JPH0217496B2 - - Google Patents

Info

Publication number
JPH0217496B2
JPH0217496B2 JP2616585A JP2616585A JPH0217496B2 JP H0217496 B2 JPH0217496 B2 JP H0217496B2 JP 2616585 A JP2616585 A JP 2616585A JP 2616585 A JP2616585 A JP 2616585A JP H0217496 B2 JPH0217496 B2 JP H0217496B2
Authority
JP
Japan
Prior art keywords
film
glass substrate
sncl
temperature
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2616585A
Other languages
Japanese (ja)
Other versions
JPS61186478A (en
Inventor
Jiro Abe
Hisato Shoji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2616585A priority Critical patent/JPS61186478A/en
Publication of JPS61186478A publication Critical patent/JPS61186478A/en
Publication of JPH0217496B2 publication Critical patent/JPH0217496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヘイズ(曇り)にない低抵抗で高赤外
線反射率を有するフツ素ドープ酸化錫(SnCO2
(F))の導電被膜の形成方法に関する。すなわち、
本発明による被膜は着色がほとんどなくあくまで
も透過性と外観上に優れるとともに赤外領域での
反射率が高く、かつ良好な導電性を兼ね備えて、
しかも優れた硬度と化学的機械的耐久性を有して
いるので、その特性を利用して種々の分野に広く
採用され得るものである。すなわち、通常の板ガ
ラス基板表面上に被膜して、例えば、建築、自動
車、航空機および船舶あるいは冷凍シヨーケース
の防曇窓ガラスまたは、熱線反射透明窓ガラス
に、また太陽熱集熱器のカバーガラスやオーブン
のドアガラスに、さらに液晶電気光学デイスプレ
イ等の電気電子機器部品に等、多方面で実用され
得るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a fluorine-doped tin oxide (SnCO 2
(F)) Concerning a method for forming a conductive film. That is,
The coating according to the present invention has almost no coloring, has excellent transparency and appearance, has high reflectance in the infrared region, and has good conductivity.
Moreover, since it has excellent hardness and chemical and mechanical durability, it can be widely adopted in various fields by taking advantage of these characteristics. That is, it can be coated on the surface of an ordinary plate glass substrate and used, for example, on anti-fog window glasses of buildings, automobiles, aircraft, ships, or refrigeration cases, heat-reflecting transparent window glasses, cover glasses of solar collectors, and ovens. It can be put to practical use in a wide variety of fields, including door glass and electrical and electronic equipment parts such as liquid crystal electro-optic displays.

〔従来の技術〕[Conventional technology]

従来、酸化錫被膜を形成する際、被膜にヘイズ
の発生する原因として、錫化合物中の塩素ガスが
ガラス中のアルカリと反応してNaClを形成する
ことによるものと考えられており、ヘイズのない
酸化錫被膜を形成する方法として、例えば、
(C4H9)Sn(CH3COO)2等の無塩素系の錫化合物
を用い、ドーピング剤としてCF3COOH等を用い
る方法(特公昭53−25331号公報)が知られてい
る。また、比較的低温のガラス基板温度で低抵抗
の被膜が得られる方法として、錫化合物として
SnCl4を用いる方法(A.BHARDWAJ等
「FLUORINE−DOPED SnO2 FILMS FOR
SOLAR CELL APPLICATION」Solar Cells.5
(1981−1982)P.39−49)が知られている。
Conventionally, when forming a tin oxide film, it is thought that the cause of haze in the film is that chlorine gas in the tin compound reacts with the alkali in the glass to form NaCl, and it is possible to create a film without haze. As a method of forming a tin oxide film, for example,
A method is known in which a chlorine-free tin compound such as (C 4 H 9 )Sn(CH 3 COO) 2 is used and CF 3 COOH or the like is used as a doping agent (Japanese Patent Publication No. 53-25331). In addition, as a method to obtain a low-resistance film at a relatively low glass substrate temperature, tin compounds are used.
Method using SnCl 4 (A. BHARDWAJ et al. “FLUORINE−DOPED SnO 2 FILMS FOR
SOLAR CELL APPLICATION"Solar Cells.5
(1981-1982) P.39-49) is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の特公昭53−25331号公報に記載されてい
る方法においては、ヘイズのない酸化錫被膜が得
られるが、600℃以下のガラス基板の温度におい
て被膜を形成させると、低抵抗、高赤外反射率の
被膜が得られ難いし、また600℃以上の高い温度
のガラス基板に被膜を形成させると、抵抗値、赤
外反射率等の特性は改善されるが、ガラスに歪、
反り等が発生して良好な製品が得られ難いもので
あり、また前述の公知の刊行物に記載の方法にお
いては、スプレーする混合溶液が不安定であり錫
の沈溺等も発生しやすく、スプレー時にその装置
自体の腐食および分解ガスによる周囲設備も激し
い腐食を起し、通常のソーダ石灰ガラスを基板と
して用いた際にはSiO2等のアンダーコートなし
ではヘイズがきつく生じて製品となり難いもので
あつて、通常の板ガラス基板であればSiO2等の
アンダーコーテイングが透視性および外観上から
必須条件であるものであり、さらに抵抗値につい
ても低い値を得られるもののより一層低い抵抗値
の被膜を求められているなかでは満足し得ないも
のでもある。
In the method described in the above-mentioned Japanese Patent Publication No. 53-25331, a haze-free tin oxide film can be obtained, but if the film is formed at a glass substrate temperature of 600°C or less, it will have low resistance and high infrared rays. It is difficult to obtain a film with a high reflectance, and when a film is formed on a glass substrate at a high temperature of 600°C or higher, properties such as resistance and infrared reflectance are improved, but the glass becomes distorted and
It is difficult to obtain a good product due to warping, etc. Furthermore, in the method described in the above-mentioned known publication, the mixed solution to be sprayed is unstable and tends to cause tin sinking, etc. At times, the equipment itself is severely corroded and the surrounding equipment is also severely corroded by the decomposed gas, and when ordinary soda-lime glass is used as a substrate, severe haze occurs without an undercoat such as SiO 2 , making it difficult to produce a product. For ordinary plate glass substrates, an undercoating such as SiO 2 is essential from the viewpoint of transparency and appearance, and although it is possible to obtain a low resistance value, it is necessary to use a coating with an even lower resistance value. There are some things that cannot be satisfied even though they are required.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、前述の問題点に着目してなしたもの
であつて、SiO2等のアンダーコートなしで高温
のガラス基板表面上に、(C4H9)SnCl3、水、ア
ルコールおよびNH4Fの混合溶液を噴霧して、フ
ツ素ドープ酸化錫の導電被膜を形成するようにし
たものであり、ヘイズのない、より低抵抗で高赤
外線反射率を有する酸化錫被膜を得る形成方法を
提供するものである。
The present invention was made by focusing on the above-mentioned problem, and it is possible to coat (C 4 H 9 )SnCl 3 , water, alcohol and NH 4 on the surface of a high-temperature glass substrate without an undercoat such as SiO 2 . This method forms a conductive film of fluorine-doped tin oxide by spraying a mixed solution of F, and provides a method for forming a tin oxide film that is haze-free, has lower resistance, and has a high infrared reflectance. It is something to do.

本発明において、(C4H9)SnCl3はSnCl4に比較
して噴霧時の設備等への腐食が少なく、上述の混
合溶液中でも安定であり、被膜のヘイズの発生も
なく、また他の有機錫化合物よりも被膜の抵抗値
がより低いものとなるものである。
In the present invention, (C 4 H 9 )SnCl 3 is less corrosive to equipment etc. during spraying than SnCl 4 , is stable even in the above-mentioned mixed solution, does not generate haze on the coating, and has other properties. The resistance value of the film is lower than that of an organic tin compound.

NH4Fは酸性弗化アンモニウムでもよい。また
他のフツ素化合物と比較して少量の添加量でよい
ものであり、(C4H9)SnCl3とNH4Fとの組合せ
により、(C4H9)SnCl3は塩素を有する化合物に
もかかわらず、NH4Fのフツ素の作用により被膜
のヘイズの発生を防止できるものである。
NH 4 F may be acidic ammonium fluoride. In addition, compared to other fluorine compounds, only a small amount of addition is required, and the combination of (C 4 H 9 )SnCl 3 and NH 4 F makes (C 4 H 9 )SnCl 3 a chlorine-containing compound. Nevertheless, the action of fluorine in NH 4 F can prevent the formation of haze in the film.

水およびアルコールは、溶剤として用いるもの
であり、水はNH4Fを溶解させるために加えるも
のである。アルコールとしてはCH3OH、
C2H5OH等が用いられる。水およびアルコールの
混合割合は、適宜調製して用いることができ、水
のみの場合では噴霧時にガラス基板を急激に冷却
し、ガラスの割れ等を発生し、また、ヘイズの発
生等外観上好ましくない。また、アルコールのみ
の場合ではNH4Fの溶解性、被膜の成長速度、噴
霧蒸気の燃焼等好ましくない。
Water and alcohol are used as solvents, and water is added to dissolve NH 4 F. Alcohol is CH 3 OH,
C 2 H 5 OH etc. are used. The mixing ratio of water and alcohol can be adjusted as appropriate. If only water is used, the glass substrate will be rapidly cooled during spraying, causing glass cracks, etc., and will also cause unfavorable appearance such as haze. . In addition, in the case of only alcohol, the solubility of NH 4 F, the growth rate of the film, the combustion of the spray vapor, etc. are unfavorable.

本発明において、ガラス基板の温度としては
500〜600℃が好ましく、500℃以下では低抵抗、
高赤外反射率の被膜が得られ難い、また600℃以
上ではガラス基板に歪、反り等が生じる。
In the present invention, the temperature of the glass substrate is
500~600℃ is preferable, low resistance below 500℃,
It is difficult to obtain a coating with high infrared reflectance, and distortion and warping occur on the glass substrate at temperatures above 600°C.

また、混合溶液における好ましい量的範囲はつ
ぎのようになるものである。
Further, the preferred quantitative range of the mixed solution is as follows.

1) 〔(C4H9)SnCl3/(C4H9)SnCl3+(アル
コール+水)〕=20〜50% すなわち、20%以下では溶媒(アルコール+
水)の割合が高くなり、基板の温度の低下等で
効率的な被膜形成が難しいし、50%以上では
(C4H9)SnCl3の割合が高くなり、被膜のムラ
が発生し不均質な膜となる。
1) [(C 4 H 9 ) SnCl 3 / (C 4 H 9 ) SnCl 3 + (alcohol + water)] = 20 to 50% In other words, below 20%, the solvent (alcohol +
If the ratio of water) increases, it is difficult to form an efficient film due to a drop in the substrate temperature, etc. If it exceeds 50%, the ratio of (C 4 H 9 )SnCl 3 increases, causing unevenness in the film and making it non-uniform. It becomes a film.

2) 〔NH4F/(C4H9)SnCl3+(アルコール
+水)〕=0.01〜0.05 すなわち、0.01以下あるいは0.05以上では抵
抗値が徐々に高くなり、範囲外のはずれ方が多
くなると極端に高くなる。
2) [NH 4 F / (C 4 H 9 ) SnCl 3 + (alcohol + water)] = 0.01 to 0.05 In other words, the resistance value gradually increases below 0.01 or above 0.05, and the more it deviates from the range, the more become extremely high.

3) 〔H2O/アルコール+H2O〕=10〜90% すなわち、10%以下ではNH4Fの溶解性が下
がり、被膜の生成速度が遅くなり、90%以上で
はスプレー時ガラス基板の温度が急激に低下す
ることとなり、ガラス基板の割れを誘発するこ
とがあるものである。
3) [H 2 O/alcohol + H 2 O] = 10 to 90% In other words, below 10%, the solubility of NH 4 F decreases and the rate of film formation slows down, while above 90% the temperature of the glass substrate during spraying decreases. This results in a sudden decrease in the glass substrate, which may induce cracking of the glass substrate.

またさらに膜厚としては4000〜10000Åが好
ましい。4000Å以下では被膜のギラつく干渉色
が発生しやすく、10000Å以上では性能上膜厚
効果が少なくコストアツプにつながるものであ
り、赤外線反射率の面からは5000Å程度が好ま
しいものである。
Furthermore, the film thickness is preferably 4000 to 10000 Å. If the thickness is less than 4,000 Å, interference colors that make the film glare are likely to occur, and if it is more than 10,000 Å, there will be little film thickness effect in terms of performance, leading to an increase in cost.From the standpoint of infrared reflectance, about 5,000 Å is preferable.

〔作 用〕[Effect]

前述したとおりの本発明の被膜形成方法によつ
て、(C4H9)SnCl3を用いることにより、前記本
発明の混合溶液中で沈澱等の問題もなく安定した
ものとなり、噴霧上のトラブルもなく、均一な膜
を形成し得るとともに、スプレー装置および周囲
設備等の腐食も軽減されるものとなり、しかも抵
抗値も他の有機錫化合物に比してより低い膜が得
られるものである。さらに、塩素を有する錫化合
物でありながらヘイズの発生を起こすこともない
ものとなり、略無色で、透視性に優れ、外観上も
適度の光沢と平滑性をほぼ保持し得るものであ
り、また熱線反射率も高く、可視域の透過率もほ
ぼ自動車窓ガラスに採用し得る程度のものとなる
特徴を有するものである。
By using (C 4 H 9 )SnCl 3 in the film forming method of the present invention as described above, the mixed solution of the present invention becomes stable without problems such as precipitation, and there are no problems with spraying. Therefore, it is possible to form a uniform film, and the corrosion of the spray equipment and surrounding equipment is also reduced, and a film having a lower resistance value than other organotin compounds can be obtained. Furthermore, although it is a tin compound containing chlorine, it does not generate haze, is almost colorless, has excellent transparency, maintains a moderate gloss and smoothness in appearance, and is resistant to heat rays. It has a high reflectance and a transmittance in the visible range that can be used for automobile window glass.

上述に加えて、噴霧時にガラス基板を急冷する
ことがないのでガラスの割れ等も発生せず、被膜
の成長速度も早く、フツ素化合物の添加量も少量
で有効に働き、付着強度も充分にあるものとな
り、歩留および品質上も良好なものとなるもので
ある。
In addition to the above, since the glass substrate is not rapidly cooled during spraying, no glass cracking occurs, the growth rate of the film is fast, the addition of a small amount of fluorine compound works effectively, and the adhesion strength is sufficient. This results in good yield and quality.

〔実施例〕〔Example〕

以下本発明の実施例を説明する。 Examples of the present invention will be described below.

実施例 1 充分脱脂洗滌された300mm×300mmの大きさで厚
さ3mmのソーダ石灰ガラスをガラス基板として用
い、加熱炉にて540℃、560℃、590℃にそれぞれ
板温を上昇した後、30mm/secのスピードで移送
されるガラス基板表面上に、約3Kg/cm2のエアで
噴霧溶液を微細化しスプレーする方式の自動スプ
レーガンを用いて下記の錫化合物溶液とフツ素化
合物を混合した溶液を3c.c./secの量でスプレー
ガンと板ガラスの距離約30cmから噴霧してSnO2
(F)膜を形成させた。膜厚は約6000Åを得た。
Example 1 Thoroughly degreased and washed soda lime glass measuring 300 mm x 300 mm and 3 mm thick was used as a glass substrate, and after increasing the plate temperature to 540 °C, 560 °C, and 590 °C in a heating furnace, 30 mm A mixed solution of the following tin compound solution and fluorine compound was sprayed onto the surface of a glass substrate transferred at a speed of 1/sec using an automatic spray gun that atomizes and sprays the atomized solution with approximately 3 kg/cm 2 of air. SnO 2 was sprayed at a rate of 3c.c./sec from a distance of approximately 30cm between the spray gun and the plate glass.
(F) A film was formed. The film thickness was approximately 6000 Å.

錫化合物溶液 (C4H9)SnCl335wt%、
C2H5CH35wt%、H2O30wt% フツ素化合物 NH4F/錫化合物溶液=0.01、
0.02、0.03、0.04 以上のような方法で得られたSnO2(F)膜の比抵
抗を測定し、その測定結果を第1図に示した。
Tin compound solution (C 4 H 9 ) SnCl 3 35wt%,
C 2 H 5 CH35wt%, H 2 O30wt% Fluorine compound NH 4 F/tin compound solution = 0.01,
0.02, 0.03, 0.04 The specific resistance of the SnO 2 (F) film obtained by the above method was measured, and the measurement results are shown in FIG.

実施例 2 ガラス基板および噴霧条件は実施例1と同様と
し、ガラス基板の温度は540℃、560℃、590℃、
について錫化合物溶液は不変で(C4H9
SnCl335wt%、C2H5OH35wt%、H2O30wt%と
し、フツ素化合物のみNH4F/錫化合物溶液=
0.03と一定し、各設定温度で被膜を形成させ、
SnO2(F)膜を有するガラス基板を製造した。
Example 2 The glass substrate and spraying conditions were the same as in Example 1, and the temperatures of the glass substrate were 540°C, 560°C, 590°C,
The tin compound solution remains unchanged for (C 4 H 9 )
SnCl 3 35wt%, C 2 H 5 OH 35wt%, H 2 O 30wt%, only fluorine compound NH 4 F/tin compound solution =
0.03 and form a film at each set temperature,
A glass substrate with a SnO 2 (F) film was manufactured.

これをサンプルとして光学特性を測定し、それ
を分光曲線として第2図に示した。
Using this as a sample, the optical properties were measured, and the results are shown in FIG. 2 as a spectral curve.

(比較例) ガラス基板および噴霧条件は実施例1と同様と
し、ガラス基板の温度は540℃、560℃、590℃お
よび610℃について、混合溶液として次のものに
用いて噴霧した。
(Comparative Example) The glass substrate and spraying conditions were the same as in Example 1, and the following mixed solutions were used and sprayed at glass substrate temperatures of 540°C, 560°C, 590°C, and 610°C.

1) (CH32SnCl235wt%、C2H5OH25wt%、
H2O40wt% NH4F/((CH32SnCl2+C2H5OH+H2O)=
2/100 2) CCl3CH335wt% CF3COOH30wt% ガラス基板表面上に得られたSnO2(F)膜の比抵
抗を測定し、それを第3図に示した。
1) (CH 3 ) 2 SnCl 2 35wt%, C 2 H 5 OH25wt%,
H 2 O40wt% NH 4 F/((CH 3 ) 2 SnCl 2 +C 2 H 5 OH+H 2 O)=
2/100 2) CCl 3 CH 3 35wt% CF 3 COOH 30wt% The specific resistance of the SnO 2 (F) film obtained on the surface of the glass substrate was measured and is shown in FIG.

〔発明の効果〕〔Effect of the invention〕

第1図より明らかなように、(NH4F/錫化合
物溶液)×100が1〜4%で、しかもガラス基板の
温度が540〜590℃の間で高い温度の方が比抵抗を
より下げ、しかもその間でそれぞれ最小値をもつ
ことを見出し、しかも第2図では光学特性とし
て、ガラス基板の温度によつて同一の本発明の混
合溶液を噴霧し被膜を形成しても、赤外領域での
反射率に影響を与え、可視領域での透過率がほぼ
同一ではあるが約70%を得て、自動車の窓ガラス
等にも使用しうることが確認できた。なお、数値
的には、比抵抗が4〜7×10-4Ωcm赤外線反射率
が約80〜87%(10μmにおいて)である。
As is clear from Figure 1, when (NH 4 F/tin compound solution) x 100 is 1 to 4% and the temperature of the glass substrate is between 540 and 590℃, the higher the temperature, the lower the specific resistance. Moreover, they found that each of them has a minimum value between them, and in addition, as shown in FIG. It was confirmed that the transmittance in the visible region was about 70%, although it was almost the same, and could be used for automobile window glass. In addition, numerically, the specific resistance is 4 to 7 x 10 -4 Ωcm and the infrared reflectance is about 80 to 87% (at 10 μm).

さらに第3図では、本発明における混合溶液中
の(C4H9)SnCl3と他の有機錫化合物との比較に
よる一例を示すものであり、実施例1が7〜4×
10-4Ωcmであるのに対し、比較例1および2で
は、18〜9×10-4Ωcmであり、明らかに比抵抗へ
与える影響に大きな差があることがわかるもので
ある。
Further, FIG. 3 shows an example of a comparison between (C 4 H 9 )SnCl 3 and other organic tin compounds in the mixed solution in the present invention, and Example 1 is 7 to 4×
10 -4 Ωcm, whereas in Comparative Examples 1 and 2, it was 18 to 9×10 -4 Ωcm, which clearly shows that there is a large difference in the influence on specific resistance.

以上のように、本発明によれば、SiO2等のプ
レコートなしで、ヘイズのない低抵抗、高赤外反
射率の被膜が得られ、導電性材料、赤外線反射材
料として用いることができるし、また比較的低温
のガラス基板で被膜が容易に形成できるという顕
著な作用効果を奏するものである。
As described above, according to the present invention, a film with no haze and low resistance and high infrared reflectance can be obtained without precoating with SiO 2 etc., and can be used as a conductive material and an infrared reflective material. Further, it has the remarkable effect that a film can be easily formed on a relatively low-temperature glass substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であつて(NH4F/
錫化合物溶液)×100およびガラス基板の温度が比
抵抗に及ぼす影響を示し、第2図は本発明の一実
施例でのガラス基板の温度が透過率と反射率に与
える影響を示し、第3図は本発明で(C4H9
SnCl3を採用した効果を示すものである。
FIG. 1 shows an embodiment of the present invention (NH 4 F/
Figure 2 shows the influence of the tin compound solution)×100 and the temperature of the glass substrate on the resistivity, Figure 2 shows the influence of the temperature of the glass substrate on the transmittance and reflectance in one embodiment of the present invention, and Figure 3 shows the influence of the temperature of the glass substrate on the transmittance and reflectance in one embodiment of the present invention. The figure shows the present invention (C 4 H 9 )
This shows the effect of using SnCl 3 .

Claims (1)

【特許請求の範囲】[Claims] 1 高温のガラス表面上に錫化合物およびフツ素
化合物を含有する溶液を噴霧して、フツ素ドープ
酸化錫被膜を形成する方法において、前記溶液と
して(C4H9)SnCl3、水、アルコールおよび
NH4Fの混合物を用いることを特徴とする導電被
膜の形成方法。
1 In a method of forming a fluorine-doped tin oxide film by spraying a solution containing a tin compound and a fluorine compound onto a high-temperature glass surface, the solution contains (C 4 H 9 )SnCl 3 , water, alcohol and
A method for forming a conductive film, characterized by using a mixture of NH 4 F.
JP2616585A 1985-02-15 1985-02-15 Forming of conductive film Granted JPS61186478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2616585A JPS61186478A (en) 1985-02-15 1985-02-15 Forming of conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2616585A JPS61186478A (en) 1985-02-15 1985-02-15 Forming of conductive film

Publications (2)

Publication Number Publication Date
JPS61186478A JPS61186478A (en) 1986-08-20
JPH0217496B2 true JPH0217496B2 (en) 1990-04-20

Family

ID=12185936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2616585A Granted JPS61186478A (en) 1985-02-15 1985-02-15 Forming of conductive film

Country Status (1)

Country Link
JP (1) JPS61186478A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2568079B2 (en) * 1987-03-31 1996-12-25 旭硝子株式会社 Method for forming tin oxide transparent conductive film
JPH01116081A (en) * 1987-10-29 1989-05-09 Koroido Res:Kk Manufacture of thin functional ceramics film
JPH07105166B2 (en) * 1988-09-22 1995-11-13 旭硝子株式会社 Fluorine-doped tin oxide film and method for reducing resistance thereof
JPH03177337A (en) * 1989-12-05 1991-08-01 Nippon Sheet Glass Co Ltd Infrared ray-reflecting glass
JP3376420B2 (en) * 2000-09-06 2003-02-10 独立行政法人物質・材料研究機構 Method for producing zinc oxide-based compound patterned film
JP2007153701A (en) * 2005-12-07 2007-06-21 Fujikura Ltd Heat ray reflection glass, film forming apparatus and film forming method
JP2007242340A (en) * 2006-03-07 2007-09-20 Fujikura Ltd Transparent conductive substrate, its manufacturing method and its manufacturing apparatus

Also Published As

Publication number Publication date
JPS61186478A (en) 1986-08-20

Similar Documents

Publication Publication Date Title
US7622186B2 (en) Glazing panel having solar screening properties
US3677814A (en) Process for forming electroconductive tin oxide films by pyrolyzation of alkyl and aryl tin fluorides
US5165960A (en) Deposition of magnesium fluoride films
US4547400A (en) Method of making infrared reflective glass sheet-I
US4500567A (en) Method for forming tin oxide coating
JP2000119045A (en) Coated glass for controlling solar light
JP4441741B2 (en) Coated substrate with high reflectivity
US5348805A (en) Formation of a layer of aluminum and tin or titanium oxides on a glass substrate
CN1020582C (en) Non-glare coated glass
US5244692A (en) Process for formation of an aluminum oxide-based layer on glass, the product thus obtained, and its use in windows incorporating a conductive layer
JPS61201644A (en) Manufacture of infrared reflecting glass sheet
JPH0217496B2 (en)
US4770901A (en) Process for formation of tin oxide film
JP3171462B2 (en) Coated glass and method for producing the same
CA1235962A (en) Color suppressing process
US6312831B1 (en) Highly reflective, durable titanium/tin oxide films
GB2275692A (en) Coated glass having a substratum comprising oxides of aluminium titanium and vanadium
JPH0530907B2 (en)
JP3201209B2 (en) Architectural glass
CN102015564B (en) Production of coated glass
JP804H (en) Method of forming conductive coating
AU2916599A (en) Solar control coated substrate with high reflectance
JP3058056B2 (en) Heat ray reflective glass
JPH0648776A (en) Production of transparent oxide film and infrared ray reflecting glass
JPH0450683B2 (en)