * 2020-03-27 2022-10-05 가부시키가이샤 도모에가와 세이시쇼 Metal fiber molded body, temperature control unit, and method for manufacturing metal fiber molded body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847462B2 (en) * 1975-05-20 1983-10-22 エヌ テ− エヌトウヨウベアリング カブシキガイシヤ Method for manufacturing a porous, low-density sintered body made of iron powder
JPS5935975B2 (en) * 1975-06-12 1984-08-31 エヌ テ− エヌトウヨウベアリング カブシキガイシヤ Method for manufacturing a filter using grinding powder of steel whose surface is replaced with copper
JPS61250132A (en) * 1985-04-26 1986-11-07 Mazda Motor Corp Manufacture of composite member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111380091A (en) * 2018-12-28 2020-07-07 宁波方太厨具有限公司 Filtering and noise-reducing device and range hood applying same
CN111380091B (en) * 2018-12-28 2022-05-17 宁波方太厨具有限公司 Filtering and noise-reducing device and range hood applying same

Also Published As

Publication number Publication date
JPH02175803A (en) 1990-07-09

Similar Documents

Publication Publication Date Title
JP2724617B2 (en) Porous metal material
CA2437914C (en) Titanium powder sintered compact
US5846664A (en) Porous metal structures and processes for their production
US4818633A (en) Fibre-reinforced metal matrix composites
CN100400473C (en) High strength and high toughness foamed SiC/Al material and its preparing method
US6582651B1 (en) Metallic articles formed by reduction of nonmetallic articles and method of producing metallic articles
KR100545802B1 (en) Preforms for Cylinder Blocks and Metal-Based Composites
KR20020090226A (en) Co-forming metal foam articles
DE10044656A1 (en) Open-cell silicon carbide foam ceramic and process for its production
JPH06144948A (en) Production of ceramic porous body
KR100550398B1 (en) Sintered, highly porous body and method for the production thereof
US20050035055A1 (en) Filter for molten metal filtration and method for producing such filters
JP3094148B2 (en) Manufacturing method of lightweight refractory
US4556096A (en) Method for the preparation of a spongy metallic body
CA1290562C (en) Process for producing cylindrical reinforcing fibrous molding
JP2799572B2 (en) Electrode substrate for battery
KR19990045037A (en) Aluminum nitride-aluminum composite material and manufacturing method thereof
JP2517242B2 (en) Silicon carbide based composite and method for producing the same
JP2614749B2 (en) Manufacturing method of porous metal body
JPS6238825B2 (en)
JPH08215828A (en) Composite casting body and production thereof
KR102124783B1 (en) Liquid phase sintered silicon carbide porous body having dual pore structure and method for producing same
JP2566886B2 (en) Method for producing porous sintered body having continuous pores
Bal'shin et al. Some problems of fiber metallurgy
JPS5835442B2 (en) Method for manufacturing capsules for hot isostatic pressing